Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +111 -0
- CODEOWNERS +1 -0
- LICENSE +16 -0
- MANIFEST.in +9 -0
- Makefile +59 -0
- TODO.md +54 -0
- evaluation/results/tr11/bloom/mdmeta.txt +1595 -0
- evaluation/results/tr11/bloom1b3/bslmeval.json +2938 -0
- evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11-1b3-ml-evalharness-results_lm-eval_global_step340500_2022-07-13-11-29-13.json +172 -0
- evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-12-22-45-57.json +0 -0
- evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-15-11-47-34.json +0 -0
- evaluation/results/tr11/bloom1b3/humaneval_temp02.json +1 -0
- evaluation/results/tr11/bloom1b3/humaneval_temp06.json +1 -0
- evaluation/results/tr11/bloom1b3/humaneval_temp08.json +1 -0
- evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-12-23-19-06.json +0 -0
- evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-13-19-42-29.json +1917 -0
- evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-13-10-19.json +0 -0
- evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-20-09-16.json +1255 -0
- evaluation/results/tr11/bloom350m/humaneval_temp02.json +1 -0
- evaluation/results/tr11/bloom350m/humaneval_temp06.json +1 -0
- evaluation/results/tr11/get_templates.sh +27 -0
- evaluation/results/tr11/opt/humaneval_temp02.json +1 -0
- evaluation/results/tr11/opt/humaneval_temp08.json +1 -0
- evaluation/results/tr11/scripts/download.py +21 -0
- evaluation/results/tr11/scripts/multi_eurlex_tmp.slurm +63 -0
- evaluation/results/tr11/scripts/report-to-csv.py +58 -0
- evaluation/results/tr11/scripts/run_bsevalharness_generation_176b.slurm +128 -0
- evaluation/results/tr11/scripts/run_bsevalharness_generation_350m.slurm +110 -0
- evaluation/results/tr11/scripts/run_bsevalharness_generation_760m.slurm +110 -0
- evaluation/results/tr11/scripts/run_bsevalharness_tr11c-2b5-ml.slurm +121 -0
- evaluation/results/tr11/scripts/run_bsevalharness_tr11e-350m-ml.slurm +120 -0
- evaluation/results/tr11/scripts/run_bsevalharness_tr11f-6b3-ml.slurm +121 -0
- evaluation/results/tr11/scripts/run_evalharness_deepspeed.md +158 -0
- evaluation/results/tr11/scripts/run_evalharness_deepspeed.slurm +98 -0
- evaluation/results/tr11/scripts/run_evalharness_tr11-176b-ml.slurm +121 -0
- evaluation/results/tr11/scripts/run_evalharness_tr11b-1b3-ml.slurm +120 -0
- evaluation/results/tr11/scripts/run_evalharness_tr11c-2b5-ml.slurm +120 -0
- evaluation/results/tr11/scripts/run_evalharness_tr11d-760m-ml.slurm +118 -0
- evaluation/results/tr11/scripts/run_evalharness_tr11e-350m-ml.slurm +118 -0
- evaluation/results/tr11/scripts/run_evalharness_tr11f-6b3-ml.slurm +120 -0
- evaluation/results/tr11/scripts/run_trevalharness_7b1.slurm +60 -0
- evaluation/results/tr13/download_bslmeval.slurm +37 -0
- evaluation/results/tr13/lmeval/megdsbslmeval.slurm +139 -0
- evaluation/results/tr13/lmeval/run_generation.slurm +90 -0
- evaluation/results/tr13/lmeval/run_generation_7b1.slurm +86 -0
- evaluation/results/tr13/lmeval/transformersbslmeval.slurm +53 -0
- evaluation/results/tr13/tzeroeval/convert_validation_176b.slurm +373 -0
- evaluation/results/tr13/tzeroeval/convert_validation_1b3.slurm +352 -0
- evaluation/results/tr13/tzeroeval/convert_validation_350m.slurm +350 -0
- evaluation/results/tr13/tzeroeval/convert_validation_760m.slurm +352 -0
.gitignore
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
env/
|
12 |
+
build/
|
13 |
+
develop-eggs/
|
14 |
+
dist/
|
15 |
+
downloads/
|
16 |
+
eggs/
|
17 |
+
.eggs/
|
18 |
+
lib/
|
19 |
+
lib64/
|
20 |
+
parts/
|
21 |
+
sdist/
|
22 |
+
var/
|
23 |
+
wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
|
28 |
+
# PyInstaller
|
29 |
+
# Usually these files are written by a python script from a template
|
30 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
31 |
+
*.manifest
|
32 |
+
*.spec
|
33 |
+
|
34 |
+
# Installer logs
|
35 |
+
pip-log.txt
|
36 |
+
pip-delete-this-directory.txt
|
37 |
+
|
38 |
+
# Unit test / coverage reports
|
39 |
+
htmlcov/
|
40 |
+
.tox/
|
41 |
+
.coverage
|
42 |
+
.coverage.*
|
43 |
+
.cache
|
44 |
+
nosetests.xml
|
45 |
+
coverage.xml
|
46 |
+
*.cover
|
47 |
+
.hypothesis/
|
48 |
+
.pytest_cache/
|
49 |
+
|
50 |
+
# Translations
|
51 |
+
*.mo
|
52 |
+
*.pot
|
53 |
+
|
54 |
+
# Django stuff:
|
55 |
+
*.log
|
56 |
+
local_settings.py
|
57 |
+
|
58 |
+
# Flask stuff:
|
59 |
+
instance/
|
60 |
+
.webassets-cache
|
61 |
+
|
62 |
+
# Scrapy stuff:
|
63 |
+
.scrapy
|
64 |
+
|
65 |
+
# Sphinx documentation
|
66 |
+
docs/_build/
|
67 |
+
|
68 |
+
# PyBuilder
|
69 |
+
target/
|
70 |
+
|
71 |
+
# Jupyter Notebook
|
72 |
+
.ipynb_checkpoints
|
73 |
+
|
74 |
+
# pyenv
|
75 |
+
.python-version
|
76 |
+
|
77 |
+
# celery beat schedule file
|
78 |
+
celerybeat-schedule
|
79 |
+
|
80 |
+
# SageMath parsed files
|
81 |
+
*.sage.py
|
82 |
+
|
83 |
+
# dotenv
|
84 |
+
.env
|
85 |
+
|
86 |
+
# virtualenv
|
87 |
+
.venv
|
88 |
+
venv/
|
89 |
+
ENV/
|
90 |
+
|
91 |
+
# Spyder project settings
|
92 |
+
.spyderproject
|
93 |
+
.spyproject
|
94 |
+
|
95 |
+
# Rope project settings
|
96 |
+
.ropeproject
|
97 |
+
|
98 |
+
# mkdocs documentation
|
99 |
+
/site
|
100 |
+
|
101 |
+
# mypy
|
102 |
+
.mypy_cache/
|
103 |
+
|
104 |
+
# IDE settings
|
105 |
+
.vscode/
|
106 |
+
.idea/
|
107 |
+
|
108 |
+
# WanDB
|
109 |
+
wandb
|
110 |
+
|
111 |
+
*DS_Store
|
CODEOWNERS
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
* @bigscience/bigscience-codeowners
|
LICENSE
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache Software License 2.0
|
2 |
+
|
3 |
+
Copyright (c) 2021, Stas Bekman
|
4 |
+
|
5 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
you may not use this file except in compliance with the License.
|
7 |
+
You may obtain a copy of the License at
|
8 |
+
|
9 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
|
11 |
+
Unless required by applicable law or agreed to in writing, software
|
12 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
See the License for the specific language governing permissions and
|
15 |
+
limitations under the License.
|
16 |
+
|
MANIFEST.in
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include CONTRIBUTING.md
|
2 |
+
include LICENSE
|
3 |
+
include README.md
|
4 |
+
|
5 |
+
recursive-include tests *
|
6 |
+
recursive-exclude * __pycache__
|
7 |
+
recursive-exclude * *.py[co]
|
8 |
+
|
9 |
+
recursive-include docs *.rst conf.py Makefile make.bat *.jpg *.png *.gif
|
Makefile
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.PHONY: clean clean-test clean-pyc clean-build docs help
|
2 |
+
.DEFAULT_GOAL := help
|
3 |
+
|
4 |
+
define BROWSER_PYSCRIPT
|
5 |
+
import os, webbrowser, sys
|
6 |
+
|
7 |
+
from urllib.request import pathname2url
|
8 |
+
|
9 |
+
webbrowser.open("file://" + pathname2url(os.path.abspath(sys.argv[1])))
|
10 |
+
endef
|
11 |
+
export BROWSER_PYSCRIPT
|
12 |
+
|
13 |
+
define PRINT_HELP_PYSCRIPT
|
14 |
+
import re, sys
|
15 |
+
|
16 |
+
for line in sys.stdin:
|
17 |
+
match = re.match(r'^([a-zA-Z_-]+):.*?## (.*)$$', line)
|
18 |
+
if match:
|
19 |
+
target, help = match.groups()
|
20 |
+
print("%-20s %s" % (target, help))
|
21 |
+
endef
|
22 |
+
export PRINT_HELP_PYSCRIPT
|
23 |
+
|
24 |
+
BROWSER := python -c "$$BROWSER_PYSCRIPT"
|
25 |
+
|
26 |
+
help:
|
27 |
+
@python -c "$$PRINT_HELP_PYSCRIPT" < $(MAKEFILE_LIST)
|
28 |
+
|
29 |
+
clean: clean-build clean-pyc clean-test ## remove all build, test, coverage and Python artifacts
|
30 |
+
|
31 |
+
clean-build: ## remove build artifacts
|
32 |
+
rm -fr build/
|
33 |
+
rm -fr dist/
|
34 |
+
rm -fr .eggs/
|
35 |
+
find . -name '*.egg-info' -exec rm -fr {} +
|
36 |
+
find . -name '*.egg' -exec rm -f {} +
|
37 |
+
|
38 |
+
clean-pyc: ## remove Python file artifacts
|
39 |
+
find . -name '*.pyc' -exec rm -f {} +
|
40 |
+
find . -name '*.pyo' -exec rm -f {} +
|
41 |
+
find . -name '*~' -exec rm -f {} +
|
42 |
+
find . -name '__pycache__' -exec rm -fr {} +
|
43 |
+
|
44 |
+
clean-test: ## remove test and coverage artifacts
|
45 |
+
rm -fr .pytest_cache
|
46 |
+
|
47 |
+
lint: ## check style with flake8
|
48 |
+
flake8 bigscience tests
|
49 |
+
|
50 |
+
test: ## run tests quickly with the default Python
|
51 |
+
pytest
|
52 |
+
|
53 |
+
dist: clean ## builds source and wheel package
|
54 |
+
python setup.py sdist
|
55 |
+
python setup.py bdist_wheel
|
56 |
+
ls -l dist
|
57 |
+
|
58 |
+
install: clean ## install the package to the active Python's site-packages
|
59 |
+
python setup.py install
|
TODO.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Things to do
|
2 |
+
|
3 |
+
|
4 |
+
## CI
|
5 |
+
|
6 |
+
- replace CI with constantly running GCP instance
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
## TODO
|
11 |
+
|
12 |
+
general:
|
13 |
+
|
14 |
+
- check if --jobid=$SLURM_JOB is actually needed in the slurm script - especially when doing it interactively
|
15 |
+
|
16 |
+
- add alerts for loss spikes
|
17 |
+
|
18 |
+
- check that my syncing script doesn't sync deleted files, should SCRATCH wipe something out that is already on the hub!
|
19 |
+
|
20 |
+
- update deepspeed_to_transformers.py to require a specific version once a new version of transformers is released and then update the doc https://github.com/bigscience-workshop/bigscience/tree/master/train/tr1-13B-base#checkpoint-conversion-and-upload
|
21 |
+
|
22 |
+
- see if can speed up the meg cuda kernels building
|
23 |
+
https://huggingface.slack.com/archives/C01NHER1JLS/p1630520151064500?thread_ts=1630473623.060700&cid=C01NHER1JLS
|
24 |
+
|
25 |
+
- since we are starting to tweak the seed, we should start logging the ranges of iteration for each seed, so that down the road we could reproduce the data.
|
26 |
+
|
27 |
+
|
28 |
+
- test 1.3b with final config using tr7d as a base line: https://github.com/bigscience-workshop/bigscience/blob/cfdd69b89118a77567ee87b5a181c233fffef377/train/tr7-alibi/tr7d-1B3-modeling-alibi.slurm
|
29 |
+
|
30 |
+
|
31 |
+
## sysadmin
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
### conda packages
|
36 |
+
|
37 |
+
currently each one of us has a copy of the same conda packages:
|
38 |
+
|
39 |
+
```
|
40 |
+
conda config --show pkgs_dirs envs_dirs and the output is:
|
41 |
+
pkgs_dirs:
|
42 |
+
- /gpfslocalsup/pub/anaconda-py3/2020.02/pkgs
|
43 |
+
- /linkhome/rech/genhug01/uue59kq/.conda/pkgs
|
44 |
+
envs_dirs:
|
45 |
+
- /gpfswork/rech/six/commun/conda
|
46 |
+
- /linkhome/rech/genhug01/uue59kq/.conda/envs
|
47 |
+
- /gpfslocalsup/pub/anaconda-py3/2020.02/envs
|
48 |
+
```
|
49 |
+
|
50 |
+
we should aggregate them under the same dir.
|
51 |
+
|
52 |
+
probably need to find out the right env var (best) or ~/.condarc (less good) and point it to the shared conda env.
|
53 |
+
|
54 |
+
- also document in the getting started docs to make sure new users don't end up with ~/.conda dir which uses up their HOME dir to 100%.
