peacock-data-public-datasets-idc-bigscience
/
train
/tr4-1B3-rotary
/tr4c-1B3-oscar-modeling-rotary.slurm
#!/bin/bash | |
#SBATCH --job-name=1B3-rotary-oscar.slurm | |
#SBATCH --qos=qos_gpu-t3 | |
#SBATCH --nodes=16 | |
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! | |
#SBATCH --cpus-per-task=40 # number of cores per tasks | |
#SBATCH --hint=nomultithread # we get physical cores not logical | |
#SBATCH --gres=gpu:4 # number of gpus | |
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS) | |
#SBATCH --output=/gpfsdswork/projects/rech/six/uue59kq/logs/%x-%j.out # output file name | |
#SBATCH --error=/gpfsdswork/projects/rech/six/uue59kq/logs/%x-%j.err # error file name | |
#SBATCH --account=six@v100 | |
set -x -e | |
# TODO: modify these for your training setup, just Ctrl-F replace <YOUR_TRAINING_NAME> | |
DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/synched_exps/tr4c-1B3-rotary-oscar | |
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints | |
REPO_PATH=$DATA_OUTPUT_PATH/tr4c-1B3-rotary-oscar-logs | |
TENSORBOARD_PATH=$REPO_PATH/tensorboard | |
CODECARBON_PATH=$REPO_PATH/codecarbon | |
LOGS_PATH=$REPO_PATH/logs | |
MEGATRON_DEEPSPEED_REPO=$SCRATCH/repos/Megatron-DeepSpeed | |
# TODO: you may change the dataset, some examples are at tr3-1B3-baseline (tr3 = c4 + t5-tokenizer, tr3m = the Pile) | |
VOCAB_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-vocab.json | |
MERGE_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-merges.txt | |
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/oscar-en/meg-gpt2_text_document | |
# defining the right environment variables | |
source $six_ALL_CCFRWORK/start-prod | |
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models | |
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets | |
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules | |
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics | |
export HF_DATASETS_OFFLINE=1 | |
export TRANSFORMERS_OFFLINE=1 | |
cd $MEGATRON_DEEPSPEED_REPO | |
# so processes know who to talk to | |
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) | |
MASTER_PORT=6000 | |
# TODO: this is our base config for 1B3, edit PP/TP/batch size/model config if smaller or bigger | |
GPUS_PER_NODE=4 | |
NNODES=16 | |
PP_SIZE=4 # NLAYERS must be a multiple of PP_SIZE here | |
TP_SIZE=4 # always fixed to the size of a single node | |
DP_SIZE=$((NNODES * GPUS_PER_NODE / (PP_SIZE * TP_SIZE))) # will get derived automatically by trainer | |
MICRO_BATCH_SIZE=8 | |
GLOBAL_BATCH_SIZE=512 | |
TRAIN_ITER=73_242_187 | |
NLAYERS=24 | |
NHIDDEN=2048 | |
NHEADS=16 | |
FFN_HIDDEN_SIZE=8192 | |
SEQ_LEN=2048 | |
SAVE_INTERVAL=1500 | |
OPTIMIZER_ARGS=" \ | |
--optimizer adam \ | |
--adam-beta1 0.9 \ | |
--adam-beta2 0.999 \ | |
--adam-eps 1e-8 \ | |
--lr 2e-4 \ | |
--min-lr 1e-5 \ | |
--lr-decay-style cosine \ | |
--lr-decay-samples 73_242_187 \ | |
--lr-warmup-samples 183_105 \ | |
--clip-grad 1.0 \ | |
--weight-decay 1e-1 \ | |
" | |
EXIT_OPTS=" \ | |
--exit-duration-in-mins 1190 \ | |
" | |
GPT_ARGS=" \ | |
--num-layers $NLAYERS \ | |
--hidden-size $NHIDDEN \ | |
--num-attention-heads $NHEADS \ | |
--ffn-hidden-size $FFN_HIDDEN_SIZE \ | |
--seq-length $SEQ_LEN \ | |
--position-embedding-type rotary \ | |
--micro-batch-size $MICRO_BATCH_SIZE \ | |
--global-batch-size $GLOBAL_BATCH_SIZE \ | |
--rampup-batch-size 32 32 2_000_000 \ | |
--train-samples $TRAIN_ITER \ | |
--vocab-file $VOCAB_FILE \ | |
--merge-file $MERGE_FILE \ | |
--loss-scale 12 \ | |
--clip-grad 1.0 \ | |
--fp16 \ | |
--checkpoint-activations \ | |
$OPTIMIZER_ARGS \ | |
$EXIT_OPTS \ | |
" | |
OUTPUT_ARGS=" \ | |
--log-interval 200 \ | |
--save-interval $SAVE_INTERVAL \ | |
--eval-interval 1000 \ | |
--eval-iters 100 \ | |
--tensorboard-dir $TENSORBOARD_PATH \ | |
--tensorboard-queue-size 5 \ | |
--log-timers-to-tensorboard \ | |
--log-batch-size-to-tensorboard \ | |
--log-validation-ppl-to-tensorboard \ | |
" | |
# TODO: Add --codecarbon-dir $CODECARBON_PATH \ if you want to use codecarbon, not adding it for now to make the current | |
# series of experiments consistent, especially speed-wise. Adding it once Tr6 and Tr7 are done | |
ZERO_STAGE=1 | |
config_json="./ds_config.$SLURM_JOBID.json" | |
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() | |
cat <<EOT >$config_json | |
{ | |
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, | |
"train_batch_size": $GLOBAL_BATCH_SIZE, | |
"gradient_clipping": 1.0, | |
"zero_optimization": { | |
"stage": $ZERO_STAGE | |
}, | |
"fp16": { | |
"enabled": true, | |
"loss_scale": 0, | |
"loss_scale_window": 500, | |
"hysteresis": 2, | |
"min_loss_scale": 1, | |
"initial_scale_power": 12 | |
}, | |
"steps_per_print": 2000, | |
"wall_clock_breakdown": false | |
} | |
EOT | |
DEEPSPEED_ARGS=" \ | |
--deepspeed \ | |
--deepspeed_config ${config_json} \ | |
--zero-stage ${ZERO_STAGE} \ | |
--deepspeed-activation-checkpointing \ | |
" | |
export LAUNCHER="python -u -m torch.distributed.launch \ | |
--nproc_per_node $GPUS_PER_NODE \ | |
--nnodes $NNODES \ | |
--master_addr $MASTER_ADDR \ | |
--master_port $MASTER_PORT \ | |
" | |
export CMD=" \ | |
$(pwd)/pretrain_gpt.py \ | |
--tensor-model-parallel-size $TP_SIZE \ | |
--pipeline-model-parallel-size $PP_SIZE \ | |
$GPT_ARGS \ | |
$OUTPUT_ARGS \ | |
--save $CHECKPOINT_PATH \ | |
--load $CHECKPOINT_PATH \ | |
--data-path $DATA_PATH \ | |
--data-impl mmap \ | |
--split 949,50,1 \ | |
--distributed-backend nccl \ | |
$DEEPSPEED_ARGS \ | |
" | |
# # clear old checkpoint as it'd mismatch while we sort things out | |
# rm -rf $SAVE_CHECKPOINT_PATH | |
echo $CMD | |
# We create the folder where the logs and codecarbon will be stored. | |
mkdir -p $LOGS_PATH | |
# Uncomment if you use codecarbon | |
# mkdir -p $CODECARBON_PATH | |
# to debug - add echo (it exits and prints what it would have launched) | |
srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a $LOGS_PATH/main_log.txt | |