peacock-data-public-datasets-idc-bigscience
/
train
/tr11-176B-ml
/smaller_models
/tr11e-350M-ml.slurm
#SBATCH --job-name=tr11e-350M-ml | |
#SBATCH --qos=qos_gpu-t3 | |
#SBATCH --nodes=8 | |
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! | |
#SBATCH --cpus-per-task=40 # number of cores per tasks | |
#SBATCH --hint=nomultithread # we get physical cores not logical | |
#SBATCH --gres=gpu:4 # number of gpus | |
#SBATCH -C v100-32g | |
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS) | |
#SBATCH --output=%x-%j.out # output file name | |
#SBATCH --account=six@v100 | |
set -x -e | |
#source $six_ALL_CCFRWORK/start-py38-pt110 | |
#source $six_ALL_CCFRWORK/start-py38-pt111 | |
source $six_ALL_CCFRWORK/code/tr11-176B-ml/bigscience/train/tr11-176B-ml/start-tr11-176B-ml | |
echo "START TIME: $(date)" | |
variant=main | |
DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11e-350M-ml | |
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints/$variant | |
REPO_PATH=$DATA_OUTPUT_PATH/tr11e-350M-ml-logs | |
TENSORBOARD_PATH=$REPO_PATH/tensorboard/$variant | |
LOGS_PATH=$REPO_PATH/logs/$variant | |
mkdir -p $LOGS_PATH | |
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRWORK/code/tr11-176B-ml/Megatron-DeepSpeed | |
cd $MEGATRON_DEEPSPEED_REPO | |
BIGSCIENCE_REPO=$six_ALL_CCFRWORK/code/bigscience | |
TRAIN_DATA_PATH=$MEGATRON_DEEPSPEED_REPO/data/train-splits-350M.txt | |
VALID_DATA_PATH=$MEGATRON_DEEPSPEED_REPO/data/valid-splits-350M.txt | |
CATALOGUE_JSON_PATH=$BIGSCIENCE_REPO/data/catalogue/training_dataset_ratios_merged_nigercongo_v3.json | |
LOAD_RATIOS_SCRIPT=$BIGSCIENCE_REPO/data/catalogue/load_ratios_meg_ds_format.py | |
python $LOAD_RATIOS_SCRIPT --dataset-ratios-path $CATALOGUE_JSON_PATH --split train --output-meg-ds-ratio-file $TRAIN_DATA_PATH | |
python $LOAD_RATIOS_SCRIPT --dataset-ratios-path $CATALOGUE_JSON_PATH --split valid --output-meg-ds-ratio-file $VALID_DATA_PATH | |
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles | |
# defining the right environment variables | |
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models | |
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets | |
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules | |
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics | |
export HF_DATASETS_OFFLINE=1 | |
export TRANSFORMERS_OFFLINE=1 | |
# testing for potential faulty nodes | |
# srun --jobid $SLURM_JOBID bash -c 'python -c "import torch, socket; print(socket.gethostname(), torch.cuda.is_available())"' | |
# so processes know who to talk to | |
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) | |
MASTER_PORT=6000 | |
GPUS_PER_NODE=4 | |
NNODES=$SLURM_NNODES | |
PP_SIZE=1 | |
TP_SIZE=1 | |
MICRO_BATCH_SIZE=1 | |
GLOBAL_BATCH_SIZE=256 | |
NLAYERS=24 | |
NHIDDEN=1024 | |
NHEADS=16 | |
SEQ_LEN=2048 | |
SAVE_INTERVAL=250 | |
TRAIN_SAMPLES=220_000_000 # 450B tokens | |
LR_DECAY_SAMPLES=200_000_000 # Decay for the first 410B tokens then continue at fixed --min-lr | |
LR_WARMUP_SAMPLES=183_105 # 375M tokens | |
OPTIMIZER_ARGS=" \ | |
--optimizer adam \ | |
--adam-beta1 0.9 \ | |
--adam-beta2 0.95 \ | |
--adam-eps 1e-8 \ | |
--lr 3.0e-4 \ | |
--min-lr 1e-5 \ | |
--lr-decay-style cosine \ | |
--lr-decay-samples $LR_DECAY_SAMPLES \ | |
--lr-warmup-samples $LR_WARMUP_SAMPLES \ | |