|
evaluation/results/tr11/bloom/mdmeta.txt
ADDED
@@ -0,0 +1,1595 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model-index:
|
2 |
+
- name: bloom
|
3 |
+
results:
|
4 |
+
- task:
|
5 |
+
type: text-generation
|
6 |
+
name: text generation
|
7 |
+
dataset:
|
8 |
+
name: arc_challenge
|
9 |
+
type: arc_challenge
|
10 |
+
metrics:
|
11 |
+
- name: acc
|
12 |
+
type: acc
|
13 |
+
value: 0.4112627986348123
|
14 |
+
verified: false
|
15 |
+
- task:
|
16 |
+
type: text-generation
|
17 |
+
name: text generation
|
18 |
+
dataset:
|
19 |
+
name: arc_easy
|
20 |
+
type: arc_easy
|
21 |
+
metrics:
|
22 |
+
- name: acc
|
23 |
+
type: acc
|
24 |
+
value: 0.726010101010101
|
25 |
+
verified: false
|
26 |
+
- task:
|
27 |
+
type: text-generation
|
28 |
+
name: text generation
|
29 |
+
dataset:
|
30 |
+
name: axb
|
31 |
+
type: axb
|
32 |
+
metrics:
|
33 |
+
- name: acc
|
34 |
+
type: acc
|
35 |
+
value: 0.5751811594202898
|
36 |
+
verified: false
|
37 |
+
- task:
|
38 |
+
type: text-generation
|
39 |
+
name: text generation
|
40 |
+
dataset:
|
41 |
+
name: axg
|
42 |
+
type: axg
|
43 |
+
metrics:
|
44 |
+
- name: acc
|
45 |
+
type: acc
|
46 |
+
value: 0.5252808988764045
|
47 |
+
verified: false
|
48 |
+
- task:
|
49 |
+
type: text-generation
|
50 |
+
name: text generation
|
51 |
+
dataset:
|
52 |
+
name: boolq
|
53 |
+
type: boolq
|
54 |
+
metrics:
|
55 |
+
- name: acc
|
56 |
+
type: acc
|
57 |
+
value: 0.6345565749235474
|
58 |
+
verified: false
|
59 |
+
- task:
|
60 |
+
type: text-generation
|
61 |
+
name: text generation
|
62 |
+
dataset:
|
63 |
+
name: cb
|
64 |
+
type: cb
|
65 |
+
metrics:
|
66 |
+
- name: acc
|
67 |
+
type: acc
|
68 |
+
value: 0.3392857142857143
|
69 |
+
verified: false
|
70 |
+
- task:
|
71 |
+
type: text-generation
|
72 |
+
name: text generation
|
73 |
+
dataset:
|
74 |
+
name: cola
|
75 |
+
type: cola
|
76 |
+
metrics:
|
77 |
+
- name: acc
|
78 |
+
type: acc
|
79 |
+
value: 0.39022051773729627
|
80 |
+
verified: false
|
81 |
+
- task:
|
82 |
+
type: text-generation
|
83 |
+
name: text generation
|
84 |
+
dataset:
|
85 |
+
name: copa
|
86 |
+
type: copa
|
87 |
+
metrics:
|
88 |
+
- name: acc
|
89 |
+
type: acc
|
90 |
+
value: 0.56
|
91 |
+
verified: false
|
92 |
+
- task:
|
93 |
+
type: text-generation
|
94 |
+
name: text generation
|
95 |
+
dataset:
|
96 |
+
name: crows_pairs_english
|
97 |
+
type: crows_pairs_english
|
98 |
+
metrics:
|
99 |
+
- name: acc
|
100 |
+
type: acc
|
101 |
+
value: 0.5
|
102 |
+
verified: false
|
103 |
+
- task:
|
104 |
+
type: text-generation
|
105 |
+
name: text generation
|
106 |
+
dataset:
|
107 |
+
name: crows_pairs_french
|
108 |
+
type: crows_pairs_french
|
109 |
+
metrics:
|
110 |
+
- name: acc
|
111 |
+
type: acc
|
112 |
+
value: 0.505664877757901
|
113 |
+
verified: false
|
114 |
+
- task:
|
115 |
+
type: text-generation
|
116 |
+
name: text generation
|
117 |
+
dataset:
|
118 |
+
name: diabla
|
119 |
+
type: diabla
|
120 |
+
metrics:
|
121 |
+
- name: acc
|
122 |
+
type: acc
|
123 |
+
value: 0.2947981906750174
|
124 |
+
verified: false
|
125 |
+
- task:
|
126 |
+
type: text-generation
|
127 |
+
name: text generation
|
128 |
+
dataset:
|
129 |
+
name: gsarti/flores_101_afr
|
130 |
+
type: gsarti/flores_101_afr
|
131 |
+
metrics:
|
132 |
+
- name: byte_perplexity
|
133 |
+
type: byte_perplexity
|
134 |
+
value: 4.25431550058444
|
135 |
+
verified: false
|
136 |
+
- task:
|
137 |
+
type: text-generation
|
138 |
+
name: text generation
|
139 |
+
dataset:
|
140 |
+
name: gsarti/flores_101_amh
|
141 |
+
type: gsarti/flores_101_amh
|
142 |
+
metrics:
|
143 |
+
- name: byte_perplexity
|
144 |
+
type: byte_perplexity
|
145 |
+
value: 3.716877477347089
|
146 |
+
verified: false
|
147 |
+
- task:
|
148 |
+
type: text-generation
|
149 |
+
name: text generation
|
150 |
+
dataset:
|
151 |
+
name: gsarti/flores_101_ara
|
152 |
+
type: gsarti/flores_101_ara
|
153 |
+
metrics:
|
154 |
+
- name: byte_perplexity
|
155 |
+
type: byte_perplexity
|
156 |
+
value: 1.7049030137120964
|
157 |
+
verified: false
|
158 |
+
- task:
|
159 |
+
type: text-generation
|
160 |
+
name: text generation
|
161 |
+
dataset:
|
162 |
+
name: gsarti/flores_101_asm
|
163 |
+
type: gsarti/flores_101_asm
|
164 |
+
metrics:
|
165 |
+
- name: byte_perplexity
|
166 |
+
type: byte_perplexity
|
167 |
+
value: 6.576581380404954
|
168 |
+
verified: false
|
169 |
+
- task:
|
170 |
+
type: text-generation
|
171 |
+
name: text generation
|
172 |
+
dataset:
|
173 |
+
name: gsarti/flores_101_ast
|
174 |
+
type: gsarti/flores_101_ast
|
175 |
+
metrics:
|
176 |
+
- name: byte_perplexity
|
177 |
+
type: byte_perplexity
|
178 |
+
value: 2.8562364775797944
|
179 |
+
verified: false
|
180 |
+
- task:
|
181 |
+
type: text-generation
|
182 |
+
name: text generation
|
183 |
+
dataset:
|
184 |
+
name: gsarti/flores_101_azj
|
185 |
+
type: gsarti/flores_101_azj
|
186 |
+
metrics:
|
187 |
+
- name: byte_perplexity
|
188 |
+
type: byte_perplexity
|
189 |
+
value: 4.80721528624391
|
190 |
+
verified: false
|
191 |
+
- task:
|
192 |
+
type: text-generation
|
193 |
+
name: text generation
|
194 |
+
dataset:
|
195 |
+
name: gsarti/flores_101_bel
|
196 |
+
type: gsarti/flores_101_bel
|
197 |
+
metrics:
|
198 |
+
- name: byte_perplexity
|
199 |
+
type: byte_perplexity
|
200 |
+
value: 2.7312177406635065
|
201 |
+
verified: false
|
202 |
+
- task:
|
203 |
+
type: text-generation
|
204 |
+
name: text generation
|
205 |
+
dataset:
|
206 |
+
name: gsarti/flores_101_ben
|
207 |
+
type: gsarti/flores_101_ben
|
208 |
+
metrics:
|
209 |
+
- name: byte_perplexity
|
210 |
+
type: byte_perplexity
|
211 |
+
value: 5.993409478990023
|
212 |
+
verified: false
|
213 |
+
- task:
|
214 |
+
type: text-generation
|
215 |
+
name: text generation
|
216 |
+
dataset:
|
217 |
+
name: gsarti/flores_101_bos
|
218 |
+
type: gsarti/flores_101_bos
|
219 |
+
metrics:
|
220 |
+
- name: byte_perplexity
|
221 |
+
type: byte_perplexity
|
222 |
+
value: 3.5936169095529493
|
223 |
+
verified: false
|
224 |
+
- task:
|
225 |
+
type: text-generation
|
226 |
+
name: text generation
|
227 |
+
dataset:
|
228 |
+
name: gsarti/flores_101_bul
|
229 |
+
type: gsarti/flores_101_bul
|
230 |
+
metrics:
|
231 |
+
- name: byte_perplexity
|
232 |
+
type: byte_perplexity
|
233 |
+
value: 2.159035321398085
|
234 |
+
verified: false
|
235 |
+
- task:
|
236 |
+
type: text-generation
|
237 |
+
name: text generation
|
238 |
+
dataset:
|
239 |
+
name: gsarti/flores_101_cat
|
240 |
+
type: gsarti/flores_101_cat
|
241 |
+
metrics:
|
242 |
+
- name: byte_perplexity
|
243 |
+
type: byte_perplexity
|
244 |
+
value: 2.167873680006659
|
245 |
+
verified: false
|
246 |
+
- task:
|
247 |
+
type: text-generation
|
248 |
+
name: text generation
|
249 |
+
dataset:
|
250 |
+
name: gsarti/flores_101_ceb
|
251 |
+
type: gsarti/flores_101_ceb
|
252 |
+
metrics:
|
253 |
+
- name: byte_perplexity
|
254 |
+
type: byte_perplexity
|
255 |
+
value: 5.286975089885673
|
256 |
+
verified: false
|
257 |
+
- task:
|
258 |
+
type: text-generation
|
259 |
+
name: text generation
|
260 |
+
dataset:
|
261 |
+
name: gsarti/flores_101_ces
|
262 |
+
type: gsarti/flores_101_ces
|
263 |
+
metrics:
|
264 |
+
- name: byte_perplexity
|
265 |
+
type: byte_perplexity
|
266 |
+
value: 3.4516208322236017
|
267 |
+
verified: false
|
268 |
+
- task:
|
269 |
+
type: text-generation
|
270 |
+
name: text generation
|
271 |
+
dataset:
|
272 |
+
name: gsarti/flores_101_ckb
|
273 |
+
type: gsarti/flores_101_ckb
|
274 |
+
metrics:
|
275 |
+
- name: byte_perplexity
|
276 |
+
type: byte_perplexity
|
277 |
+
value: 3.7051034724765612
|
278 |
+
verified: false
|
279 |
+
- task:
|
280 |
+
type: text-generation
|
281 |
+
name: text generation
|
282 |
+
dataset:
|
283 |
+
name: gsarti/flores_101_cym
|
284 |
+
type: gsarti/flores_101_cym
|
285 |
+
metrics:
|
286 |
+
- name: byte_perplexity
|
287 |
+
type: byte_perplexity
|
288 |
+
value: 7.0889312398688125
|
289 |
+
verified: false
|
290 |
+
- task:
|
291 |
+
type: text-generation
|
292 |
+
name: text generation
|
293 |
+
dataset:
|
294 |
+
name: gsarti/flores_101_dan
|
295 |
+
type: gsarti/flores_101_dan
|
296 |
+
metrics:
|
297 |
+
- name: byte_perplexity
|
298 |
+
type: byte_perplexity
|
299 |
+
value: 3.4300748208111838
|
300 |
+
verified: false
|
301 |
+
- task:
|
302 |
+
type: text-generation
|
303 |
+
name: text generation
|
304 |
+
dataset:
|
305 |
+
name: gsarti/flores_101_deu
|
306 |
+
type: gsarti/flores_101_deu
|
307 |
+
metrics:
|
308 |
+
- name: byte_perplexity
|
309 |
+
type: byte_perplexity
|
310 |
+
value: 2.3380585896268107
|
311 |
+
verified: false
|
312 |
+
- task:
|
313 |
+
type: text-generation
|
314 |
+
name: text generation
|
315 |
+
dataset:
|
316 |
+
name: gsarti/flores_101_ell
|
317 |
+
type: gsarti/flores_101_ell
|
318 |
+
metrics:
|
319 |
+
- name: byte_perplexity
|
320 |
+
type: byte_perplexity
|
321 |
+
value: 1.9595604725375586
|
322 |
+
verified: false
|
323 |
+
- task:
|
324 |
+
type: text-generation
|
325 |
+
name: text generation
|
326 |
+
dataset:
|
327 |
+
name: gsarti/flores_101_eng
|
328 |
+
type: gsarti/flores_101_eng
|
329 |
+
metrics:
|
330 |
+
- name: byte_perplexity
|
331 |
+
type: byte_perplexity
|
332 |
+
value: 1.8819637649637901
|
333 |
+
verified: false
|
334 |
+
- task:
|
335 |
+
type: text-generation
|
336 |
+
name: text generation
|
337 |
+
dataset:
|
338 |
+
name: gsarti/flores_101_est
|
339 |
+
type: gsarti/flores_101_est
|
340 |
+
metrics:
|
341 |
+
- name: byte_perplexity
|
342 |
+
type: byte_perplexity
|
343 |
+
value: 5.773850600380297
|
344 |
+
verified: false
|
345 |
+
- task:
|
346 |
+
type: text-generation
|
347 |
+
name: text generation
|
348 |
+
dataset:
|
349 |
+
name: gsarti/flores_101_fas
|
350 |
+
type: gsarti/flores_101_fas
|
351 |
+
metrics:
|
352 |
+
- name: byte_perplexity
|
353 |
+
type: byte_perplexity
|
354 |
+
value: 2.4306140728294086
|
355 |
+
verified: false
|
356 |
+
- task:
|
357 |
+
type: text-generation
|
358 |
+
name: text generation
|
359 |
+
dataset:
|
360 |
+
name: gsarti/flores_101_fin
|
361 |
+
type: gsarti/flores_101_fin
|
362 |
+
metrics:
|
363 |
+
- name: byte_perplexity
|
364 |
+
type: byte_perplexity
|
365 |
+
value: 4.304305536244342
|
366 |
+
verified: false
|
367 |
+
- task:
|
368 |
+
type: text-generation
|
369 |
+
name: text generation
|
370 |
+
dataset:
|
371 |
+
name: gsarti/flores_101_fra
|
372 |
+
type: gsarti/flores_101_fra
|
373 |
+
metrics:
|
374 |
+
- name: byte_perplexity
|
375 |
+
type: byte_perplexity
|
376 |
+
value: 1.9374688438541796
|
377 |
+
verified: false
|
378 |
+
- task:
|
379 |
+
type: text-generation
|
380 |
+
name: text generation
|
381 |
+
dataset:
|
382 |
+
name: gsarti/flores_101_ful
|
383 |
+
type: gsarti/flores_101_ful
|
384 |
+
metrics:
|
385 |
+
- name: byte_perplexity
|
386 |
+
type: byte_perplexity
|
387 |
+
value: 9.740353097219378
|
388 |
+
verified: false
|
389 |
+
- task:
|
390 |
+
type: text-generation
|
391 |
+
name: text generation
|
392 |
+
dataset:
|
393 |
+
name: gsarti/flores_101_gle
|
394 |
+
type: gsarti/flores_101_gle
|
395 |
+
metrics:
|
396 |
+
- name: byte_perplexity
|
397 |
+
type: byte_perplexity
|
398 |
+
value: 6.035269765075012
|
399 |
+
verified: false
|
400 |
+
- task:
|
401 |
+
type: text-generation
|
402 |
+
name: text generation
|
403 |
+
dataset:
|
404 |
+
name: gsarti/flores_101_glg
|
405 |
+
type: gsarti/flores_101_glg
|
406 |
+
metrics:
|
407 |
+
- name: byte_perplexity
|
408 |
+
type: byte_perplexity
|
409 |
+
value: 2.365451129546636
|
410 |
+
verified: false
|
411 |
+
- task:
|
412 |
+
type: text-generation
|
413 |
+
name: text generation
|
414 |
+
dataset:
|
415 |
+
name: gsarti/flores_101_guj
|
416 |
+
type: gsarti/flores_101_guj
|
417 |
+
metrics:
|
418 |
+
- name: byte_perplexity
