applied-ai-018's picture
Add files using upload-large-folder tool
0387b0f verified
#!/bin/bash
#SBATCH --job-name=350M-alibi-extrapolation
#SBATCH --nodes=4
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:4 # number of gpus
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=/gpfsdswork/projects/rech/six/uue59kq/logs/%x-%j.out # output file name
#SBATCH --error=/gpfsdswork/projects/rech/six/uue59kq/logs/%x-%j.err # error file name
#SBATCH --account=six@v100
set -x -e
ROUND=2
TESTING=0
OUTPUT_PATH=$SCRATCH/synched_exps/tr7b-350M-alibi
MEGATRON_DEEPSPEED_REPO=$SCRATCH/repos/Megatron-DeepSpeed
VOCAB_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-vocab.json
MERGE_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/oscar-en/meg-gpt2_text_document
source $six_ALL_CCFRWORK/start-prod
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
cd $MEGATRON_DEEPSPEED_REPO
MASTER_ADDR=$(perl -le '$_=$ENV{"SLURM_JOB_NODELIST"}; s/,.*//; s/-.*//; s/\[//; print')
MASTER_PORT=6000
# adjust depending on the number of the nodes
# XXX: edit me
GPUS_PER_NODE=4
NNODES=4
PP_SIZE=2 # NLAYERS must be a multiple of PP_SIZE here
TP_SIZE=4 # always fixed to the size of a single node
DP_SIZE=$((NNODES * GPUS_PER_NODE / (PP_SIZE * TP_SIZE))) # will get derived automatically by trainer
MICRO_BATCH_SIZE=8
GLOBAL_BATCH_SIZE=512
TRAIN_ITER=73_242_187
NLAYERS=24
NHIDDEN=1024
NHEADS=16
FFN_HIDDEN_SIZE=4096
SEQ_LEN=2048
if [[ ${ROUND} == 1 ]]; then
EXIT_INTERVAL=100 SAVE_INTERVAL=10
elif [[ ${ROUND} == 2 ]]; then
SAVE_INTERVAL=1500
else
echo "invalid ROUND: $ROUND"
fi
OPTIMIZER_ARGS=" \
--optimizer adam \
--adam-beta1 0.9 \
--adam-beta2 0.999 \
--adam-eps 1e-8 \
--lr 3e-4 \
--min-lr 1e-5 \
--lr-decay-style cosine \
--lr-decay-samples 73_242_187 \
--lr-warmup-samples 183_105 \
--clip-grad 1.0 \
--weight-decay 1e-1 \
--no-train 1 \
"
EXIT_OPTS=" \
--exit-duration-in-mins 1190 \
"
for increment in {100..2000..100}; do
SEQ_LEN_2=$(($increment + $SEQ_LEN))
echo "***** Extrapolation for a seq length of $SEQ_LEN_2 *****"
GPT_ARGS=" \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads $NHEADS \
--ffn-hidden-size $FFN_HIDDEN_SIZE \
--seq-length $SEQ_LEN_2 \
--max-position-embeddings $SEQ_LEN_2 \
--micro-batch-size $MICRO_BATCH_SIZE \
--global-batch-size $GLOBAL_BATCH_SIZE \
--rampup-batch-size 32 32 2_000_000 \
--train-samples $TRAIN_ITER \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--loss-scale 12 \
--clip-grad 1.0 \
--fp16 \
--checkpoint-activations \
--position-embedding-type alibi \
$OPTIMIZER_ARGS \
$EXIT_OPTS \
"
OUTPUT_ARGS=" \
--log-interval 200 \
--save-interval $SAVE_INTERVAL \
--eval-interval 1000 \
--eval-iters 100 \
--tensorboard-dir $OUTPUT_PATH/validation/tensorboard \
--tensorboard-queue-size 5 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-validation-ppl-to-tensorboard \
"
ZERO_STAGE=1
config_json="./ds_config.$SLURM_JOBID.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT >$config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"train_batch_size": $GLOBAL_BATCH_SIZE,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
EOT
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${ZERO_STAGE} \
--deepspeed-activation-checkpointing \
"
export LAUNCHER="python -u -m torch.distributed.launch \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
"
export CMD=" \
$(pwd)/pretrain_gpt.py \
--tensor-model-parallel-size $TP_SIZE \
--pipeline-model-parallel-size $PP_SIZE \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $OUTPUT_PATH/checkpoints \
--load $OUTPUT_PATH/checkpoints \
--data-path $DATA_PATH \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
$DEEPSPEED_ARGS \
"
# # clear old checkpoint as it'd mismatch while we sort things out
# rm -rf $SAVE_CHECKPOINT_PATH
echo $CMD
# to debug - add echo (it exits and prints what it would have launched)
srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a $OUTPUT_PATH/validation/logs/tr7b-350M-alibi-extrapolation.$SLURM_JOBID.out
done