peacock-data-public-datasets-idc-bigscience
/
train
/tr13-mtf
/tr13-176B-mtf-xp3capmixnewcodelonglossseq.slurm
#!/bin/bash | |
#SBATCH --job-name=tr13-176B-ml | |
#SBATCH --partition=gpu_p5 | |
#SBATCH --constraint=a100 | |
#SBATCH --reservation=hug | |
#SBATCH --qos=qos_gpu-gc # up to 100h | |
#SBATCH --nodes=36 | |
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! | |
#SBATCH --cpus-per-task=64 # number of cores per tasks | |
#SBATCH --hint=nomultithread # we get physical cores not logical | |
#SBATCH --gres=gpu:8 # number of gpus | |
#SBATCH --time 100:00:00 # maximum execution time (HH:MM:SS) | |
#SBATCH --output=%x-%j.out # output file name | |
#SBATCH --account=six@a100 | |
set -x -e | |
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0 | |
echo "START TIME: $(date)" | |
variant=xp3capmixnewcodelonglossseq | |
DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13-176B-ml-t0 | |
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints/$variant | |
REPO_PATH=$DATA_OUTPUT_PATH/tr13-176B-ml-t0-logs | |
TENSORBOARD_PATH=$REPO_PATH/tensorboard/$variant | |
LOGS_PATH=$REPO_PATH/logs/$variant | |
mkdir -p $LOGS_PATH | |
mkdir -p $TENSORBOARD_PATH | |
MEGATRON_DEEPSPEED_REPO=/gpfswork/rech/six/commun/code/tr13f-6B3-ml-t0/megdslossseqnew/Megatron-DeepSpeed | |
cd $MEGATRON_DEEPSPEED_REPO | |
KILL_SWITCH_PATH=$MEGATRON_DEEPSPEED_REPO/kill-switch-tr13-176B-mtf | |
TRAIN_DATA_PATH=$six_ALL_CCFRWORK/code/tr13f-6B3-ml-t0/Megatron-DeepSpeed/data/xp3capmixnewcodelong_train.txt | |
VALID_DATA_PATH=$six_ALL_CCFRWORK/code/tr13f-6B3-ml-t0/Megatron-DeepSpeed/data/xp3capmixnewcodelong_validation_pretr.txt | |
TOKENIZER_NAME_OR_PATH=bigscience/tokenizer | |
# defining the right environment variables | |
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models | |
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets | |
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules | |
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics | |
export HF_DATASETS_OFFLINE=1 | |
export TRANSFORMERS_OFFLINE=1 | |
# testing for potential faulty nodes | |
# srun --jobid $SLURM_JOB_ID bash -c 'python -c "import torch, socket; print(socket.gethostname(), torch.cuda.is_available())"' | |
# so processes know who to talk to | |
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) | |
MASTER_PORT=6001 | |
GPUS_PER_NODE=8 | |
NNODES=$SLURM_NNODES | |
# TP=1/PP=72/MBS=1/Nodes=36 | |
PP_SIZE=72 | |
TP_SIZE=1 | |
# T0 paper: | |
# ...truncate input and target sequences to 1024 and 256 tokens... | |
# ...use a batch size of 1024 sequences ... 2^20 total input tokens per batch... | |
# We use 2048 total tokens and 512 batch size = 2**20 | |
MICRO_BATCH_SIZE=1 | |
GLOBAL_BATCH_SIZE=2048 | |
NHIDDEN=14336 | |
NLAYERS=70 | |
NHEADS=112 | |
SEQ_LEN=2048 | |
# After CKPT is saved; stop training; change to desired SAVE_INTERNAL & remove no-load-optim & remove universal ckpt | |
# SAVE_INTERVAL=249 | |
SAVE_INTERVAL=5 | |
TRAIN_SAMPLES=6_348_800 | |
# T0 paper: | |
# "...we use a learning rate of 1e-3..." | |
# However, they use Adafactor, which adapts the LR | |
# For Adam we likely want a lower one | |
# FLAN: | |
# "...decay of 1e-4.."" | |
# Uncomment for the first step | |
# --no-load-optim \ | |
# --reset-progress \ | |
OPTIMIZER_ARGS=" \ | |
--optimizer adam \ | |
--adam-beta1 0.9 \ | |
--adam-beta2 0.95 \ | |
--adam-eps 1e-8 \ | |
--lr 2e-5 \ | |
--lr-decay-style constant \ | |
--lr-warmup-samples 0 \ | |
--clip-grad 1.0 \ | |
--weight-decay 1e-4 \ | |
--no-load-optim \ | |
--norm-target-loss \ | |
--reset-progress \ | |
" | |