|
419 |
+
type: byte_perplexity
|
420 |
+
value: 5.70676742569154
|
421 |
+
verified: false
|
422 |
+
- task:
|
423 |
+
type: text-generation
|
424 |
+
name: text generation
|
425 |
+
dataset:
|
426 |
+
name: gsarti/flores_101_hau
|
427 |
+
type: gsarti/flores_101_hau
|
428 |
+
metrics:
|
429 |
+
- name: byte_perplexity
|
430 |
+
type: byte_perplexity
|
431 |
+
value: 8.855204288260023
|
432 |
+
verified: false
|
433 |
+
- task:
|
434 |
+
type: text-generation
|
435 |
+
name: text generation
|
436 |
+
dataset:
|
437 |
+
name: gsarti/flores_101_heb
|
438 |
+
type: gsarti/flores_101_heb
|
439 |
+
metrics:
|
440 |
+
- name: byte_perplexity
|
441 |
+
type: byte_perplexity
|
442 |
+
value: 2.920943798471208
|
443 |
+
verified: false
|
444 |
+
- task:
|
445 |
+
type: text-generation
|
446 |
+
name: text generation
|
447 |
+
dataset:
|
448 |
+
name: gsarti/flores_101_hin
|
449 |
+
type: gsarti/flores_101_hin
|
450 |
+
metrics:
|
451 |
+
- name: byte_perplexity
|
452 |
+
type: byte_perplexity
|
453 |
+
value: 5.452028001573195
|
454 |
+
verified: false
|
455 |
+
- task:
|
456 |
+
type: text-generation
|
457 |
+
name: text generation
|
458 |
+
dataset:
|
459 |
+
name: gsarti/flores_101_hrv
|
460 |
+
type: gsarti/flores_101_hrv
|
461 |
+
metrics:
|
462 |
+
- name: byte_perplexity
|
463 |
+
type: byte_perplexity
|
464 |
+
value: 3.7056829077179225
|
465 |
+
verified: false
|
466 |
+
- task:
|
467 |
+
type: text-generation
|
468 |
+
name: text generation
|
469 |
+
dataset:
|
470 |
+
name: gsarti/flores_101_hun
|
471 |
+
type: gsarti/flores_101_hun
|
472 |
+
metrics:
|
473 |
+
- name: byte_perplexity
|
474 |
+
type: byte_perplexity
|
475 |
+
value: 4.058579478967854
|
476 |
+
verified: false
|
477 |
+
- task:
|
478 |
+
type: text-generation
|
479 |
+
name: text generation
|
480 |
+
dataset:
|
481 |
+
name: gsarti/flores_101_hye
|
482 |
+
type: gsarti/flores_101_hye
|
483 |
+
metrics:
|
484 |
+
- name: byte_perplexity
|
485 |
+
type: byte_perplexity
|
486 |
+
value: 3.127237816041562
|
487 |
+
verified: false
|
488 |
+
- task:
|
489 |
+
type: text-generation
|
490 |
+
name: text generation
|
491 |
+
dataset:
|
492 |
+
name: gsarti/flores_101_ibo
|
493 |
+
type: gsarti/flores_101_ibo
|
494 |
+
metrics:
|
495 |
+
- name: byte_perplexity
|
496 |
+
type: byte_perplexity
|
497 |
+
value: 3.9500357969906683
|
498 |
+
verified: false
|
499 |
+
- task:
|
500 |
+
type: text-generation
|
501 |
+
name: text generation
|
502 |
+
dataset:
|
503 |
+
name: gsarti/flores_101_ind
|
504 |
+
type: gsarti/flores_101_ind
|
505 |
+
metrics:
|
506 |
+
- name: byte_perplexity
|
507 |
+
type: byte_perplexity
|
508 |
+
value: 1.976163584180101
|
509 |
+
verified: false
|
510 |
+
- task:
|
511 |
+
type: text-generation
|
512 |
+
name: text generation
|
513 |
+
dataset:
|
514 |
+
name: gsarti/flores_101_isl
|
515 |
+
type: gsarti/flores_101_isl
|
516 |
+
metrics:
|
517 |
+
- name: byte_perplexity
|
518 |
+
type: byte_perplexity
|
519 |
+
value: 5.500542085165231
|
520 |
+
verified: false
|
521 |
+
- task:
|
522 |
+
type: text-generation
|
523 |
+
name: text generation
|
524 |
+
dataset:
|
525 |
+
name: gsarti/flores_101_ita
|
526 |
+
type: gsarti/flores_101_ita
|
527 |
+
metrics:
|
528 |
+
- name: byte_perplexity
|
529 |
+
type: byte_perplexity
|
530 |
+
value: 2.314465100752677
|
531 |
+
verified: false
|
532 |
+
- task:
|
533 |
+
type: text-generation
|
534 |
+
name: text generation
|
535 |
+
dataset:
|
536 |
+
name: gsarti/flores_101_jav
|
537 |
+
type: gsarti/flores_101_jav
|
538 |
+
metrics:
|
539 |
+
- name: byte_perplexity
|
540 |
+
type: byte_perplexity
|
541 |
+
value: 4.942322446550142
|
542 |
+
verified: false
|
543 |
+
- task:
|
544 |
+
type: text-generation
|
545 |
+
name: text generation
|
546 |
+
dataset:
|
547 |
+
name: gsarti/flores_101_jpn
|
548 |
+
type: gsarti/flores_101_jpn
|
549 |
+
metrics:
|
550 |
+
- name: byte_perplexity
|
551 |
+
type: byte_perplexity
|
552 |
+
value: 2.259421750521777
|
553 |
+
verified: false
|
554 |
+
- task:
|
555 |
+
type: text-generation
|
556 |
+
name: text generation
|
557 |
+
dataset:
|
558 |
+
name: gsarti/flores_101_kam
|
559 |
+
type: gsarti/flores_101_kam
|
560 |
+
metrics:
|
561 |
+
- name: byte_perplexity
|
562 |
+
type: byte_perplexity
|
563 |
+
value: 9.743025325635475
|
564 |
+
verified: false
|
565 |
+
- task:
|
566 |
+
type: text-generation
|
567 |
+
name: text generation
|
568 |
+
dataset:
|
569 |
+
name: gsarti/flores_101_kan
|
570 |
+
type: gsarti/flores_101_kan
|
571 |
+
metrics:
|
572 |
+
- name: byte_perplexity
|
573 |
+
type: byte_perplexity
|
574 |
+
value: 6.233724699944989
|
575 |
+
verified: false
|
576 |
+
- task:
|
577 |
+
type: text-generation
|
578 |
+
name: text generation
|
579 |
+
dataset:
|
580 |
+
name: gsarti/flores_101_kat
|
581 |
+
type: gsarti/flores_101_kat
|
582 |
+
metrics:
|
583 |
+
- name: byte_perplexity
|
584 |
+
type: byte_perplexity
|
585 |
+
value: 2.0508893415872107
|
586 |
+
verified: false
|
587 |
+
- task:
|
588 |
+
type: text-generation
|
589 |
+
name: text generation
|
590 |
+
dataset:
|
591 |
+
name: gsarti/flores_101_kaz
|
592 |
+
type: gsarti/flores_101_kaz
|
593 |
+
metrics:
|
594 |
+
- name: byte_perplexity
|
595 |
+
type: byte_perplexity
|
596 |
+
value: 3.0390148516287927
|
597 |
+
verified: false
|
598 |
+
- task:
|
599 |
+
type: text-generation
|
600 |
+
name: text generation
|
601 |
+
dataset:
|
602 |
+
name: gsarti/flores_101_kea
|
603 |
+
type: gsarti/flores_101_kea
|
604 |
+
metrics:
|
605 |
+
- name: byte_perplexity
|
606 |
+
type: byte_perplexity
|
607 |
+
value: 7.147132270533836
|
608 |
+
verified: false
|
609 |
+
- task:
|
610 |
+
type: text-generation
|
611 |
+
name: text generation
|
612 |
+
dataset:
|
613 |
+
name: gsarti/flores_101_khm
|
614 |
+
type: gsarti/flores_101_khm
|
615 |
+
metrics:
|
616 |
+
- name: byte_perplexity
|
617 |
+
type: byte_perplexity
|
618 |
+
value: 3.366514710252477
|
619 |
+
verified: false
|
620 |
+
- task:
|
621 |
+
type: text-generation
|
622 |
+
name: text generation
|
623 |
+
dataset:
|
624 |
+
name: gsarti/flores_101_kir
|
625 |
+
type: gsarti/flores_101_kir
|
626 |
+
metrics:
|
627 |
+
- name: byte_perplexity
|
628 |
+
type: byte_perplexity
|
629 |
+
value: 3.2413845359487885
|
630 |
+
verified: false
|
631 |
+
- task:
|
632 |
+
type: text-generation
|
633 |
+
name: text generation
|
634 |
+
dataset:
|
635 |
+
name: gsarti/flores_101_kor
|
636 |
+
type: gsarti/flores_101_kor
|
637 |
+
metrics:
|
638 |
+
- name: byte_perplexity
|
639 |
+
type: byte_perplexity
|
640 |
+
value: 2.9023196482741027
|
641 |
+
verified: false
|
642 |
+
- task:
|
643 |
+
type: text-generation
|
644 |
+
name: text generation
|
645 |
+
dataset:
|
646 |
+
name: gsarti/flores_101_lao
|
647 |
+
type: gsarti/flores_101_lao
|
648 |
+
metrics:
|
649 |
+
- name: byte_perplexity
|
650 |
+
type: byte_perplexity
|
651 |
+
value: 2.331446855837494
|
652 |
+
verified: false
|
653 |
+
- task:
|
654 |
+
type: text-generation
|
655 |
+
name: text generation
|
656 |
+
dataset:
|
657 |
+
name: gsarti/flores_101_lav
|
658 |
+
type: gsarti/flores_101_lav
|
659 |
+
metrics:
|
660 |
+
- name: byte_perplexity
|
661 |
+
type: byte_perplexity
|
662 |
+
value: 5.223609016485348
|
663 |
+
verified: false
|
664 |
+
- task:
|
665 |
+
type: text-generation
|
666 |
+
name: text generation
|
667 |
+
dataset:
|
668 |
+
name: gsarti/flores_101_lin
|
669 |
+
type: gsarti/flores_101_lin
|
670 |
+
metrics:
|
671 |
+
- name: byte_perplexity
|
672 |
+
type: byte_perplexity
|
673 |
+
value: 4.847471204107301
|
674 |
+
verified: false
|
675 |
+
- task:
|
676 |
+
type: text-generation
|
677 |
+
name: text generation
|
678 |
+
dataset:
|
679 |
+
name: gsarti/flores_101_lit
|
680 |
+
type: gsarti/flores_101_lit
|
681 |
+
metrics:
|
682 |
+
- name: byte_perplexity
|
683 |
+
type: byte_perplexity
|
684 |
+
value: 4.5432035498036765
|
685 |
+
verified: false
|
686 |
+
- task:
|
687 |
+
type: text-generation
|
688 |
+
name: text generation
|
689 |
+
dataset:
|
690 |
+
name: gsarti/flores_101_ltz
|
691 |
+
type: gsarti/flores_101_ltz
|
692 |
+
metrics:
|
693 |
+
- name: byte_perplexity
|
694 |
+
type: byte_perplexity
|
695 |
+
value: 5.5910516978201015
|
696 |
+
verified: false
|
697 |
+
- task:
|
698 |
+
type: text-generation
|
699 |
+
name: text generation
|
700 |
+
dataset:
|
701 |
+
name: gsarti/flores_101_lug
|
702 |
+
type: gsarti/flores_101_lug
|
703 |
+
metrics:
|
704 |
+
- name: byte_perplexity
|
705 |
+
type: byte_perplexity
|
706 |
+
value: 5.4301049946044175
|
707 |
+
verified: false
|
708 |
+
- task:
|
709 |
+
type: text-generation
|
710 |
+
name: text generation
|
711 |
+
dataset:
|
712 |
+
name: gsarti/flores_101_luo
|
713 |
+
type: gsarti/flores_101_luo
|
714 |
+
metrics:
|
715 |
+
- name: byte_perplexity
|
716 |
+
type: byte_perplexity
|
717 |
+
value: 12.031029857399394
|
718 |
+
verified: false
|
719 |
+
- task:
|
720 |
+
type: text-generation
|
721 |
+
name: text generation
|
722 |
+
dataset:
|
723 |
+
name: gsarti/flores_101_mal
|
724 |
+
type: gsarti/flores_101_mal
|
725 |
+
metrics:
|
726 |
+
- name: byte_perplexity
|
727 |
+
type: byte_perplexity
|
728 |
+
value: 4.794302548141229
|
729 |
+
verified: false
|
730 |
+
- task:
|
731 |
+
type: text-generation
|
732 |
+
name: text generation
|
733 |
+
dataset:
|
734 |
+
name: gsarti/flores_101_mar
|
735 |
+
type: gsarti/flores_101_mar
|
736 |
+
metrics:
|
737 |
+
- name: byte_perplexity
|
738 |
+
type: byte_perplexity
|
739 |
+
value: 6.856682255407709
|
740 |
+
verified: false
|
741 |
+
- task:
|
742 |
+
type: text-generation
|
743 |
+
name: text generation
|
744 |
+
dataset:
|
745 |
+
name: gsarti/flores_101_mkd
|
746 |
+
type: gsarti/flores_101_mkd
|
747 |
+
metrics:
|
748 |
+
- name: byte_perplexity
|
749 |
+
type: byte_perplexity
|
750 |
+
value: 2.3354144607382983
|
751 |
+
verified: false
|
752 |
+
- task:
|
753 |
+
type: text-generation
|
754 |
+
name: text generation
|
755 |
+
dataset:
|
756 |
+
name: gsarti/flores_101_mlt
|
757 |
+
type: gsarti/flores_101_mlt
|
758 |
+
metrics:
|
759 |
+
- name: byte_perplexity
|
760 |
+
type: byte_perplexity
|
761 |
+
value: 9.04135227904975
|
762 |
+
verified: false
|
763 |
+
- task:
|
764 |
+
type: text-generation
|
765 |
+
name: text generation
|
766 |
+
dataset:
|
767 |
+
name: gsarti/flores_101_mon
|
768 |
+
type: gsarti/flores_101_mon
|
769 |
+
metrics:
|
770 |
+
- name: byte_perplexity
|
771 |
+
type: byte_perplexity
|
772 |
+
value: 3.094907723618666
|
773 |
+
verified: false
|
774 |
+
- task:
|
775 |
+
type: text-generation
|
776 |
+
name: text generation
|
777 |
+
dataset:
|
778 |
+
name: gsarti/flores_101_mri
|
779 |
+
type: gsarti/flores_101_mri
|
780 |
+
metrics:
|
781 |
+
- name: byte_perplexity
|
782 |
+
type: byte_perplexity
|
783 |
+
value: 5.2659698341456505
|
784 |
+
verified: false
|
785 |
+
- task:
|
786 |
+
type: text-generation
|
787 |
+
name: text generation
|
788 |
+
dataset:
|
789 |
+
name: gsarti/flores_101_msa
|
790 |
+
type: gsarti/flores_101_msa
|
791 |
+
metrics:
|
792 |
+
- name: byte_perplexity
|
793 |
+
type: byte_perplexity
|
794 |
+
value: 2.2220779892820985
|
795 |
+
verified: false
|
796 |
+
- task:
|
797 |
+
type: text-generation
|
798 |
+
name: text generation
|
799 |
+
dataset:
|
800 |
+
name: gsarti/flores_101_mya
|
801 |
+
type: gsarti/flores_101_mya
|
802 |
+
metrics:
|
803 |
+
- name: byte_perplexity
|
804 |
+
type: byte_perplexity
|
805 |
+
value: 2.5229159853414433
|
806 |
+
verified: false
|
807 |
+
- task:
|
808 |
+
type: text-generation
|
809 |
+
name: text generation
|
810 |
+
dataset:
|
811 |
+
name: gsarti/flores_101_nld
|
812 |
+
type: gsarti/flores_101_nld
|
813 |
+
metrics:
|
814 |
+
- name: byte_perplexity
|
815 |
+
type: byte_perplexity
|
816 |
