peacock-data-public-datasets-idc-bigscience
/
experiments
/gpt2-meg-ds-zero
/meg_ds_zero_gpt2_perf_n16_offload.slurm
#!/bin/bash | |
#SBATCH --job-name=meg_ds_zero_gpt2_perf_n16_offload | |
#SBATCH --constraint=v100-32g | |
#SBATCH --nodes=16 | |
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! | |
#SBATCH --cpus-per-task=40 # number of cores per tasks | |
#SBATCH --hint=nomultithread # we get physical cores not logical | |
#SBATCH --gres=gpu:4 # number of gpus | |
#SBATCH --time 00:10:00 # maximum execution time (HH:MM:SS) | |
#SBATCH --output=%x-%j.out # output file name | |
#SBATCH --error=%x-%j.out # error file name (same to watch just one file) | |
#SBATCH --account=six@gpu | |
set -x -e | |
source $six_ALL_CCFRWORK/start-prod | |
nvidia-smi | |
cd $six_ALL_CCFRWORK/code/DeepSpeedExamples/Megatron-LM-v1.1.5-ZeRO3 | |
CHECKPOINT_PATH=$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release | |
VOCAB_FILE=$CHECKPOINT_PATH/gpt2-vocab.json | |
MERGE_FILE=$CHECKPOINT_PATH/gpt2-merges.txt | |
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2_text_document | |
SAVE_CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/gpt2-meg-ds | |
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) | |
MASTER_PORT=6000 | |
# adjust depending on the number of the nodes | |
NNODES=16 | |
MICRO_BATCH_SIZE=96 # works at 64, OOMs at | |
# at mbs96 full offload it get cgroup killed - overcomes 40gb/gpu limit | |
# succeeded: | |
#MSIZE=30 # @ mbs 16 # gpu ~17gb, cpu 5gb res per gpu, 20TFlops | |
MSIZE=52 # @ mbs 48 gpu ~30gb, cpu 5gb res per gpu, 43TFlops | |
# to try: | |
if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36 | |
elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32 | |
elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40 | |
elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40 | |
elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48 | |
elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48 | |
elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64 | |
elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64 | |
elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64 | |
elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64 | |
elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64 | |
elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64 | |
elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64 | |
elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64 | |
elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64 | |
else echo "invalid MSIZE: $MSIZE" | |
fi | |
GPUS_PER_NODE=4 | |
NHEADS=32 | |
SEQ_LEN=1024 | |
VOCAB_SIZE=50257 | |
TP_SIZE=4 # always fixed to the size of a single node | |
# Here TP takes over each nodes so DP sees only 16 "gpus" | |
# So total batch size is MICRO_BATCH_SIZE*NNODES | |
GPT_ARGS=" \ | |
--num-layers $NLAYERS \ | |
--hidden-size $NHIDDEN \ | |
--num-attention-heads $NHEADS \ | |
--seq-length $SEQ_LEN \ | |
--max-position-embeddings $SEQ_LEN \ | |
--batch-size $MICRO_BATCH_SIZE \ | |
--train-iters 1000 \ | |
--lr-decay-iters 800 \ | |
--vocab-file $VOCAB_FILE \ | |
--merge-file $MERGE_FILE \ | |
--lr 1.5e-4 \ | |
--lr-decay-style cosine \ | |
--min-lr 1.0e-5 \ | |
--weight-decay 1e-2 \ | |
--clip-grad 1.0 \ | |
--warmup 0.01 \ | |
--fp16 \ | |
" | |
OUTPUT_ARGS=" \ | |
--log-interval 1 \ | |
--save-interval 500 \ | |
--eval-interval 100 \ | |
--eval-iters 10 \ | |
" | |
#ZeRO Configs | |
gradient_accumulation_steps=1 | |
reduce_bucket_size=$(($NHIDDEN*$NHIDDEN)) | |
stage3_prefetch_bucket_size=$(($NHIDDEN*$NHIDDEN*9/10)) | |
stage3_param_persistence_threshold=$((10*$NHIDDEN)) | |
# Here it is different from the other setup | |
# not using this anymore | |
#train_batch_size=$(($WORLD_SIZE*$MICRO_BATCH_SIZE*$gradient_accumulation_steps)) | |
config_json="./ds_zero_stage_3_config.json" | |
# "offload_param": { | |
# "device": "none" | |
# }, | |
cat <<EOT > $config_json | |
{ | |
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, | |
