applied-ai-018's picture
Add files using upload-large-folder tool
2024260 verified
#!/bin/bash
#SBATCH --qos=qos_gpu-t3
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:8 # number of gpus
#SBATCH --time 04:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x.out # output file name
#SBATCH --partition=gpu_p5
#SBATCH --account=ajs@a100
#SBATCH -C a100
set -x -e
#source $ajs_ALL_CCFRWORK/start-py38-pt110
#source $ajs_ALL_CCFRWORK/start-py38-pt111
source $six_ALL_CCFRWORK/code/tr11-176B-ml/bigscience/train/tr11-176B-ml/start-tr11-176B-ml
echo "START TIME: $(date)"
variant=main
DATA_PATH=$ajs_ALL_CCFRSCRATCH/datasets/c4/gpt2tok_c4_text_document
DATA_OUTPUT_PATH=$ajs_ALL_CCFRSCRATCH/checkpoints/tr14-2B7-mup-lr$1-init$2-inpm$3-outm$4-atnm$5-mup
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints/$variant
REPO_PATH=$DATA_OUTPUT_PATH/tr14-2B7-mup-lr$1-init$2-inpm$3-outm$4-atnm$5-mup-logs
TENSORBOARD_PATH=$REPO_PATH/tensorboard/$variant
LOGS_PATH=$REPO_PATH/logs/$variant
mkdir -p $LOGS_PATH
MEGATRON_DEEPSPEED_REPO=$ajs_ALL_CCFRWORK/code/Megatron-DeepSpeed
cd $MEGATRON_DEEPSPEED_REPO
TOKENIZER_NAME_OR_PATH=t5-small
# defining the right environment variables
export TRANSFORMERS_CACHE=$ajs_ALL_CCFRWORK/models
export HF_DATASETS_CACHE=$ajs_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$ajs_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$ajs_ALL_CCFRWORK/metrics
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
# testing for potential faulty nodes
# srun --jobid $SLURM_JOBID bash -c 'python -c "import torch, socket; print(socket.gethostname(), torch.cuda.is_available())"'
# so processes know who to talk to
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6000
GPUS_PER_NODE=8
NNODES=$SLURM_NNODES
PP_SIZE=1
TP_SIZE=2
MICRO_BATCH_SIZE=1
GLOBAL_BATCH_SIZE=512
NLAYERS=32
NHIDDEN=2560
NHEADS=32
SEQ_LEN=2048
SAVE_INTERVAL=250
TRAIN_SAMPLES=25_000_000 # 51.2B tokens
LR_DECAY_SAMPLES=25_000_000 # Decay in the same amount
LR_WARMUP_SAMPLES=183_105 # 375M tokens
MUP_ARGS=" \
--lr $1 \
--min-lr `bc <<< "scale=3; $1/10"` \
--init-method-std $2 \
--mup \
--mup-input-mult $3 \
--mup-output-mult $4 \
--mup-attn-mult $5 \
"
OPTIMIZER_ARGS=" \
--optimizer adam \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--adam-eps 1e-8 \
--lr-decay-style cosine \
--lr-decay-samples $LR_DECAY_SAMPLES \
--lr-warmup-samples $LR_WARMUP_SAMPLES \
--clip-grad 1.0 \
--weight-decay 1e-1 \
"
# for 20h 1190, for 100h 5990
EXIT_OPTS=" \
--exit-duration-in-mins 1190 \
"
GPT_ARGS=" \
--pp-partition-method 'type:transformer' \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads $NHEADS \
--seq-length $SEQ_LEN \
--max-position-embeddings $SEQ_LEN \
--micro-batch-size $MICRO_BATCH_SIZE \
--rampup-batch-size 192 32 9_765_625 \
--global-batch-size $GLOBAL_BATCH_SIZE \
--train-samples $TRAIN_SAMPLES \
--tokenizer-type PretrainedFromHF \
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
--embed-layernorm \
--fp16 \
--seed 42 \
--position-embedding-type alibi \
--checkpoint-activations \
--abort-on-unmet-fused-kernel-constraints \
--pad-vocab-size-to 51200 \
$OPTIMIZER_ARGS \
$EXIT_OPTS \
"
# TODO: decide on efficient eval-interval + eval-iters
OUTPUT_ARGS=" \
--log-interval 1 \
--save-interval $SAVE_INTERVAL \
--eval-interval 1000 \
--eval-iters 1 \
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-queue-size 5 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-validation-ppl-to-tensorboard \
"
ZERO_STAGE=1
config_json="./ds_config.$SLURM_JOBID.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"train_batch_size": $GLOBAL_BATCH_SIZE,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
EOT
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${ZERO_STAGE} \
--deepspeed-activation-checkpointing \
"
export LAUNCHER="python -u -m torch.distributed.run \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
--rdzv_backend c10d \
--max_restarts 0 \
--tee 3 \
"
export CMD=" \
`pwd`/pretrain_gpt.py \
--tensor-model-parallel-size $TP_SIZE \
--pipeline-model-parallel-size $PP_SIZE \
$GPT_ARGS \
$OUTPUT_ARGS \
$MUP_ARGS \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--data-impl mmap \
--distributed-backend nccl \
$DEEPSPEED_ARGS \
"
echo $CMD
# do not remove or the training will hang and nodes will be lost w/o this workaround
export CUDA_LAUNCH_BLOCKING=1
# hide duplicated errors using this hack - will be properly fixed in pt-1.12
export TORCHELASTIC_ERROR_FILE=/tmp/torch-elastic-error.json
clear; srun --jobid $SLURM_JOBID bash -c "$LAUNCHER --node_rank \$SLURM_PROCID $CMD" 2>&1 | tee -a $LOGS_PATH/main_log.txt
echo "END TIME: $(date)"