+
value: 2.799153089002766
|
817 |
+
verified: false
|
818 |
+
- task:
|
819 |
+
type: text-generation
|
820 |
+
name: text generation
|
821 |
+
dataset:
|
822 |
+
name: gsarti/flores_101_nob
|
823 |
+
type: gsarti/flores_101_nob
|
824 |
+
metrics:
|
825 |
+
- name: byte_perplexity
|
826 |
+
type: byte_perplexity
|
827 |
+
value: 3.628942049758715
|
828 |
+
verified: false
|
829 |
+
- task:
|
830 |
+
type: text-generation
|
831 |
+
name: text generation
|
832 |
+
dataset:
|
833 |
+
name: gsarti/flores_101_npi
|
834 |
+
type: gsarti/flores_101_npi
|
835 |
+
metrics:
|
836 |
+
- name: byte_perplexity
|
837 |
+
type: byte_perplexity
|
838 |
+
value: 6.666236527803879
|
839 |
+
verified: false
|
840 |
+
- task:
|
841 |
+
type: text-generation
|
842 |
+
name: text generation
|
843 |
+
dataset:
|
844 |
+
name: gsarti/flores_101_nso
|
845 |
+
type: gsarti/flores_101_nso
|
846 |
+
metrics:
|
847 |
+
- name: byte_perplexity
|
848 |
+
type: byte_perplexity
|
849 |
+
value: 5.015319074943932
|
850 |
+
verified: false
|
851 |
+
- task:
|
852 |
+
type: text-generation
|
853 |
+
name: text generation
|
854 |
+
dataset:
|
855 |
+
name: gsarti/flores_101_nya
|
856 |
+
type: gsarti/flores_101_nya
|
857 |
+
metrics:
|
858 |
+
- name: byte_perplexity
|
859 |
+
type: byte_perplexity
|
860 |
+
value: 4.938044040751036
|
861 |
+
verified: false
|
862 |
+
- task:
|
863 |
+
type: text-generation
|
864 |
+
name: text generation
|
865 |
+
dataset:
|
866 |
+
name: gsarti/flores_101_oci
|
867 |
+
type: gsarti/flores_101_oci
|
868 |
+
metrics:
|
869 |
+
- name: byte_perplexity
|
870 |
+
type: byte_perplexity
|
871 |
+
value: 3.607440766288032
|
872 |
+
verified: false
|
873 |
+
- task:
|
874 |
+
type: text-generation
|
875 |
+
name: text generation
|
876 |
+
dataset:
|
877 |
+
name: gsarti/flores_101_orm
|
878 |
+
type: gsarti/flores_101_orm
|
879 |
+
metrics:
|
880 |
+
- name: byte_perplexity
|
881 |
+
type: byte_perplexity
|
882 |
+
value: 11.31585044916705
|
883 |
+
verified: false
|
884 |
+
- task:
|
885 |
+
type: text-generation
|
886 |
+
name: text generation
|
887 |
+
dataset:
|
888 |
+
name: gsarti/flores_101_ory
|
889 |
+
type: gsarti/flores_101_ory
|
890 |
+
metrics:
|
891 |
+
- name: byte_perplexity
|
892 |
+
type: byte_perplexity
|
893 |
+
value: 5.981891184515959
|
894 |
+
verified: false
|
895 |
+
- task:
|
896 |
+
type: text-generation
|
897 |
+
name: text generation
|
898 |
+
dataset:
|
899 |
+
name: gsarti/flores_101_pan
|
900 |
+
type: gsarti/flores_101_pan
|
901 |
+
metrics:
|
902 |
+
- name: byte_perplexity
|
903 |
+
type: byte_perplexity
|
904 |
+
value: 4.7716086841502685
|
905 |
+
verified: false
|
906 |
+
- task:
|
907 |
+
type: text-generation
|
908 |
+
name: text generation
|
909 |
+
dataset:
|
910 |
+
name: gsarti/flores_101_pol
|
911 |
+
type: gsarti/flores_101_pol
|
912 |
+
metrics:
|
913 |
+
- name: byte_perplexity
|
914 |
+
type: byte_perplexity
|
915 |
+
value: 3.01200174157614
|
916 |
+
verified: false
|
917 |
+
- task:
|
918 |
+
type: text-generation
|
919 |
+
name: text generation
|
920 |
+
dataset:
|
921 |
+
name: gsarti/flores_101_por
|
922 |
+
type: gsarti/flores_101_por
|
923 |
+
metrics:
|
924 |
+
- name: byte_perplexity
|
925 |
+
type: byte_perplexity
|
926 |
+
value: 1.8411472115156693
|
927 |
+
verified: false
|
928 |
+
- task:
|
929 |
+
type: text-generation
|
930 |
+
name: text generation
|
931 |
+
dataset:
|
932 |
+
name: gsarti/flores_101_pus
|
933 |
+
type: gsarti/flores_101_pus
|
934 |
+
metrics:
|
935 |
+
- name: byte_perplexity
|
936 |
+
type: byte_perplexity
|
937 |
+
value: 4.623872921169341
|
938 |
+
verified: false
|
939 |
+
- task:
|
940 |
+
type: text-generation
|
941 |
+
name: text generation
|
942 |
+
dataset:
|
943 |
+
name: gsarti/flores_101_ron
|
944 |
+
type: gsarti/flores_101_ron
|
945 |
+
metrics:
|
946 |
+
- name: byte_perplexity
|
947 |
+
type: byte_perplexity
|
948 |
+
value: 3.049829411973529
|
949 |
+
verified: false
|
950 |
+
- task:
|
951 |
+
type: text-generation
|
952 |
+
name: text generation
|
953 |
+
dataset:
|
954 |
+
name: gsarti/flores_101_rus
|
955 |
+
type: gsarti/flores_101_rus
|
956 |
+
metrics:
|
957 |
+
- name: byte_perplexity
|
958 |
+
type: byte_perplexity
|
959 |
+
value: 1.7083443875791493
|
960 |
+
verified: false
|
961 |
+
- task:
|
962 |
+
type: text-generation
|
963 |
+
name: text generation
|
964 |
+
dataset:
|
965 |
+
name: gsarti/flores_101_slk
|
966 |
+
type: gsarti/flores_101_slk
|
967 |
+
metrics:
|
968 |
+
- name: byte_perplexity
|
969 |
+
type: byte_perplexity
|
970 |
+
value: 4.037719650548048
|
971 |
+
verified: false
|
972 |
+
- task:
|
973 |
+
type: text-generation
|
974 |
+
name: text generation
|
975 |
+
dataset:
|
976 |
+
name: gsarti/flores_101_slv
|
977 |
+
type: gsarti/flores_101_slv
|
978 |
+
metrics:
|
979 |
+
- name: byte_perplexity
|
980 |
+
type: byte_perplexity
|
981 |
+
value: 4.141036287764831
|
982 |
+
verified: false
|
983 |
+
- task:
|
984 |
+
type: text-generation
|
985 |
+
name: text generation
|
986 |
+
dataset:
|
987 |
+
name: gsarti/flores_101_sna
|
988 |
+
type: gsarti/flores_101_sna
|
989 |
+
metrics:
|
990 |
+
- name: byte_perplexity
|
991 |
+
type: byte_perplexity
|
992 |
+
value: 4.7109183690601295
|
993 |
+
verified: false
|
994 |
+
- task:
|
995 |
+
type: text-generation
|
996 |
+
name: text generation
|
997 |
+
dataset:
|
998 |
+
name: gsarti/flores_101_snd
|
999 |
+
type: gsarti/flores_101_snd
|
1000 |
+
metrics:
|
1001 |
+
- name: byte_perplexity
|
1002 |
+
type: byte_perplexity
|
1003 |
+
value: 4.206170931541356
|
1004 |
+
verified: false
|
1005 |
+
- task:
|
1006 |
+
type: text-generation
|
1007 |
+
name: text generation
|
1008 |
+
dataset:
|
1009 |
+
name: gsarti/flores_101_som
|
1010 |
+
type: gsarti/flores_101_som
|
1011 |
+
metrics:
|
1012 |
+
- name: byte_perplexity
|
1013 |
+
type: byte_perplexity
|
1014 |
+
value: 9.154342083821405
|
1015 |
+
verified: false
|
1016 |
+
- task:
|
1017 |
+
type: text-generation
|
1018 |
+
name: text generation
|
1019 |
+
dataset:
|
1020 |
+
name: gsarti/flores_101_spa
|
1021 |
+
type: gsarti/flores_101_spa
|
1022 |
+
metrics:
|
1023 |
+
- name: byte_perplexity
|
1024 |
+
type: byte_perplexity
|
1025 |
+
value: 1.7955816311143258
|
1026 |
+
verified: false
|
1027 |
+
- task:
|
1028 |
+
type: text-generation
|
1029 |
+
name: text generation
|
1030 |
+
dataset:
|
1031 |
+
name: gsarti/flores_101_srp
|
1032 |
+
type: gsarti/flores_101_srp
|
1033 |
+
metrics:
|
1034 |
+
- name: byte_perplexity
|
1035 |
+
type: byte_perplexity
|
1036 |
+
value: 2.241096141430147
|
1037 |
+
verified: false
|
1038 |
+
- task:
|
1039 |
+
type: text-generation
|
1040 |
+
name: text generation
|
1041 |
+
dataset:
|
1042 |
+
name: gsarti/flores_101_swe
|
1043 |
+
type: gsarti/flores_101_swe
|
1044 |
+
metrics:
|
1045 |
+
- name: byte_perplexity
|
1046 |
+
type: byte_perplexity
|
1047 |
+
value: 3.344977179674293
|
1048 |
+
verified: false
|
1049 |
+
- task:
|
1050 |
+
type: text-generation
|
1051 |
+
name: text generation
|
1052 |
+
dataset:
|
1053 |
+
name: gsarti/flores_101_swh
|
1054 |
+
type: gsarti/flores_101_swh
|
1055 |
+
metrics:
|
1056 |
+
- name: byte_perplexity
|
1057 |
+
type: byte_perplexity
|
1058 |
+
value: 2.6844272218041634
|
1059 |
+
verified: false
|
1060 |
+
- task:
|
1061 |
+
type: text-generation
|
1062 |
+
name: text generation
|
1063 |
+
dataset:
|
1064 |
+
name: gsarti/flores_101_tam
|
1065 |
+
type: gsarti/flores_101_tam
|
1066 |
+
metrics:
|
1067 |
+
- name: byte_perplexity
|
1068 |
+
type: byte_perplexity
|
1069 |
+
value: 5.1645951632801745
|
1070 |
+
verified: false
|
1071 |
+
- task:
|
1072 |
+
type: text-generation
|
1073 |
+
name: text generation
|
1074 |
+
dataset:
|
1075 |
+
name: gsarti/flores_101_tel
|
1076 |
+
type: gsarti/flores_101_tel
|
1077 |
+
metrics:
|
1078 |
+
- name: byte_perplexity
|
1079 |
+
type: byte_perplexity
|
1080 |
+
value: 6.8098996634099445
|
1081 |
+
verified: false
|
1082 |
+
- task:
|
1083 |
+
type: text-generation
|
1084 |
+
name: text generation
|
1085 |
+
dataset:
|
1086 |
+
name: gsarti/flores_101_tgk
|
1087 |
+
type: gsarti/flores_101_tgk
|
1088 |
+
metrics:
|
1089 |
+
- name: byte_perplexity
|
1090 |
+
type: byte_perplexity
|
1091 |
+
value: 3.785457016715163
|
1092 |
+
verified: false
|
1093 |
+
- task:
|
1094 |
+
type: text-generation
|
1095 |
+
name: text generation
|
1096 |
+
dataset:
|
1097 |
+
name: gsarti/flores_101_tgl
|
1098 |
+
type: gsarti/flores_101_tgl
|
1099 |
+
metrics:
|
1100 |
+
- name: byte_perplexity
|
1101 |
+
type: byte_perplexity
|
1102 |
+
value: 3.7498953645610875
|
1103 |
+
verified: false
|
1104 |
+
- task:
|
1105 |
+
type: text-generation
|
1106 |
+
name: text generation
|
1107 |
+
dataset:
|
1108 |
+
name: gsarti/flores_101_tha
|
1109 |
+
type: gsarti/flores_101_tha
|
1110 |
+
metrics:
|
1111 |
+
- name: byte_perplexity
|
1112 |
+
type: byte_perplexity
|
1113 |
+
value: 2.104151663233468
|
1114 |
+
verified: false
|
1115 |
+
- task:
|
1116 |
+
type: text-generation
|
1117 |
+
name: text generation
|
1118 |
+
dataset:
|
1119 |
+
name: gsarti/flores_101_tur
|
1120 |
+
type: gsarti/flores_101_tur
|
1121 |
+
metrics:
|
1122 |
+
- name: byte_perplexity
|
1123 |
+
type: byte_perplexity
|
1124 |
+
value: 3.3178240103796037
|
1125 |
+
verified: false
|
1126 |
+
- task:
|
1127 |
+
type: text-generation
|
1128 |
+
name: text generation
|
1129 |
+
dataset:
|
1130 |
+
name: gsarti/flores_101_ukr
|
1131 |
+
type: gsarti/flores_101_ukr
|
1132 |
+
metrics:
|
1133 |
+
- name: byte_perplexity
|
1134 |
+
type: byte_perplexity
|
1135 |
+
value: 2.088543437159643
|
1136 |
+
verified: false
|
1137 |
+
- task:
|
1138 |
+
type: text-generation
|
1139 |
+
name: text generation
|
1140 |
+
dataset:
|
1141 |
+
name: gsarti/flores_101_umb
|
1142 |
+
type: gsarti/flores_101_umb
|
1143 |
+
metrics:
|
1144 |
+
- name: byte_perplexity
|
1145 |
+
type: byte_perplexity
|
1146 |
+
value: 11.766013385445124
|
1147 |
+
verified: false
|
1148 |
+
- task:
|
1149 |
+
type: text-generation
|
1150 |
+
name: text generation
|
1151 |
+
dataset:
|
1152 |
+
name: gsarti/flores_101_urd
|
1153 |
+
type: gsarti/flores_101_urd
|
1154 |
+
metrics:
|
1155 |
+
- name: byte_perplexity
|
1156 |
+
type: byte_perplexity
|
1157 |
+
value: 1.7788699847612357
|
1158 |
+
verified: false
|
1159 |
+
- task:
|
1160 |
+
type: text-generation
|
1161 |
+
name: text generation
|
1162 |
+
dataset:
|
1163 |
+
name: gsarti/flores_101_uzb
|
1164 |
+
type: gsarti/flores_101_uzb
|
1165 |
+
metrics:
|
1166 |
+
- name: byte_perplexity
|
1167 |
+
type: byte_perplexity
|
1168 |
+
value: 8.499879863290486
|
1169 |
+
verified: false
|
1170 |
+
- task:
|
1171 |
+
type: text-generation
|
1172 |
+
name: text generation
|
1173 |
+
dataset:
|
1174 |
+
name: gsarti/flores_101_vie
|
1175 |
+
type: gsarti/flores_101_vie
|
1176 |
+
metrics:
|
1177 |
+
- name: byte_perplexity
|
1178 |
+
type: byte_perplexity
|
1179 |
+
value: 1.65901207387262
|
1180 |
+
verified: false
|
1181 |
+
- task:
|
1182 |
+
type: text-generation
|
1183 |
+
name: text generation
|
1184 |
+
dataset:
|
1185 |
+
name: gsarti/flores_101_wol
|
1186 |
+
type: gsarti/flores_101_wol
|
1187 |
+
metrics:
|
1188 |
+
- name: byte_perplexity
|
1189 |
+
type: byte_perplexity
|
1190 |
+
value: 6.141703791276928
|
1191 |
+
verified: false
|
1192 |
+
- task:
|
1193 |
+
type: text-generation
|
1194 |
+
name: text generation
|
1195 |
+
dataset:
|
1196 |
+
name: gsarti/flores_101_xho
|
1197 |
+
type: gsarti/flores_101_xho
|
1198 |
+
metrics:
|
1199 |
+
- name: byte_perplexity
|
1200 |
+
type: byte_perplexity
|
1201 |
+
value: 4.690199677955254
|
1202 |
+
verified: false
|
1203 |
+
- task:
|
1204 |
+
type: text-generation
|
1205 |
+
name: text generation
|
1206 |
+
dataset:
|