--clip-grad 1.0 \ | |
--weight-decay 1e-1 \ | |
" | |
# for 20h 1190, for 100h 5990 | |
# --exit-duration-in-mins 1190 \ | |
EXIT_OPTS=" \ | |
--exit-duration-in-mins 5990 \ | |
" | |
GPT_ARGS=" \ | |
--pp-partition-method 'type:transformer|embedding' \ | |
--num-layers $NLAYERS \ | |
--hidden-size $NHIDDEN \ | |
--num-attention-heads $NHEADS \ | |
--seq-length $SEQ_LEN \ | |
--max-position-embeddings $SEQ_LEN \ | |
--micro-batch-size $MICRO_BATCH_SIZE \ | |
--rampup-batch-size 192 32 9_765_625 \ | |
--global-batch-size $GLOBAL_BATCH_SIZE \ | |
--train-samples $TRAIN_SAMPLES \ | |
--tokenizer-type PretrainedFromHF \ | |
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \ | |
--init-method-std 0.0048 \ | |
--embed-layernorm \ | |
--fp16 \ | |
--seed 42 \ | |
--position-embedding-type alibi \ | |
--abort-on-unmet-fused-kernel-constraints \ | |
--pad-vocab-size-to 250880 \ | |
$OPTIMIZER_ARGS \ | |
$EXIT_OPTS \ | |
" | |
# TODO: decide on efficient eval-interval + eval-iters | |
OUTPUT_ARGS=" \ | |
--log-interval 1 \ | |
--save-interval $SAVE_INTERVAL \ | |
--eval-interval 1000 \ | |
--eval-iters 1 \ | |
--tensorboard-dir $TENSORBOARD_PATH \ | |
--tensorboard-queue-size 5 \ | |
--log-timers-to-tensorboard \ | |
--log-batch-size-to-tensorboard \ | |
--log-validation-ppl-to-tensorboard \ | |
" | |
ZERO_STAGE=0 # important: bf16 must use z0! it implements its own zero stage 1 equivalent | |
config_json="./ds_config.$SLURM_JOBID.json" | |
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() | |
cat <<EOT > $config_json | |
{ | |
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, | |
"train_batch_size": $GLOBAL_BATCH_SIZE, | |
"gradient_clipping": 1.0, | |
"zero_optimization": { | |
"stage": $ZERO_STAGE | |
}, | |
"fp16": { | |
"enabled": true, | |
"loss_scale": 0, | |
"loss_scale_window": 500, | |
"hysteresis": 2, | |
"min_loss_scale": 1, | |
"initial_scale_power": 12 | |
}, | |
"steps_per_print": 2000, | |
"wall_clock_breakdown": false | |
} | |
EOT | |
DEEPSPEED_ARGS=" \ | |
--deepspeed \ | |
--deepspeed_config ${config_json} \ | |
--zero-stage ${ZERO_STAGE} \ | |
--deepspeed-activation-checkpointing \ | |
" | |
export LAUNCHER="python -u -m torch.distributed.run \ | |
--nproc_per_node $GPUS_PER_NODE \ | |
--nnodes $NNODES \ | |
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \ | |
--rdzv_backend c10d \ | |
--max_restarts 0 \ | |
--tee 3 \ | |
" | |
export CMD=" \ | |
`pwd`/pretrain_gpt.py \ | |
--tensor-model-parallel-size $TP_SIZE \ | |
--pipeline-model-parallel-size $PP_SIZE \ | |
$GPT_ARGS \ | |
$OUTPUT_ARGS \ | |
--save $CHECKPOINT_PATH \ | |
--load $CHECKPOINT_PATH \ | |
--train-weighted-split-paths-path $TRAIN_DATA_PATH \ | |
--valid-weighted-split-paths-path $VALID_DATA_PATH \ | |
--data-impl mmap \ | |
--distributed-backend nccl \ | |
$DEEPSPEED_ARGS \ | |
" | |
echo $CMD | |
# do not remove or the training will hang and nodes will be lost w/o this workaround | |
export CUDA_LAUNCH_BLOCKING=1 | |
# hide duplicated errors using this hack - will be properly fixed in pt-1.12 | |
export TORCHELASTIC_ERROR_FILE=/tmp/torch-elastic-error.json | |
clear; srun --jobid $SLURM_JOBID bash -c "$LAUNCHER --node_rank \$SLURM_PROCID $CMD" 2>&1 | tee -a $LOGS_PATH/main_log.txt | |
echo "END TIME: $(date)" | |