|
import os |
|
|
|
from transformers import TrainerCallback, is_tensorboard_available |
|
from transformers.integrations import rewrite_logs |
|
|
|
|
|
class LogFlosCallback(TrainerCallback): |
|
""" |
|
A :class:`~transformers.TrainerCallback` that adds current flos to every log. |
|
""" |
|
|
|
def on_log(self, args, state, control, logs=None, **kwargs): |
|
logs["total_flos"] = state.total_flos |
|
|
|
|
|
class TensorBoardFloIndexedCallback(TrainerCallback): |
|
""" |
|
A :class:`~transformers.TrainerCallback` that sends the logs to `TensorBoard |
|
<https://www.tensorflow.org/tensorboard>`__. |
|
|
|
Args: |
|
tb_writer (:obj:`SummaryWriter`, `optional`): |
|
The writer to use. Will instantiate one if not set. |
|
""" |
|
|
|
def __init__(self, tb_writer=None): |
|
has_tensorboard = is_tensorboard_available() |
|
assert ( |
|
has_tensorboard |
|
), "TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or install tensorboardX." |
|
if has_tensorboard: |
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
self._SummaryWriter = SummaryWriter |
|
except ImportError: |
|
try: |
|
from tensorboardX import SummaryWriter |
|
|
|
self._SummaryWriter = SummaryWriter |
|
except ImportError: |
|
self._SummaryWriter = None |
|
else: |
|
self._SummaryWriter = None |
|
self.tb_writer = tb_writer |
|
|
|
def _init_summary_writer(self, args, log_dir=None): |
|
log_dir = log_dir or args.logging_dir |
|
if self._SummaryWriter is not None: |
|
self.tb_writer = self._SummaryWriter(log_dir=log_dir) |
|
|
|
def on_train_begin(self, args, state, control, **kwargs): |
|
if not state.is_world_process_zero: |
|
return |
|
|
|
log_dir = None |
|
|
|
if state.is_hyper_param_search: |
|
trial_name = state.trial_name |
|
if trial_name is not None: |
|
log_dir = os.path.join(args.logging_dir, trial_name) |
|
|
|
self._init_summary_writer(args, log_dir) |
|
|
|
if self.tb_writer is not None: |
|
self.tb_writer.add_text("args", args.to_json_string()) |
|
if "model" in kwargs: |
|
model = kwargs["model"] |
|
if hasattr(model, "config") and model.config is not None: |
|
model_config_json = model.config.to_json_string() |
|
self.tb_writer.add_text("model_config", model_config_json) |
|
|
|
if hasattr(self.tb_writer, "add_hparams"): |
|
self.tb_writer.add_hparams(args.to_sanitized_dict(), metric_dict={}) |
|
|
|
def on_log(self, args, state, control, logs=None, **kwargs): |
|
if not state.is_world_process_zero: |
|
return |
|
|
|
if self.tb_writer is None: |
|
self._init_summary_writer(args) |
|
|
|
if self.tb_writer is not None: |
|
logs = rewrite_logs(logs) |
|
self.tb_writer.add_scalar("Conversion/x steps - y flos", state.total_flos, state.global_step) |
|
self.tb_writer.add_scalar("Conversion/x flos - y steps", state.global_step, state.total_flos) |
|
for k, v in logs.items(): |
|
if isinstance(v, (int, float)): |
|
self.tb_writer.add_scalar(f"Flos/{k}", v, state.total_flos) |
|
self.tb_writer.add_scalar(f"Steps/{k}", v, state.global_step) |
|
self.tb_writer.flush() |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
if self.tb_writer: |
|
self.tb_writer.close() |
|
|