1207 |
+
name: gsarti/flores_101_yor
|
1208 |
+
type: gsarti/flores_101_yor
|
1209 |
+
metrics:
|
1210 |
+
- name: byte_perplexity
|
1211 |
+
type: byte_perplexity
|
1212 |
+
value: 4.360585696242932
|
1213 |
+
verified: false
|
1214 |
+
- task:
|
1215 |
+
type: text-generation
|
1216 |
+
name: text generation
|
1217 |
+
dataset:
|
1218 |
+
name: gsarti/flores_101_zho_simpl
|
1219 |
+
type: gsarti/flores_101_zho_simpl
|
1220 |
+
metrics:
|
1221 |
+
- name: byte_perplexity
|
1222 |
+
type: byte_perplexity
|
1223 |
+
value: 2.1183545781883515
|
1224 |
+
verified: false
|
1225 |
+
- task:
|
1226 |
+
type: text-generation
|
1227 |
+
name: text generation
|
1228 |
+
dataset:
|
1229 |
+
name: gsarti/flores_101_zho_trad
|
1230 |
+
type: gsarti/flores_101_zho_trad
|
1231 |
+
metrics:
|
1232 |
+
- name: byte_perplexity
|
1233 |
+
type: byte_perplexity
|
1234 |
+
value: 2.273787884962656
|
1235 |
+
verified: false
|
1236 |
+
- task:
|
1237 |
+
type: text-generation
|
1238 |
+
name: text generation
|
1239 |
+
dataset:
|
1240 |
+
name: gsarti/flores_101_zul
|
1241 |
+
type: gsarti/flores_101_zul
|
1242 |
+
metrics:
|
1243 |
+
- name: byte_perplexity
|
1244 |
+
type: byte_perplexity
|
1245 |
+
value: 6.016954767729589
|
1246 |
+
verified: false
|
1247 |
+
- task:
|
1248 |
+
type: text-generation
|
1249 |
+
name: text generation
|
1250 |
+
dataset:
|
1251 |
+
name: headqa
|
1252 |
+
type: headqa
|
1253 |
+
metrics:
|
1254 |
+
- name: acc
|
1255 |
+
type: acc
|
1256 |
+
value: 0.3464624361779723
|
1257 |
+
verified: false
|
1258 |
+
- task:
|
1259 |
+
type: text-generation
|
1260 |
+
name: text generation
|
1261 |
+
dataset:
|
1262 |
+
name: hellaswag
|
1263 |
+
type: hellaswag
|
1264 |
+
metrics:
|
1265 |
+
- name: acc
|
1266 |
+
type: acc
|
1267 |
+
value: 0.5353515236008763
|
1268 |
+
verified: false
|
1269 |
+
- task:
|
1270 |
+
type: text-generation
|
1271 |
+
name: text generation
|
1272 |
+
dataset:
|
1273 |
+
name: lambada_mt_de
|
1274 |
+
type: lambada_mt_de
|
1275 |
+
metrics:
|
1276 |
+
- name: acc
|
1277 |
+
type: acc
|
1278 |
+
value: 0.3291286629148069
|
1279 |
+
verified: false
|
1280 |
+
- task:
|
1281 |
+
type: text-generation
|
1282 |
+
name: text generation
|
1283 |
+
dataset:
|
1284 |
+
name: lambada_mt_en
|
1285 |
+
type: lambada_mt_en
|
1286 |
+
metrics:
|
1287 |
+
- name: acc
|
1288 |
+
type: acc
|
1289 |
+
value: 0.6720357073549389
|
1290 |
+
verified: false
|
1291 |
+
- task:
|
1292 |
+
type: text-generation
|
1293 |
+
name: text generation
|
1294 |
+
dataset:
|
1295 |
+
name: lambada_mt_es
|
1296 |
+
type: lambada_mt_es
|
1297 |
+
metrics:
|
1298 |
+
- name: acc
|
1299 |
+
type: acc
|
1300 |
+
value: 0.476421502037648
|
1301 |
+
verified: false
|
1302 |
+
- task:
|
1303 |
+
type: text-generation
|
1304 |
+
name: text generation
|
1305 |
+
dataset:
|
1306 |
+
name: lambada_mt_it
|
1307 |
+
type: lambada_mt_it
|
1308 |
+
metrics:
|
1309 |
+
- name: acc
|
1310 |
+
type: acc
|
1311 |
+
value: 0.4061711624296526
|
1312 |
+
verified: false
|
1313 |
+
- task:
|
1314 |
+
type: text-generation
|
1315 |
+
name: text generation
|
1316 |
+
dataset:
|
1317 |
+
name: logiqa
|
1318 |
+
type: logiqa
|
1319 |
+
metrics:
|
1320 |
+
- name: acc
|
1321 |
+
type: acc
|
1322 |
+
value: 0.2350230414746544
|
1323 |
+
verified: false
|
1324 |
+
- task:
|
1325 |
+
type: text-generation
|
1326 |
+
name: text generation
|
1327 |
+
dataset:
|
1328 |
+
name: mathqa
|
1329 |
+
type: mathqa
|
1330 |
+
metrics:
|
1331 |
+
- name: acc
|
1332 |
+
type: acc
|
1333 |
+
value: 0.27671691792294806
|
1334 |
+
verified: false
|
1335 |
+
- task:
|
1336 |
+
type: text-generation
|
1337 |
+
name: text generation
|
1338 |
+
dataset:
|
1339 |
+
name: mc_taco
|
1340 |
+
type: mc_taco
|
1341 |
+
metrics:
|
1342 |
+
- name: em
|
1343 |
+
type: em
|
1344 |
+
value: 0.13063063063063063
|
1345 |
+
verified: false
|
1346 |
+
- task:
|
1347 |
+
type: text-generation
|
1348 |
+
name: text generation
|
1349 |
+
dataset:
|
1350 |
+
name: mnli
|
1351 |
+
type: mnli
|
1352 |
+
metrics:
|
1353 |
+
- name: acc
|
1354 |
+
type: acc
|
1355 |
+
value: 0.3545565500406835
|
1356 |
+
verified: false
|
1357 |
+
- task:
|
1358 |
+
type: text-generation
|
1359 |
+
name: text generation
|
1360 |
+
dataset:
|
1361 |
+
name: mnli_mismatched
|
1362 |
+
type: mnli_mismatched
|
1363 |
+
metrics:
|
1364 |
+
- name: acc
|
1365 |
+
type: acc
|
1366 |
+
value: 0.3545565500406835
|
1367 |
+
verified: false
|
1368 |
+
- task:
|
1369 |
+
type: text-generation
|
1370 |
+
name: text generation
|
1371 |
+
dataset:
|
1372 |
+
name: mrpc
|
1373 |
+
type: mrpc
|
1374 |
+
metrics:
|
1375 |
+
- name: acc
|
1376 |
+
type: acc
|
1377 |
+
value: 0.3872549019607843
|
1378 |
+
verified: false
|
1379 |
+
- task:
|
1380 |
+
type: text-generation
|
1381 |
+
name: text generation
|
1382 |
+
dataset:
|
1383 |
+
name: multirc
|
1384 |
+
type: multirc
|
1385 |
+
metrics:
|
1386 |
+
- name: acc
|
1387 |
+
type: acc
|
1388 |
+
value: 0.570957095709571
|
1389 |
+
verified: false
|
1390 |
+
- task:
|
1391 |
+
type: text-generation
|
1392 |
+
name: text generation
|
1393 |
+
dataset:
|
1394 |
+
name: openbookqa
|
1395 |
+
type: openbookqa
|
1396 |
+
metrics:
|
1397 |
+
- name: acc
|
1398 |
+
type: acc
|
1399 |
+
value: 0.312
|
1400 |
+
verified: false
|
1401 |
+
- task:
|
1402 |
+
type: text-generation
|
1403 |
+
name: text generation
|
1404 |
+
dataset:
|
1405 |
+
name: piqa
|
1406 |
+
type: piqa
|
1407 |
+
metrics:
|
1408 |
+
- name: acc
|
1409 |
+
type: acc
|
1410 |
+
value: 0.7812840043525572
|
1411 |
+
verified: false
|
1412 |
+
- task:
|
1413 |
+
type: text-generation
|
1414 |
+
name: text generation
|
1415 |
+
dataset:
|
1416 |
+
name: prost
|
1417 |
+
type: prost
|
1418 |
+
metrics:
|
1419 |
+
- name: acc
|
1420 |
+
type: acc
|
1421 |
+
value: 0.2977156276686593
|
1422 |
+
verified: false
|
1423 |
+
- task:
|
1424 |
+
type: text-generation
|
1425 |
+
name: text generation
|
1426 |
+
dataset:
|
1427 |
+
name: pubmedqa
|
1428 |
+
type: pubmedqa
|
1429 |
+
metrics:
|
1430 |
+
- name: acc
|
1431 |
+
type: acc
|
1432 |
+
value: 0.741
|
1433 |
+
verified: false
|
1434 |
+
- task:
|
1435 |
+
type: text-generation
|
1436 |
+
name: text generation
|
1437 |
+
dataset:
|
1438 |
+
name: qnli
|
1439 |
+
type: qnli
|
1440 |
+
metrics:
|
1441 |
+
- name: acc
|
1442 |
+
type: acc
|
1443 |
+
value: 0.5172981878088962
|
1444 |
+
verified: false
|
1445 |
+
- task:
|
1446 |
+
type: text-generation
|
1447 |
+
name: text generation
|
1448 |
+
dataset:
|
1449 |
+
name: qqp
|
1450 |
+
type: qqp
|
1451 |
+
metrics:
|
1452 |
+
- name: acc
|
1453 |
+
type: acc
|
1454 |
+
value: 0.5883007667573584
|
1455 |
+
verified: false
|
1456 |
+
- task:
|
1457 |
+
type: text-generation
|
1458 |
+
name: text generation
|
1459 |
+
dataset:
|
1460 |
+
name: race
|
1461 |
+
type: race
|
1462 |
+
metrics:
|
1463 |
+
- name: acc
|
1464 |
+
type: acc
|
1465 |
+
value: 0.39043062200956935
|
1466 |
+
verified: false
|
1467 |
+
- task:
|
1468 |
+
type: text-generation
|
1469 |
+
name: text generation
|
1470 |
+
dataset:
|
1471 |
+
name: rte
|
1472 |
+
type: rte
|
1473 |
+
metrics:
|
1474 |
+
- name: acc
|
1475 |
+
type: acc
|
1476 |
+
value: 0.5198555956678701
|
1477 |
+
verified: false
|
1478 |
+
- task:
|
1479 |
+
type: text-generation
|
1480 |
+
name: text generation
|
1481 |
+
dataset:
|
1482 |
+
name: sciq
|
1483 |
+
type: sciq
|
1484 |
+
metrics:
|
1485 |
+
- name: acc
|
1486 |
+
type: acc
|
1487 |
+
value: 0.936
|
1488 |
+
verified: false
|
1489 |
+
- task:
|
1490 |
+
type: text-generation
|
1491 |
+
name: text generation
|
1492 |
+
dataset:
|
1493 |
+
name: sst
|
1494 |
+
type: sst
|
1495 |
+
metrics:
|
1496 |
+
- name: acc
|
1497 |
+
type: acc
|
1498 |
+
value: 0.6043577981651376
|
1499 |
+
verified: false
|
1500 |
+
- task:
|
1501 |
+
type: text-generation
|
1502 |
+
name: text generation
|
1503 |
+
dataset:
|
1504 |
+
name: triviaqa
|
1505 |
+
type: triviaqa
|
1506 |
+
metrics:
|
1507 |
+
- name: acc
|
1508 |
+
type: acc
|
1509 |
+
value: 0.18332891363917617
|
1510 |
+
verified: false
|
1511 |
+
- task:
|
1512 |
+
type: text-generation
|
1513 |
+
name: text generation
|
1514 |
+
dataset:
|
1515 |
+
name: tydiqa_primary
|
1516 |
+
type: tydiqa_primary
|
1517 |
+
metrics:
|
1518 |
+
- name: acc
|
1519 |
+
type: acc
|
1520 |
+
value: 0.2809817301342725
|
1521 |
+
verified: false
|
1522 |
+
- task:
|
1523 |
+
type: text-generation
|
1524 |
+
name: text generation
|
1525 |
+
dataset:
|
1526 |
+
name: webqs
|
1527 |
+
type: webqs
|
1528 |
+
metrics:
|
1529 |
+
- name: acc
|
1530 |
+
type: acc
|
1531 |
+
value: 0.061515748031496065
|
1532 |
+
verified: false
|
1533 |
+
- task:
|
1534 |
+
type: text-generation
|
1535 |
+
name: text generation
|
1536 |
+
dataset:
|
1537 |
+
name: wic
|
1538 |
+
type: wic
|
1539 |
+
metrics:
|
1540 |
+
- name: acc
|
1541 |
+
type: acc
|
1542 |
+
value: 0.5062695924764891
|
1543 |
+
verified: false
|
1544 |
+
- task:
|
1545 |
+
type: text-generation
|
1546 |
+
name: text generation
|
1547 |
+
dataset:
|
1548 |
+
name: winogrande
|
1549 |
+
type: winogrande
|
1550 |
+
metrics:
|
1551 |
+
- name: acc
|
1552 |
+
type: acc
|
1553 |
+
value: 0.7095501183898973
|
1554 |
+
verified: false
|
1555 |
+
- task:
|
1556 |
+
type: text-generation
|
1557 |
+
name: text generation
|
1558 |
+
dataset:
|
1559 |
+
name: wnli
|
1560 |
+
type: wnli
|
1561 |
+
metrics:
|
1562 |
+
- name: acc
|
1563 |
+
type: acc
|
1564 |
+
value: 0.5704225352112676
|
1565 |
+
verified: false
|
1566 |
+
- task:
|
1567 |
+
type: text-generation
|
1568 |
+
name: text generation
|
1569 |
+
dataset:
|
1570 |
+
name: wsc
|
1571 |
+
type: wsc
|
1572 |
+
metrics:
|
1573 |
+
- name: acc
|
1574 |
+
type: acc
|
1575 |
+
value: 0.5192307692307693
|
1576 |
+
verified: false
|
1577 |
+
- task:
|
1578 |
+
type: text-generation
|
1579 |
+
name: text generation
|
1580 |
+
dataset:
|
1581 |
+
name: humaneval
|
1582 |
+
type: humaneval
|
1583 |
+
metrics:
|
1584 |
+
- name: pass@1
|
1585 |
+
type: pass@1
|
1586 |
+
value: 0.15524390243902436
|
1587 |
+
verified: false
|
1588 |
+
- name: pass@10
|
1589 |
+
type: pass@10
|
1590 |
+
value: 0.3220367632383857
|
1591 |
+
verified: false
|
1592 |
+
- name: pass@100
|
1593 |
+
type: pass@100
|
1594 |
+
value: 0.5545431515723145
|
1595 |
+
verified: false
|
evaluation/results/tr11/bloom1b3/bslmeval.json
ADDED
@@ -0,0 +1,2938 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"arc_challenge": {
|
4 |
+
"2022-07-13-11-29-13": {
|
5 |
+
"acc": 0.23464163822525597,
|
6 |
+
"acc_norm": 0.26791808873720135,
|
7 |
+
"acc_norm_stderr": 0.012942030195136423,
|
8 |
+
"acc_stderr": 0.012383873560768673
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"arc_easy": {
|
12 |
+
"2022-07-13-11-29-13": {
|
13 |
+
"acc": 0.5631313131313131,
|
14 |
+
"acc_norm": 0.4810606060606061,
|
15 |
+
"acc_norm_stderr": 0.010252420496894487,
|
16 |
+
"acc_stderr": 0.010177672928157678
|
17 |
+
}
|
18 |
+
},
|
19 |
+
"axb+GPT-3 style": {
|
20 |
+
"2022-07-15-11-47-34": {
|
21 |
+
"acc": 0.4855072463768116,
|
22 |
+
"acc_norm": 0.5878623188405797,
|
23 |
+
"acc_norm_stderr": 0.014820785339690506,
|
24 |
+
"acc_stderr": 0.015048725939283577,
|
25 |
+
"prompt_name": "GPT-3 style",
|
26 |
+
"task_name": "axb"
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"axb+MNLI crowdsource": {
|
30 |
+
"2022-07-15-11-47-34": {
|
31 |
+
"acc": 0.447463768115942,
|
32 |
+
"acc_norm": 0.4166666666666667,
|
33 |
+
"acc_norm_stderr": 0.014844481058991162,
|
34 |
+
"acc_stderr": 0.0149717153798021,
|
35 |
+
"prompt_name": "MNLI crowdsource",
|
36 |
+
"task_name": "axb"
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"axb+based on the previous passage": {
|
40 |
+
"2022-07-15-11-47-34": {
|
41 |
+
"acc": 0.4846014492753623,