# for 20h 1190, for 100h 5990 | |
# --exit-duration-in-mins 1190 \ | |
EXIT_OPTS=" \ | |
--exit-duration-in-mins 5990 \ | |
" | |
GPT_ARGS=" \ | |
--pp-partition-method 'type:transformer|embedding' \ | |
--num-layers $NLAYERS \ | |
--hidden-size $NHIDDEN \ | |
--num-attention-heads $NHEADS \ | |
--seq-length $SEQ_LEN \ | |
--max-position-embeddings $SEQ_LEN \ | |
--micro-batch-size $MICRO_BATCH_SIZE \ | |
--global-batch-size $GLOBAL_BATCH_SIZE \ | |
--train-samples $TRAIN_SAMPLES \ | |
--tokenizer-type PretrainedFromHF \ | |
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \ | |
--init-method-std 0.0048 \ | |
--embed-layernorm \ | |
--sync-tp-duplicated-parameters \ | |
--bf16 \ | |
--seed 42 \ | |
--position-embedding-type alibi \ | |
--checkpoint-activations \ | |
--abort-on-unmet-fused-kernel-constraints \ | |
--kill-switch-path $KILL_SWITCH_PATH \ | |
--pad-vocab-size-to 250880 \ | |
$OPTIMIZER_ARGS \ | |
$EXIT_OPTS \ | |
" | |
OUTPUT_ARGS=" \ | |
--log-interval 1 \ | |
--save-interval $SAVE_INTERVAL \ | |
--eval-interval 250 \ | |
--eval-iters 10 \ | |
--tensorboard-dir $TENSORBOARD_PATH \ | |
--tensorboard-queue-size 5 \ | |
--log-timers-to-tensorboard \ | |
--log-batch-size-to-tensorboard \ | |
--log-validation-ppl-to-tensorboard \ | |
" | |
ZERO_STAGE=0 # important: bf16 must use z0! it implements its own zero stage 1 equivalent | |
config_json="./ds_config.$SLURM_JOBID.json" | |
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() | |
cat <<EOT > $config_json | |
{ | |
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, | |
"train_batch_size": $GLOBAL_BATCH_SIZE, | |
"gradient_clipping": 1.0, | |
"zero_optimization": { | |
"stage": $ZERO_STAGE | |
}, | |
"bf16": { | |
"enabled": true | |
}, | |
"steps_per_print": 2000, | |
"wall_clock_breakdown": false | |
} | |
EOT | |
DEEPSPEED_ARGS=" \ | |
--deepspeed \ | |
--deepspeed_config ${config_json} \ | |
--zero-stage ${ZERO_STAGE} \ | |
--deepspeed-activation-checkpointing \ | |
" | |
export LAUNCHER="python -u -m torch.distributed.run \ | |
--nproc_per_node $GPUS_PER_NODE \ | |
--nnodes $NNODES \ | |
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \ | |
--rdzv_backend c10d \ | |
--max_restarts 0 \ | |
--tee 3 \ | |
" | |
# --universal-checkpoint \ | |
export CMD=" \ | |
`pwd`/finetune_t0.py \ | |
--universal-checkpoint \ | |
--tensor-model-parallel-size $TP_SIZE \ | |
--pipeline-model-parallel-size $PP_SIZE \ | |
$GPT_ARGS \ | |
$OUTPUT_ARGS \ | |
--save $CHECKPOINT_PATH \ | |
--load $CHECKPOINT_PATH \ | |
--train-weighted-split-paths-path $TRAIN_DATA_PATH \ | |
--valid-weighted-split-paths-path $VALID_DATA_PATH \ | |
--dataloader-type single \ | |
--data-impl mmap \ | |
--distributed-backend nccl \ | |
$DEEPSPEED_ARGS \ | |
" | |
echo $CMD | |
# do not remove or the training will hang and nodes will be lost w/o this workaround | |
export CUDA_LAUNCH_BLOCKING=1 | |
# hide duplicated errors using this hack - will be properly fixed in pt-1.12 | |
export TORCHELASTIC_ERROR_FILE=/tmp/torch-elastic-error.json | |
# force crashing on nccl issues like hanging broadcast | |
export NCCL_ASYNC_ERROR_HANDLING=1 | |
# srun error handling: | |
# --wait=60: wait 60 sec after the first task terminates before terminating all remaining tasks | |
# --kill-on-bad-exit=1: terminate a step if any task exits with a non-zero exit code | |
SRUN_ARGS=" \ | |
--wait=60 \ | |
--kill-on-bad-exit=1 \ | |
" | |
clear; srun $SRUN_ARGS --jobid $SLURM_JOBID bash -c "$LAUNCHER --node_rank \$SLURM_PROCID $CMD" 2>&1 | tee -a $LOGS_PATH/main_log.txt | |
echo "END TIME: $(date)" | |