"gradient_accumulation_steps": $gradient_accumulation_steps, | |
"steps_per_print": 10, | |
"zero_optimization": { | |
"stage": 3, | |
"offload_optimizer": { | |
"device": "cpu", | |
"pin_memory": true | |
}, | |
"offload_param": { | |
"device": "cpu", | |
"pin_memory": true | |
}, | |
"stage3_max_live_parameters": 1e9, | |
"stage3_max_reuse_distance": 1e9, | |
"stage3_prefetch_bucket_size": $stage3_prefetch_bucket_size, | |
"stage3_param_persitence_threshold": $stage3_param_persistence_threshold, | |
"reduce_bucket_size": $reduce_bucket_size, | |
"contiguous_gradients": true | |
}, | |
"gradient_clipping": 1.0, | |
"fp16": { | |
"enabled": true, | |
"loss_scale": 0, | |
"initial_scale_power": 10, | |
"loss_scale_window": 1000, | |
"hysteresis": 2, | |
"min_loss_scale": 1 | |
}, | |
"wall_clock_breakdown": false, | |
"zero_allow_untested_optimizer": false | |
} | |
EOT | |
MP_SIZE=$TP_SIZE | |
stage=3 | |
reduce_scatter=true | |
contigious_gradients=true | |
rbs=50000000 | |
agbs=5000000000 | |
#Activation Checkpointing and Contigious Memory | |
chkp_layers=1 | |
PA=true | |
PA_CPU=true | |
CC=true | |
SYNCHRONIZE=true | |
PROFILE=false | |
# TiledLinear splits, "true" to enable | |
TILED_LINEAR="true" | |
TILE_DIM=1 | |
DEEPSPEED_ARGS=" \ | |
--deepspeed \ | |
--deepspeed_config ${config_json} \ | |
--zero-stage ${stage} \ | |
--zero-reduce-bucket-size ${rbs} \ | |
--zero-allgather-bucket-size ${agbs} \ | |
" | |
if [ "${contigious_gradients}" = "true" ]; then | |
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \ | |
--zero-contigious-gradients" | |
fi | |
if [ "${reduce_scatter}" = "true" ]; then | |
DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \ | |
--zero-reduce-scatter" | |
fi | |
CHKP_ARGS=" \ | |
--checkpoint-activations \ | |
--deepspeed-activation-checkpointing \ | |
--checkpoint-num-layers ${chkp_layers}" | |
if [ "${PA}" = "true" ]; then | |
CHKP_ARGS="${CHKP_ARGS} --partition-activations" | |
fi | |
if [ "${PA_CPU}" = "true" ]; then | |
CHKP_ARGS="${CHKP_ARGS} \ | |
--checkpoint-in-cpu" | |
fi | |
if [ "${SYNCHRONIZE}" = "true" ]; then | |
CHKP_ARGS="${CHKP_ARGS} \ | |
--synchronize-each-layer" | |
fi | |
if [ "${CC}" = "true" ]; then | |
CHKP_ARGS="${CHKP_ARGS} \ | |
--contigious-checkpointing" | |
fi | |
if [ "${PROFILE}" = "true" ]; then | |
CHKP_ARGS="${CHKP_ARGS} \ | |
--profile-backward" | |
fi | |
if [ "${TILED_LINEAR}" = "true" ]; then | |
tile_opt="${tile_opt} \ | |
--memory-centric-tiled-linear \ | |
--tile-factor=${TILE_DIM}" | |
fi | |
export LAUNCHER="python -u -m torch.distributed.launch \ | |
--nproc_per_node $GPUS_PER_NODE \ | |
--nnodes $NNODES \ | |
--master_addr $MASTER_ADDR \ | |
--master_port $MASTER_PORT \ | |
" | |
# --tensor-model-parallel-size $TP_SIZE \ | |
# --pipeline-model-parallel-size $PP_SIZE \ | |
export CMD=" \ | |
`pwd`/pretrain_gpt2.py \ | |
--model-parallel-size $TP_SIZE \ | |
$GPT_ARGS \ | |
$OUTPUT_ARGS \ | |
--save $SAVE_CHECKPOINT_PATH \ | |
--load $SAVE_CHECKPOINT_PATH \ | |
--data-path $DATA_PATH \ | |
--data-impl mmap \ | |
--split 949,50,1 \ | |
--distributed-backend nccl \ | |
$DEEPSPEED_ARGS \ | |
$CHKP_ARGS \ | |
" | |
# clear old checkpoint as it'd mismatch while we sort things out | |
rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-meg-ds | |
# model size | |
python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')" | |
# to debug - add echo (it exits and prints what it would have launched) | |
clear; srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee meg_ds_zero_gpt2_perf_n16_offload.out | |
# iteration 2/ 1000 | elapsed time per iteration (ms): 122204.8 | learning rate: 3.750E-05 | lm loss: 1.251770E+01 | loss scale: 1024.0 | number of skipped iterations: 0 | number of nan iterations: 0 | | |
# time (ms) | forward: 34007.93 | backward: 87798.87 | backward-backward: 87798.82 | backward-allreduce: 0.00 | optimizer: 393.85 | batch generator: 3.51 | |
# Effective Tera Flops per GPU: 41.83 and total parameters 52.005 B | |