|
42 |
+
"acc_norm": 0.4166666666666667,
|
43 |
+
"acc_norm_stderr": 0.014844481058991162,
|
44 |
+
"acc_stderr": 0.015047910329698355,
|
45 |
+
"prompt_name": "based on the previous passage",
|
46 |
+
"task_name": "axb"
|
47 |
+
}
|
48 |
+
},
|
49 |
+
"axb+can we infer": {
|
50 |
+
"2022-07-15-11-47-34": {
|
51 |
+
"acc": 0.421195652173913,
|
52 |
+
"acc_norm": 0.4166666666666667,
|
53 |
+
"acc_norm_stderr": 0.014844481058991162,
|
54 |
+
"acc_stderr": 0.014866888213508284,
|
55 |
+
"prompt_name": "can we infer",
|
56 |
+
"task_name": "axb"
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"axb+does it follow that": {
|
60 |
+
"2022-07-15-11-47-34": {
|
61 |
+
"acc": 0.4375,
|
62 |
+
"acc_norm": 0.4166666666666667,
|
63 |
+
"acc_norm_stderr": 0.014844481058991162,
|
64 |
+
"acc_stderr": 0.014936970932375573,
|
65 |
+
"prompt_name": "does it follow that",
|
66 |
+
"task_name": "axb"
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"axb+does this imply": {
|
70 |
+
"2022-07-15-11-47-34": {
|
71 |
+
"acc": 0.5353260869565217,
|
72 |
+
"acc_norm": 0.4166666666666667,
|
73 |
+
"acc_norm_stderr": 0.014844481058991162,
|
74 |
+
"acc_stderr": 0.015017429208641943,
|
75 |
+
"prompt_name": "does this imply",
|
76 |
+
"task_name": "axb"
|
77 |
+
}
|
78 |
+
},
|
79 |
+
"axb+guaranteed true": {
|
80 |
+
"2022-07-15-11-47-34": {
|
81 |
+
"acc": 0.44655797101449274,
|
82 |
+
"acc_norm": 0.4166666666666667,
|
83 |
+
"acc_norm_stderr": 0.014844481058991162,
|
84 |
+
"acc_stderr": 0.014968808595500557,
|
85 |
+
"prompt_name": "guaranteed true",
|
86 |
+
"task_name": "axb"
|
87 |
+
}
|
88 |
+
},
|
89 |
+
"axb+justified in saying": {
|
90 |
+
"2022-07-15-11-47-34": {
|
91 |
+
"acc": 0.4365942028985507,
|
92 |
+
"acc_norm": 0.4166666666666667,
|
93 |
+
"acc_norm_stderr": 0.014844481058991162,
|
94 |
+
"acc_stderr": 0.014933509475434285,
|
95 |
+
"prompt_name": "justified in saying",
|
96 |
+
"task_name": "axb"
|
97 |
+
}
|
98 |
+
},
|
99 |
+
"axb+must be true": {
|
100 |
+
"2022-07-15-11-47-34": {
|
101 |
+
"acc": 0.4266304347826087,
|
102 |
+
"acc_norm": 0.4166666666666667,
|
103 |
+
"acc_norm_stderr": 0.014844481058991162,
|
104 |
+
"acc_stderr": 0.014892084059444173,
|
105 |
+
"prompt_name": "must be true",
|
106 |
+
"task_name": "axb"
|
107 |
+
}
|
108 |
+
},
|
109 |
+
"axb+should assume": {
|
110 |
+
"2022-07-15-11-47-34": {
|
111 |
+
"acc": 0.5163043478260869,
|
112 |
+
"acc_norm": 0.4157608695652174,
|
113 |
+
"acc_norm_stderr": 0.014839845193003246,
|
114 |
+
"acc_stderr": 0.015047045240919796,
|
115 |
+
"prompt_name": "should assume",
|
116 |
+
"task_name": "axb"
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"axg+GPT-3 style": {
|
120 |
+
"2022-07-15-11-47-34": {
|
121 |
+
"acc": 0.4803370786516854,
|
122 |
+
"acc_norm": 0.5,
|
123 |
+
"acc_norm_stderr": 0.026537244621713762,
|
124 |
+
"acc_stderr": 0.02651671646679541,
|
125 |
+
"parity": 0.9606741573033708,
|
126 |
+
"parity_stderr": 0.01460967112412074,
|
127 |
+
"prompt_name": "GPT-3 style",
|
128 |
+
"task_name": "axg"
|
129 |
+
}
|
130 |
+
},
|
131 |
+
"axg+MNLI crowdsource": {
|
132 |
+
"2022-07-15-11-47-34": {
|
133 |
+
"acc": 0.5140449438202247,
|
134 |
+
"acc_norm": 0.5,
|
135 |
+
"acc_norm_stderr": 0.026537244621713762,
|
136 |
+
"acc_stderr": 0.026526773058212952,
|
137 |
+
"parity": 0.9719101123595506,
|
138 |
+
"parity_stderr": 0.012419422972302346,
|
139 |
+
"prompt_name": "MNLI crowdsource",
|
140 |
+
"task_name": "axg"
|
141 |
+
}
|
142 |
+
},
|
143 |
+
"axg+based on the previous passage": {
|
144 |
+
"2022-07-15-11-47-34": {
|
145 |
+
"acc": 0.5,
|
146 |
+
"acc_norm": 0.5,
|
147 |
+
"acc_norm_stderr": 0.026537244621713762,
|
148 |
+
"acc_stderr": 0.026537244621713762,
|
149 |
+
"parity": 0.9662921348314607,
|
150 |
+
"parity_stderr": 0.013565419020002358,
|
151 |
+
"prompt_name": "based on the previous passage",
|
152 |
+
"task_name": "axg"
|
153 |
+
}
|
154 |
+
},
|
155 |
+
"axg+can we infer": {
|
156 |
+
"2022-07-15-11-47-34": {
|
157 |
+
"acc": 0.5,
|
158 |
+
"acc_norm": 0.5,
|
159 |
+
"acc_norm_stderr": 0.026537244621713762,
|
160 |
+
"acc_stderr": 0.026537244621713762,
|
161 |
+
"parity": 0.9887640449438202,
|
162 |
+
"parity_stderr": 0.007922544664164389,
|
163 |
+
"prompt_name": "can we infer",
|
164 |
+
"task_name": "axg"
|
165 |
+
}
|
166 |
+
},
|
167 |
+
"axg+does it follow that": {
|
168 |
+
"2022-07-15-11-47-34": {
|
169 |
+
"acc": 0.5,
|
170 |
+
"acc_norm": 0.5,
|
171 |
+
"acc_norm_stderr": 0.026537244621713762,
|
172 |
+
"acc_stderr": 0.026537244621713762,
|
173 |
+
"parity": 1.0,
|
174 |
+
"parity_stderr": 0.0,
|
175 |
+
"prompt_name": "does it follow that",
|
176 |
+
"task_name": "axg"
|
177 |
+
}
|
178 |
+
},
|
179 |
+
"axg+does this imply": {
|
180 |
+
"2022-07-15-11-47-34": {
|
181 |
+
"acc": 0.49719101123595505,
|
182 |
+
"acc_norm": 0.5,
|
183 |
+
"acc_norm_stderr": 0.026537244621713762,
|
184 |
+
"acc_stderr": 0.026536825838510643,
|
185 |
+
"parity": 0.9831460674157303,
|
186 |
+
"parity_stderr": 0.009675491064988365,
|
187 |
+
"prompt_name": "does this imply",
|
188 |
+
"task_name": "axg"
|
189 |
+
}
|
190 |
+
},
|
191 |
+
"axg+guaranteed true": {
|
192 |
+
"2022-07-15-11-47-34": {
|
193 |
+
"acc": 0.48314606741573035,
|
194 |
+
"acc_norm": 0.5,
|
195 |
+
"acc_norm_stderr": 0.026537244621713762,
|
196 |
+
"acc_stderr": 0.026522164260489825,
|
197 |
+
"parity": 0.9887640449438202,
|
198 |
+
"parity_stderr": 0.007922544664164387,
|
199 |
+
"prompt_name": "guaranteed true",
|
200 |
+
"task_name": "axg"
|
201 |
+
}
|
202 |
+
},
|
203 |
+
"axg+justified in saying": {
|
204 |
+
"2022-07-15-11-47-34": {
|
205 |
+
"acc": 0.5,
|
206 |
+
"acc_norm": 0.5,
|
207 |
+
"acc_norm_stderr": 0.026537244621713762,
|
208 |
+
"acc_stderr": 0.026537244621713762,
|
209 |
+
"parity": 0.9887640449438202,
|
210 |
+
"parity_stderr": 0.007922544664164385,
|
211 |
+
"prompt_name": "justified in saying",
|
212 |
+
"task_name": "axg"
|
213 |
+
}
|
214 |
+
},
|
215 |
+
"axg+must be true": {
|
216 |
+
"2022-07-15-11-47-34": {
|
217 |
+
"acc": 0.4803370786516854,
|
218 |
+
"acc_norm": 0.5,
|
219 |
+
"acc_norm_stderr": 0.026537244621713762,
|
220 |
+
"acc_stderr": 0.026516716466795417,
|
221 |
+
"parity": 0.9719101123595506,
|
222 |
+
"parity_stderr": 0.012419422972302347,
|
223 |
+
"prompt_name": "must be true",
|
224 |
+
"task_name": "axg"
|
225 |
+
}
|
226 |
+
},
|
227 |
+
"axg+should assume": {
|
228 |
+
"2022-07-15-11-47-34": {
|
229 |
+
"acc": 0.49719101123595505,
|
230 |
+
"acc_norm": 0.5,
|
231 |
+
"acc_norm_stderr": 0.026537244621713762,
|
232 |
+
"acc_stderr": 0.026536825838510643,
|
233 |
+
"parity": 0.949438202247191,
|
234 |
+
"parity_stderr": 0.016468648928151884,
|
235 |
+
"prompt_name": "should assume",
|
236 |
+
"task_name": "axg"
|
237 |
+
}
|
238 |
+
},
|
239 |
+
"boolq": {
|
240 |
+
"2022-07-13-11-29-13": {
|
241 |
+
"acc": 0.617737003058104,
|
242 |
+
"acc_stderr": 0.008499149690449272
|
243 |
+
}
|
244 |
+
},
|
245 |
+
"boolq+GPT-3 Style": {
|
246 |
+
"2022-07-15-11-47-34": {
|
247 |
+
"acc": 0.5896024464831804,
|
248 |
+
"acc_norm": 0.6211009174311927,
|
249 |
+
"acc_norm_stderr": 0.008484678718565017,
|
250 |
+
"acc_stderr": 0.008603488048617526,
|
251 |
+
"prompt_name": "GPT-3 Style",
|
252 |
+
"task_name": "boolq"
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"boolq+I wonder\u2026": {
|
256 |
+
"2022-07-15-11-47-34": {
|
257 |
+
"acc": 0.563914373088685,
|
258 |
+
"acc_norm": 0.6217125382262997,
|
259 |
+
"acc_norm_stderr": 0.00848200113393099,
|
260 |
+
"acc_stderr": 0.008673312776324934,
|
261 |
+
"prompt_name": "I wonder\u2026",
|
262 |
+
"task_name": "boolq"
|
263 |
+
}
|
264 |
+
},
|
265 |
+
"boolq+after_reading": {
|
266 |
+
"2022-07-15-11-47-34": {
|
267 |
+
"acc": 0.6217125382262997,
|
268 |
+
"acc_norm": 0.3804281345565749,
|
269 |
+
"acc_norm_stderr": 0.008491310027059626,
|
270 |
+
"acc_stderr": 0.00848200113393099,
|
271 |
+
"prompt_name": "after_reading",
|
272 |
+
"task_name": "boolq"
|
273 |
+
}
|
274 |
+
},
|
275 |
+
"boolq+based on the following passage": {
|
276 |
+
"2022-07-15-11-47-34": {
|
277 |
+
"acc": 0.3798165137614679,
|
278 |
+
"acc_norm": 0.6012232415902141,
|
279 |
+
"acc_norm_stderr": 0.008563973987729906,
|
280 |
+
"acc_stderr": 0.008488668235778644,
|
281 |
+
"prompt_name": "based on the following passage",
|
282 |
+
"task_name": "boolq"
|
283 |
+
}
|
284 |
+
},
|
285 |
+
"boolq+based on the previous passage": {
|
286 |
+
"2022-07-15-11-47-34": {
|
287 |
+
"acc": 0.6146788990825688,
|
288 |
+
"acc_norm": 0.6217125382262997,
|
289 |
+
"acc_norm_stderr": 0.00848200113393099,
|
290 |
+
"acc_stderr": 0.008511930879680635,
|
291 |
+
"prompt_name": "based on the previous passage",
|
292 |
+
"task_name": "boolq"
|
293 |
+
}
|
294 |
+
},
|
295 |
+
"boolq+could you tell me\u2026": {
|
296 |
+
"2022-07-15-11-47-34": {
|
297 |
+
"acc": 0.5840978593272171,
|
298 |
+
"acc_norm": 0.6217125382262997,
|
299 |
+
"acc_norm_stderr": 0.00848200113393099,
|
300 |
+
"acc_stderr": 0.008620469604001,
|
301 |
+
"prompt_name": "could you tell me\u2026",
|
302 |
+
"task_name": "boolq"
|
303 |
+
}
|
304 |
+
},
|
305 |
+
"boolq+exam": {
|
306 |
+
"2022-07-15-11-47-34": {
|
307 |
+
"acc": 0.6220183486238532,
|
308 |
+
"acc_norm": 0.6217125382262997,
|
309 |
+
"acc_norm_stderr": 0.00848200113393099,
|
310 |
+
"acc_stderr": 0.008480656964585267,
|
311 |
+
"prompt_name": "exam",
|
312 |
+
"task_name": "boolq"
|
313 |
+
}
|
314 |
+
},
|
315 |
+
"boolq+exercise": {
|
316 |
+
"2022-07-15-11-47-34": {
|
317 |
+
"acc": 0.6217125382262997,
|
318 |
+
"acc_norm": 0.46788990825688076,
|
319 |
+
"acc_norm_stderr": 0.0087270030269178,
|
320 |
+
"acc_stderr": 0.00848200113393099,
|
321 |
+
"prompt_name": "exercise",
|
322 |
+
"task_name": "boolq"
|
323 |
+
}
|
324 |
+
},
|
325 |
+
"boolq+valid_binary": {
|
326 |
+
"2022-07-15-11-47-34": {
|
327 |
+
"acc": 0.491131498470948,
|
328 |
+
"acc_norm": 0.37370030581039754,
|
329 |
+
"acc_norm_stderr": 0.008461461177104003,
|
330 |
+
"acc_stderr": 0.008743679265456042,
|
331 |
+
"prompt_name": "valid_binary",
|
332 |
+
"task_name": "boolq"
|
333 |
+
}
|
334 |
+
},
|
335 |
+
"boolq+yes_no_question": {
|
336 |
+
"2022-07-15-11-47-34": {
|
337 |
+
"acc": 0.5951070336391437,
|
338 |
+
"acc_norm": 0.6217125382262997,
|
339 |
+
"acc_norm_stderr": 0.00848200113393099,
|
340 |
+
"acc_stderr": 0.008585393347962319,
|
341 |
+
"prompt_name": "yes_no_question",
|
342 |
+
"task_name": "boolq"
|
343 |
+
}
|
344 |
+
},
|
345 |
+
"cb+GPT-3 style": {
|
346 |
+
"2022-07-15-11-47-34": {
|
347 |
+
"acc": 0.42857142857142855,
|
348 |
+
"acc_stderr": 0.06672848092813057,
|
349 |
+
"f1": 0.21956970232832299,
|
350 |
+
"prompt_name": "GPT-3 style",
|
351 |
+
"task_name": "cb"
|
352 |
+
}
|
353 |
+
},
|
354 |
+
"cb+MNLI crowdsource": {
|
355 |
+
"2022-07-15-11-47-34": {
|
356 |
+
"acc": 0.42857142857142855,
|
357 |
+
"acc_stderr": 0.06672848092813057,
|
358 |
+
"f1": 0.21956970232832299,
|
359 |
+
"prompt_name": "MNLI crowdsource",
|
360 |
+
"task_name": "cb"
|
361 |
+
}
|
362 |
+
},
|
363 |
+
"cb+always/sometimes/never": {
|
364 |
+
"2022-07-15-11-47-34": {
|
365 |
+
"acc": 0.08928571428571429,
|
366 |
+
"acc_stderr": 0.038450387280282494,
|
367 |
+
"f1": 0.054644808743169404,
|
368 |
+
"prompt_name": "always/sometimes/never",
|
369 |
+
"task_name": "cb"
|
370 |
+
}
|
371 |
+
},
|
372 |
+
"cb+based on the previous passage": {
|
373 |
+
"2022-07-15-11-47-34": {
|
374 |
+
"acc": 0.35714285714285715,
|
375 |
+
"acc_stderr": 0.06460957383809221,
|
376 |
+
"f1": 0.2094181249110827,
|
377 |
+
"prompt_name": "based on the previous passage",
|
378 |
+
"task_name": "cb"
|
379 |
+
}
|
380 |
+
},
|
381 |
+
"cb+can we infer": {
|
382 |
+
"2022-07-15-11-47-34": {
|
383 |
+
"acc": 0.25,
|
384 |
+
"acc_stderr": 0.058387420812114225,
|
385 |
+
"f1": 0.15483870967741933,
|
386 |
+
"prompt_name": "can we infer",
|
387 |
+
"task_name": "cb"
|
388 |
+
}
|
389 |
+
},
|
390 |
+
"cb+claim true/false/inconclusive": {
|
391 |
+
"2022-07-15-11-47-34": {
|
392 |
+
"acc": 0.42857142857142855,
|
393 |
+
"acc_stderr": 0.06672848092813057,
|
394 |
+
"f1": 0.21956970232832299,
|
395 |
+
"prompt_name": "claim true/false/inconclusive",
|
396 |
+
"task_name": "cb"
|
397 |
+
}
|
398 |
+
},
|
399 |
+
"cb+consider always/sometimes/never": {
|
400 |
+
"2022-07-15-11-47-34": {
|
401 |
+
"acc": 0.08928571428571429,
|
402 |
+
"acc_stderr": 0.038450387280282494,
|
403 |
+
"f1": 0.054644808743169404,
|
404 |
+
"prompt_name": "consider always/sometimes/never",
|
405 |
+
"task_name": "cb"
|
406 |
+
}
|
407 |
+
},
|
408 |
+
"cb+does it follow that": {
|
409 |
+
"2022-07-15-11-47-34": {
|
410 |
+
"acc": 0.30357142857142855,
|
411 |
+
"acc_stderr": 0.06199938655510754,
|
412 |
+
"f1": 0.2613574165298303,
|
413 |
+
"prompt_name": "does it follow that",
|
414 |
+
"task_name": "cb"
|
415 |
+
}
|
416 |
+
},
|
417 |
+
"cb+does this imply": {
|
418 |
+
"2022-07-15-11-47-34": {
|
419 |
+
"acc": 0.10714285714285714,
|
420 |
+
"acc_stderr": 0.0417053005800816,
|
421 |
+
"f1": 0.11222753854332802,
|
422 |
+
"prompt_name": "does this imply",
|
423 |
+
"task_name": "cb"
|
424 |
+
}
|
425 |
+
},
|
426 |
+
"cb+guaranteed true": {
|
427 |
+
"2022-07-15-11-47-34": {
|
428 |
+
"acc": 0.21428571428571427,
|
429 |
+
"acc_stderr": 0.055328333517248834,
|
430 |
+
"f1": 0.15883777239709443,
|
431 |
+
"prompt_name": "guaranteed true",
|
432 |
+
"task_name": "cb"
|
433 |
+
}
|
434 |
+
},
|
435 |
+
"cb+guaranteed/possible/impossible": {
|
436 |
+
"2022-07-15-11-47-34": {
|
437 |
+
"acc": 0.10714285714285714,
|
438 |
+
"acc_stderr": 0.0417053005800816,
|
439 |
+
"f1": 0.07871939736346516,
|
440 |
+
"prompt_name": "guaranteed/possible/impossible",
|
441 |
+
"task_name": "cb"
|
442 |
+
}
|
443 |
+
},
|
444 |
+
"cb+justified in saying": {
|
445 |
+
"2022-07-15-11-47-34": {
|
446 |
+
"acc": 0.21428571428571427,
|
447 |
+
"acc_stderr": 0.055328333517248834,
|
448 |
+
"f1": 0.1623009758602979,
|
449 |
+
"prompt_name": "justified in saying",
|
450 |
+
"task_name": "cb"
|
451 |
+
}
|
452 |
+
},
|
453 |
+
"cb+must be true": {
|
454 |
+
"2022-07-15-11-47-34": {
|
455 |
+
"acc": 0.19642857142857142,
|
456 |
+
"acc_stderr": 0.05357142857142859,
|
457 |
+
"f1": 0.1384656508954825,
|
458 |
+
"prompt_name": "must be true",
|
459 |
+
"task_name": "cb"
|
460 |
+
}
|
461 |
+
},
|
462 |
+
"cb+should assume": {
|
463 |
+
"2022-07-15-11-47-34": {
|
464 |
+
"acc": 0.19642857142857142,
|
465 |
+
"acc_stderr": 0.05357142857142858,
|
466 |
+
"f1": 0.14613935969868175,
|
467 |
+
"prompt_name": "should assume",
|
468 |
+
"task_name": "cb"
|
469 |
+
}
|
470 |
+
},
|
471 |
+
"cb+take the following as truth": {
|
472 |
+
"2022-07-15-11-47-34": {
|
473 |
+
"acc": 0.4107142857142857,
|
474 |
+
"acc_stderr": 0.06633634150359538,
|
475 |
+
"f1": 0.1940928270042194,
|
476 |
+
"prompt_name": "take the following as truth",
|
477 |
+
"task_name": "cb"
|
478 |
+
}
|
479 |
+
},
|
480 |
+
"cola+Following sentence acceptable": {
|
481 |
+
"2022-07-15-11-47-34": {
|
482 |
+
"acc": 0.6625119846596357,
|
483 |
+
"acc_norm": 0.31064237775647174,
|
484 |
+
"acc_norm_stderr": 0.014335695984672221,
|
485 |
+
"acc_stderr": 0.014648467353878477,
|
486 |
+
"prompt_name": "Following sentence acceptable",
|
487 |
+
"task_name": "cola"
|
488 |
+
}
|
489 |
+
},
|
490 |
+
"cola+Make sense yes no": {
|
491 |
+
"2022-07-15-11-47-34": {
|
492 |
+
"acc": 0.3710450623202301,
|
493 |
+
"acc_norm": 0.6903163950143816,
|
494 |
+
"acc_norm_stderr": 0.014323506235950028,
|
495 |
+
"acc_stderr": 0.01496543118537874,
|
496 |
+
"prompt_name": "Make sense yes no",
|
497 |
+
"task_name": "cola"
|
498 |
+
}
|
499 |
+
},
|
500 |
+
"cola+Previous sentence acceptable": {
|
501 |
+
"2022-07-15-11-47-34": {
|
502 |
+
"acc": 0.6864813039309684,
|
503 |
+
"acc_norm": 0.6912751677852349,
|
504 |
+
"acc_norm_stderr": 0.014311244461311299,
|
505 |
+
"acc_stderr": 0.014371834902632595,
|
506 |
+
"prompt_name": "Previous sentence acceptable",
|
507 |
+
"task_name": "cola"
|
508 |
+
}
|
509 |
+
},
|
510 |
+
"cola+editing": {
|
511 |
+
"2022-07-15-11-47-34": {
|
512 |
+
"acc": 0.46596356663470756,
|
513 |
+
"acc_norm": 0.6912751677852349,
|
514 |
+
"acc_norm_stderr": 0.014311244461311299,
|
515 |
+
"acc_stderr": 0.015453525186655532,
|
516 |
+
"prompt_name": "editing",
|
517 |
+
"task_name": "cola"
|
518 |
+
}
|
519 |
+
},
|
520 |
+
"cola+is_this_correct": {
|
521 |
+
"2022-07-15-11-47-34": {
|
522 |
+
"acc": 0.6893576222435283,
|
523 |
+
"acc_norm": 0.6912751677852349,
|
524 |
+
"acc_norm_stderr": 0.014311244461311299,
|
525 |
+
"acc_stderr": 0.014335695984672223,
|
526 |
+
"prompt_name": "is_this_correct",
|
527 |
+
"task_name": "cola"
|
528 |
+
}
|
529 |
+
},
|
530 |
+
"copa": {
|
531 |
+
"2022-07-13-11-29-13": {
|
532 |
+
"acc": 0.7,
|
533 |
+
"acc_stderr": 0.046056618647183814
|
534 |
+
}
|
535 |
+
},
|
536 |
+
"copa+C1 or C2? premise, so/because\u2026": {
|
537 |
+
"2022-07-15-11-47-34": {
|
538 |
+
"acc": 0.65,
|
539 |
+
"acc_norm": 0.57,
|
540 |
+
"acc_norm_stderr": 0.049756985195624284,
|
541 |
+
"acc_stderr": 0.047937248544110196,
|
542 |
+
"prompt_name": "C1 or C2? premise, so/because\u2026",
|
543 |
+
"task_name": "copa"
|
544 |
+
}
|
545 |
+
},
|
546 |
+
"copa+best_option": {
|
547 |
+
"2022-07-15-11-47-34": {
|
548 |
+
"acc": 0.52,
|
549 |
+
"acc_norm": 0.49,
|
550 |
+
"acc_norm_stderr": 0.05024183937956911,
|
551 |
+
"acc_stderr": 0.050211673156867795,
|
552 |
+
"prompt_name": "best_option",
|
553 |
+
"task_name": "copa"
|
554 |
+
}
|
555 |
+
},
|
556 |
+
"copa+cause_effect": {
|
557 |
+
"2022-07-15-11-47-34": {
|
558 |
+
"acc": 0.56,
|
559 |
+
"acc_norm": 0.45,
|
560 |
+
"acc_norm_stderr": 0.05,
|
561 |
+
"acc_stderr": 0.04988876515698589,
|
562 |
+
"prompt_name": "cause_effect",
|
563 |
+
"task_name": "copa"
|
564 |
+
}
|
565 |
+
},
|
566 |
+
"copa+choose": {
|
567 |
+
"2022-07-15-11-47-34": {
|
568 |
+
"acc": 0.53,
|
569 |
+
"acc_norm": 0.46,
|
570 |
+
"acc_norm_stderr": 0.05009082659620333,
|
571 |
+
"acc_stderr": 0.05016135580465919,
|
572 |
+
"prompt_name": "choose",
|
573 |
+
"task_name": "copa"
|
574 |
+
}
|
575 |
+
},
|
576 |
+
"copa+exercise": {
|
577 |
+
"2022-07-15-11-47-34": {
|
578 |
+
"acc": 0.54,
|
579 |
+
"acc_norm": 0.48,
|
580 |
+
"acc_norm_stderr": 0.050211673156867795,
|
581 |
+
"acc_stderr": 0.05009082659620332,
|
582 |
+
"prompt_name": "exercise",
|
583 |
+
"task_name": "copa"
|
584 |
+
}
|
585 |
+
},
|
586 |
+
"copa+i_am_hesitating": {
|
587 |
+
"2022-07-15-11-47-34": {
|
588 |
+
"acc": 0.56,
|
589 |
+
"acc_norm": 0.48,
|
590 |
+
"acc_norm_stderr": 0.050211673156867795,
|
591 |
+
"acc_stderr": 0.04988876515698589,
|
592 |
+
"prompt_name": "i_am_hesitating",
|
593 |
+
"task_name": "copa"
|
594 |
+
}
|
595 |
+
},
|
596 |
+
"copa+more likely": {
|
597 |
+
"2022-07-15-11-47-34": {
|
598 |
+
"acc": 0.53,
|
599 |
+
"acc_norm": 0.49,
|
600 |
+
"acc_norm_stderr": 0.05024183937956911,
|
601 |
+
"acc_stderr": 0.05016135580465919,
|
602 |
+
"prompt_name": "more likely",
|
603 |
+
"task_name": "copa"
|
604 |
+
}
|
605 |
+
},
|
606 |
+
"copa+plausible_alternatives": {
|
607 |
+
"2022-07-15-11-47-34": {
|
608 |
+
"acc": 0.56,
|
609 |
+
"acc_norm": 0.53,
|
610 |
+
"acc_norm_stderr": 0.05016135580465919,
|
611 |
+
"acc_stderr": 0.04988876515698589,
|
612 |
+
"prompt_name": "plausible_alternatives",
|
613 |
+
"task_name": "copa"
|
614 |
+
}
|
615 |
+
},
|
616 |
+
"crows_pairs_english+1": {
|
617 |
+
"2022-07-12-22-45-57": {
|
618 |
+
"acc": 0.49552772808586765,
|
619 |
+
"acc_norm": 0.49552772808586765,
|
620 |
+
"acc_norm_stderr": 0.012212810647205384,
|
621 |
+
"acc_stderr": 0.012212810647205384,
|
622 |
+
"prompt_name": "1",
|
623 |
+
"task_name": "crows_pairs_english"
|
624 |
+
}
|
625 |
+
},
|
626 |
+
"crows_pairs_english+2": {
|
627 |
+
"2022-07-12-22-45-57": {
|
628 |
+
"acc": 0.4883720930232558,
|
629 |
+
"acc_norm": 0.4883720930232558,
|
630 |
+
"acc_norm_stderr": 0.012209996095069646,
|
631 |
+
"acc_stderr": 0.012209996095069646,
|
632 |
+
"prompt_name": "2",
|
633 |
+
"task_name": "crows_pairs_english"
|
634 |
+
}
|
635 |
+
},
|
636 |
+
"crows_pairs_english+3": {
|
637 |
+
"2022-07-12-22-45-57": {
|
638 |
+
"acc": 0.5163983303518187,
|
639 |
+
"acc_norm": 0.4836016696481813,
|
640 |
+
"acc_norm_stderr": 0.012206729011137944,
|
641 |
+
"acc_stderr": 0.012206729011137944,
|
642 |
+
"prompt_name": "3",
|
643 |
+
"task_name": "crows_pairs_english"
|
644 |
+
}
|
645 |
+
},
|
646 |
+
"crows_pairs_english+4": {
|
647 |
+
"2022-07-12-22-45-57": {
|
648 |
+
"acc": 0.4919499105545617,
|
649 |
+
"acc_norm": 0.4919499105545617,
|
650 |
+
"acc_norm_stderr": 0.01221171617623539,
|
651 |
+
"acc_stderr": 0.01221171617623539,
|
652 |
+
"prompt_name": "4",
|
653 |
+
"task_name": "crows_pairs_english"
|
654 |
+
}
|
655 |
+
},
|
656 |
+
"crows_pairs_english+A_preference": {
|
657 |
+
"2022-07-12-22-45-57": {
|
658 |
+
"acc": 0.5104353011329755,
|
659 |
+
"acc_norm": 0.5104353011329755,
|
660 |
+
"acc_norm_stderr": 0.012210638982043397,
|
661 |
+
"acc_stderr": 0.012210638982043397,
|
662 |
+
"prompt_name": "A_preference",
|
663 |
+
"task_name": "crows_pairs_english"
|
664 |
+
}
|
665 |
+
},
|
666 |
+
"crows_pairs_english+A_stereotype_true": {
|
667 |
+
"2022-07-12-22-45-57": {
|
668 |
+
"acc": 0.4907573047107931,
|
669 |
+
"acc_norm": 0.5062611806797853,
|
670 |
+
"acc_norm_stderr": 0.012212341600228735,
|
671 |
+
"acc_stderr": 0.012211212339167695,
|
672 |
+
"prompt_name": "A_stereotype_true",
|
673 |
+
"task_name": "crows_pairs_english"
|
674 |
+
}
|
675 |
+
},
|
676 |
+
"crows_pairs_french+1_fr": {
|
677 |
+
"2022-07-12-22-45-57": {
|
678 |
+
"acc": 0.48598688133571855,
|
679 |
+
"acc_norm": 0.48598688133571855,
|
680 |
+
"acc_norm_stderr": 0.012208501686447066,
|
681 |
+
"acc_stderr": 0.012208501686447066,
|
682 |
+
"prompt_name": "1_fr",
|
683 |
+
"task_name": "crows_pairs_french"
|
684 |
+
}
|
685 |
+
},
|
686 |
+
"crows_pairs_french+2_fr": {
|
687 |
+
"2022-07-12-22-45-57": {
|
688 |
+
"acc": 0.49850924269528923,
|
689 |
+
"acc_norm": 0.49850924269528923,
|
690 |
+
"acc_norm_stderr": 0.01221324493389968,
|
691 |
+
"acc_stderr": 0.01221324493389968,
|
692 |
+
"prompt_name": "2_fr",
|
693 |
+
"task_name": "crows_pairs_french"
|
694 |
+
}
|
695 |
+
},
|
696 |
+
"crows_pairs_french+3_fr": {
|
697 |
+
"2022-07-12-22-45-57": {
|
698 |
+
"acc": 0.49612403100775193,
|
699 |
+
"acc_norm": 0.49612403100775193,
|
700 |
+
"acc_norm_stderr": 0.012212932249036454,
|
701 |
+
"acc_stderr": 0.012212932249036454,
|
702 |
+
"prompt_name": "3_fr",
|
703 |
+
"task_name": "crows_pairs_french"
|
704 |
+
}
|
705 |
+
},
|
706 |
+
"crows_pairs_french+4_fr": {
|
707 |
+
"2022-07-12-22-45-57": {
|
708 |
+
"acc": 0.5313059033989267,
|
709 |
+
"acc_norm": 0.5313059033989267,
|
710 |
+
"acc_norm_stderr": 0.012189336188399829,
|
711 |
+
"acc_stderr": 0.012189336188399829,
|
712 |
+
"prompt_name": "4_fr",
|
713 |
+
"task_name": "crows_pairs_french"
|
714 |
+
}
|
715 |
+
},
|
716 |
+
"crows_pairs_french+A_preference_fr": {
|
717 |
+
"2022-07-12-22-45-57": {
|
718 |
+
"acc": 0.4847942754919499,
|
719 |
+
"acc_norm": 0.4847942754919499,
|
720 |
+
"acc_norm_stderr": 0.01220765013925874,
|
721 |
+
"acc_stderr": 0.01220765013925874,
|
722 |
+
"prompt_name": "A_preference_fr",
|
723 |
+
"task_name": "crows_pairs_french"
|
724 |
+
}
|
725 |
+
},
|
726 |
+
"crows_pairs_french+A_reality_check_fr": {
|
727 |
+
"2022-07-12-22-45-57": {
|
728 |
+
"acc": 0.505664877757901,
|
729 |
+
"acc_norm": 0.505664877757901,
|
730 |
+
"acc_norm_stderr": 0.012212515323431717,
|
731 |
+
"acc_stderr": 0.012212515323431717,
|
732 |
+
"prompt_name": "A_reality_check_fr",
|
733 |
+
"task_name": "crows_pairs_french"
|
734 |
+
}
|
735 |
+
},
|
736 |
+
"crows_pairs_french+A_stereotype_true_fr": {
|
737 |
+
"2022-07-12-22-45-57": {
|
738 |
+
"acc": 0.5020870602265951,
|
739 |
+
"acc_norm": 0.5020870602265951,
|
740 |
+
"acc_norm_stderr": 0.012213192820312026,
|
741 |
+
"acc_stderr": 0.012213192820312026,
|
742 |
+
"prompt_name": "A_stereotype_true_fr",
|
743 |
+
"task_name": "crows_pairs_french"
|
744 |
+
}
|
745 |
+
},
|
746 |
+
"diabla+Is the error present? (same lang)": {
|
747 |
+
"2022-07-12-22-45-57": {
|
748 |
+
"acc": 0.07741823242867084,
|
749 |
+
"acc_norm": 0.07741823242867084,
|
750 |
+
"acc_norm_stderr": 0.0035253599064790993,
|
751 |
+
"acc_stderr": 0.0035253599064790993,
|
752 |
+
"prompt_name": "Is the error present? (same lang)",
|
753 |
+
"task_name": "diabla"
|
754 |
+
}
|
755 |
+
},
|
756 |
+
"diabla+Which is automatic?": {
|
757 |
+
"2022-07-12-22-45-57": {
|
758 |
+
"acc": 0.4966945024356298,
|
759 |
+
"acc_norm": 0.4966945024356298,
|
760 |
+
"acc_norm_stderr": 0.0065953813991735995,
|
761 |
+
"acc_stderr": 0.0065953813991735995,
|
762 |
+
"prompt_name": "Which is automatic?",
|
763 |
+
"task_name": "diabla"
|
764 |
+
}
|
765 |
+
},
|
766 |
+
"gsarti/flores_101_afr+null": {
|
767 |
+
"2022-07-14-10-03-25": {
|
768 |
+
"bits_per_byte": 2.8175051369933213,
|
769 |
+
"byte_perplexity": 7.049422805555328,
|
770 |
+
"prompt_name": "null",
|
771 |
+
"task_name": "gsarti/flores_101_afr",
|
772 |
+
"word_perplexity": 139324.0466654445
|
773 |
+
}
|
774 |
+
},
|
775 |
+
"gsarti/flores_101_amh+null": {
|
776 |
+
"2022-07-14-10-03-25": {
|
777 |
+
"bits_per_byte": 2.0608666814101815,
|
778 |
+
"byte_perplexity": 4.172368790188039,
|
779 |
+
"prompt_name": "null",
|
780 |
+
"task_name": "gsarti/flores_101_amh",
|
781 |
+
"word_perplexity": 105036774.30501972
|
782 |
+
}
|
783 |
+
},
|
784 |
+
"gsarti/flores_101_ara+null": {
|
785 |
+
"2022-07-14-10-03-25": {
|
786 |
+
"bits_per_byte": 0.8797352167688847,
|
787 |
+
"byte_perplexity": 1.8400375612633983,
|
788 |
+
"prompt_name": "null",
|
789 |
+
"task_name": "gsarti/flores_101_ara",
|
790 |
+
"word_perplexity": 674.8640314665696
|
791 |
+
}
|
792 |
+
},
|
793 |
+
"gsarti/flores_101_asm+null": {
|
794 |
+
"2022-07-14-10-03-25": {
|
795 |
+
"bits_per_byte": 2.458711333673663,
|
796 |
+
"byte_perplexity": 5.497254736157445,
|
797 |
+
"prompt_name": "null",
|
798 |
+
"task_name": "gsarti/flores_101_asm",
|
799 |
+
"word_perplexity": 6763188828222.085
|
800 |
+
}
|
801 |
+
},
|
802 |
+
"gsarti/flores_101_ast+null": {
|
803 |
+
"2022-07-14-10-03-25": {
|
804 |
+
"bits_per_byte": 2.0909386784329675,
|
805 |
+
"byte_perplexity": 4.260251728273795,
|
806 |
+
"prompt_name": "null",
|
807 |
+
"task_name": "gsarti/flores_101_ast",
|
808 |
+
"word_perplexity": 10657.272913539553
|
809 |
+
}
|
810 |
+
},
|
811 |
+
"gsarti/flores_101_azj+null": {
|
812 |
+
"2022-07-14-10-03-25": {
|
813 |
+
"bits_per_byte": 2.9432455349850195,
|
814 |
+
"byte_perplexity": 7.691396328945705,
|
815 |
+
"prompt_name": "null",
|
816 |
+
"task_name": "gsarti/flores_101_azj",
|
817 |
+
"word_perplexity": 45923924.18878753
|
818 |
+
}
|
819 |
+
},
|
820 |
+
"gsarti/flores_101_bel+null": {
|
821 |
+
"2022-07-14-10-03-25": {
|
822 |
+
"bits_per_byte": 1.914816732584341,
|
823 |
+
"byte_perplexity": 3.7706591215465943,
|
824 |
+
"prompt_name": "null",
|
825 |
+
"task_name": "gsarti/flores_101_bel",
|
826 |
+
"word_perplexity": 23935692.781315073
|
827 |
+
}
|
828 |
+
},
|
829 |
+
"gsarti/flores_101_ben+null": {
|
830 |
+
"2022-07-14-10-03-25": {
|
831 |
+
"bits_per_byte": 2.3432036318231058,
|
832 |
+
"byte_perplexity": 5.074281765515423,
|
833 |
+
"prompt_name": "null",
|
834 |
+
"task_name": "gsarti/flores_101_ben",
|
835 |
+
"word_perplexity": 2480418685142.412
|
836 |
+
}
|
837 |
+
},
|
838 |
+
"gsarti/flores_101_bos+null": {
|
839 |
+
"2022-07-14-10-03-25": {
|
840 |
+
"bits_per_byte": 2.665248069942796,
|
841 |
+
"byte_perplexity": 6.343363734045183,
|
842 |
+
"prompt_name": "null",
|
843 |
+
"task_name": "gsarti/flores_101_bos",
|
844 |
+
"word_perplexity": 229622.13691086147
|
845 |
+
}
|
846 |
+
},
|
847 |
+
"gsarti/flores_101_bul+null": {
|
848 |
+
"2022-07-14-10-03-25": {
|
849 |
+
"bits_per_byte": 1.5136770683283687,
|
850 |
+
"byte_perplexity": 2.8553687444403257,
|
851 |
+
"prompt_name": "null",
|
852 |
+
"task_name": "gsarti/flores_101_bul",
|
853 |
+
"word_perplexity": 194851.13344620814
|
854 |
+
}
|
855 |
+
},
|
856 |
+
"gsarti/flores_101_cat+null": {
|
857 |
+
"2022-07-14-10-03-25": {
|
858 |
+
"bits_per_byte": 1.2376904653775254,
|
859 |
+
"byte_perplexity": 2.358207169698056,
|
860 |
+
"prompt_name": "null",
|
861 |
+
"task_name": "gsarti/flores_101_cat",
|
862 |
+
"word_perplexity": 179.13123174533087
|
863 |
+
}
|
864 |
+
},
|
865 |
+
"gsarti/flores_101_ceb+null": {
|
866 |
+
"2022-07-14-10-03-25": {
|
867 |
+
"bits_per_byte": 2.7858604115174295,
|
868 |
+
"byte_perplexity": 6.896481056329736,
|
869 |
+
"prompt_name": "null",
|
870 |
+
"task_name": "gsarti/flores_101_ceb",
|
871 |
+
"word_perplexity": 113330.67154113152
|
872 |
+
}
|
873 |
+
},
|
874 |
+
"gsarti/flores_101_ces+null": {
|
875 |
+
"2022-07-14-10-03-25": {
|
876 |
+
"bits_per_byte": 2.6150694333085327,
|
877 |
+
"byte_perplexity": 6.126526835715164,
|
878 |
+
"prompt_name": "null",
|
879 |
+
"task_name": "gsarti/flores_101_ces",
|
880 |
+
"word_perplexity": 625101.1441414964
|
881 |
+
}
|
882 |
+
},
|
883 |
+
"gsarti/flores_101_ckb+null": {
|
884 |
+
"2022-07-14-12-00-55": {
|
885 |
+
"bits_per_byte": 1.9421776126623524,
|
886 |
+
"byte_perplexity": 3.842852526862475,
|
887 |
+
"prompt_name": "null",
|
888 |
+
"task_name": "gsarti/flores_101_ckb",
|
889 |
+
"word_perplexity": 11104497.438038943
|
890 |
+
}
|
891 |
+
},
|
892 |
+
"gsarti/flores_101_cym+null": {
|
893 |
+
"2022-07-14-12-00-55": {
|
894 |
+
"bits_per_byte": 3.8470317241534553,
|
895 |
+
"byte_perplexity": 14.390369428021707,
|
896 |
+
"prompt_name": "null",
|
897 |
+
"task_name": "gsarti/flores_101_cym",
|
898 |
+
"word_perplexity": 5900331.966242436
|
899 |
+
}
|
900 |
+
},
|
901 |
+
"gsarti/flores_101_dan+null": {
|
902 |
+
"2022-07-14-10-03-25": {
|
903 |
+
"bits_per_byte": 2.5307665257708245,
|
904 |
+
"byte_perplexity": 5.778786323448377,
|
905 |
+
"prompt_name": "null",
|
906 |
+
"task_name": "gsarti/flores_101_dan",
|
907 |
+
"word_perplexity": 71695.50336412797
|
908 |
+
}
|
909 |
+
},
|
910 |
+
"gsarti/flores_101_deu+null": {
|
911 |
+
"2022-07-14-10-03-25": {
|
912 |
+
"bits_per_byte": 1.7492158999678582,
|
913 |
+
"byte_perplexity": 3.361758059911202,
|
914 |
+
"prompt_name": "null",
|
915 |
+
"task_name": "gsarti/flores_101_deu",
|
916 |
+
"word_perplexity": 5647.282599404732
|
917 |
+
}
|
918 |
+
},
|
919 |
+
"gsarti/flores_101_ell+null": {
|
920 |
+
"2022-07-14-10-03-25": {
|
921 |
+
"bits_per_byte": 1.3862374641150543,
|
922 |
+
"byte_perplexity": 2.6139607239932805,
|
923 |
+
"prompt_name": "null",
|
924 |
+
"task_name": "gsarti/flores_101_ell",
|
925 |
+
"word_perplexity": 102751.5248402687
|
926 |
+
}
|
927 |
+
},
|
928 |
+
"gsarti/flores_101_eng+null": {
|
929 |
+
"2022-07-14-10-03-25": {
|
930 |
+
"bits_per_byte": 1.0435427545613876,
|
931 |
+
"byte_perplexity": 2.061283234268159,
|
932 |
+
"prompt_name": "null",
|
933 |
+
"task_name": "gsarti/flores_101_eng",
|
934 |
+
"word_perplexity": 75.56480997823662
|
935 |
+
}
|
936 |
+
},
|
937 |
+
"gsarti/flores_101_est+null": {
|
938 |
+
"2022-07-14-10-03-25": {
|
939 |
+
"bits_per_byte": 3.340809503762674,
|
940 |
+
"byte_perplexity": 10.131736127467489,
|
941 |
+
"prompt_name": "null",
|
942 |
+
"task_name": "gsarti/flores_101_est",
|
943 |
+
"word_perplexity": 92602633.82439691
|
944 |
+
}
|
945 |
+
},
|
946 |
+
"gsarti/flores_101_fas+null": {
|
947 |
+
"2022-07-14-12-00-55": {
|
948 |
+
"bits_per_byte": 1.6586730625582675,
|
949 |
+
"byte_perplexity": 3.1572599808371367,
|
950 |
+
"prompt_name": "null",
|
951 |
+
"task_name": "gsarti/flores_101_fas",
|
952 |
+
"word_perplexity": 59965.98383842629
|
953 |
+
}
|
954 |
+
},
|
955 |
+
"gsarti/flores_101_fin+null": {
|
956 |
+
"2022-07-14-10-03-25": {
|
957 |
+
"bits_per_byte": 2.9093822743068216,
|
958 |
+
"byte_perplexity": 7.5129644427067355,
|
959 |
+
"prompt_name": "null",
|
960 |
+
"task_name": "gsarti/flores_101_fin",
|
961 |
+
"word_perplexity": 91621886.60145952
|
962 |
+
}
|
963 |
+
},
|
964 |
+
"gsarti/flores_101_fra+null": {
|
965 |
+
"2022-07-14-10-03-25": {
|
966 |
+
"bits_per_byte": 1.0127395726746855,
|
967 |
+
"byte_perplexity": 2.0177390037335385,
|
968 |
+
"prompt_name": "null",
|
969 |
+
"task_name": "gsarti/flores_101_fra",
|
970 |
+
"word_perplexity": 89.45884576931464
|
971 |
+
}
|
972 |
+
},
|
973 |
+
"gsarti/flores_101_ful+null": {
|
974 |
+
"2022-07-14-10-03-25": {
|
975 |
+
"bits_per_byte": 3.561969238361191,
|
976 |
+
"byte_perplexity": 11.810263420287875,
|
977 |
+
"prompt_name": "null",
|
978 |
+
"task_name": "gsarti/flores_101_ful",
|
979 |
+
"word_perplexity": 908715.1423017589
|
980 |
+
}
|
981 |
+
},
|
982 |
+
"gsarti/flores_101_gle+null": {
|
983 |
+
"2022-07-14-10-03-25": {
|
984 |
+
"bits_per_byte": 3.2798070331865063,
|
985 |
+
"byte_perplexity": 9.712259930753122,
|
986 |
+
"prompt_name": "null",
|
987 |
+
"task_name": "gsarti/flores_101_gle",
|
988 |
+
"word_perplexity": 1548851.5929806433
|
989 |
+
}
|
990 |
+
},
|
991 |
+
"gsarti/flores_101_glg+null": {
|
992 |
+
"2022-07-14-10-03-25": {
|
993 |
+
"bits_per_byte": 1.6877168009728167,
|
994 |
+
"byte_perplexity": 3.2214647330840154,
|
995 |
+
"prompt_name": "null",
|
996 |
+
"task_name": "gsarti/flores_101_glg",
|
997 |
+
"word_perplexity": 1537.3193913761668
|
998 |
+
}
|
999 |
+
},
|
1000 |
+
"gsarti/flores_101_guj+null": {
|
1001 |
+
"2022-07-14-10-03-25": {
|
1002 |
+
"bits_per_byte": 2.357806609400009,
|
1003 |
+
"byte_perplexity": 5.125904532570054,
|
1004 |
+
"prompt_name": "null",
|
1005 |
+
"task_name": "gsarti/flores_101_guj",
|
1006 |
+
"word_perplexity": 133216198508.6925
|
1007 |
+
}
|
1008 |
+
},
|
1009 |
+
"gsarti/flores_101_hau+null": {
|
1010 |
+
"2022-07-14-10-03-25": {
|
1011 |
+
"bits_per_byte": 3.4659038057537184,
|
1012 |
+
"byte_perplexity": 11.049458818357667,
|
1013 |
+
"prompt_name": "null",
|
1014 |
+
"task_name": "gsarti/flores_101_hau",
|
1015 |
+
"word_perplexity": 730749.6449046461
|
1016 |
+
}
|
1017 |
+
},
|
1018 |
+
"gsarti/flores_101_heb+null": {
|
1019 |
+
"2022-07-14-10-03-25": {
|
1020 |
+
"bits_per_byte": 1.8889611054621571,
|
1021 |
+
"byte_perplexity": 3.7036842387723694,
|
1022 |
+
"prompt_name": "null",
|
1023 |
+
"task_name": "gsarti/flores_101_heb",
|
1024 |
+
"word_perplexity": 880255.4148832298
|
1025 |
+
}
|
1026 |
+
},
|
1027 |
+
"gsarti/flores_101_hin+null": {
|
1028 |
+
"2022-07-14-10-03-25": {
|
1029 |
+
"bits_per_byte": 2.195760704215568,
|
1030 |
+
"byte_perplexity": 4.581311639568996,
|
1031 |
+
"prompt_name": "null",
|
1032 |
+
"task_name": "gsarti/flores_101_hin",
|
1033 |
+
"word_perplexity": 453226793.5348556
|
1034 |
+
}
|
1035 |
+
},
|
1036 |
+
"gsarti/flores_101_hrv+null": {
|
1037 |
+
"2022-07-14-10-03-25": {
|
1038 |
+
"bits_per_byte": 2.7016816564307984,
|
1039 |
+
"byte_perplexity": 6.50559790827845,
|
1040 |
+
"prompt_name": "null",
|
1041 |
+
"task_name": "gsarti/flores_101_hrv",
|
1042 |
+
"word_perplexity": 307789.1462790266
|
1043 |
+
}
|
1044 |
+
},
|
1045 |
+
"gsarti/flores_101_hun+null": {
|
1046 |
+
"2022-07-14-10-03-25": {
|
1047 |
+
"bits_per_byte": 2.8470581600253615,
|
1048 |
+
"byte_perplexity": 7.19531655942431,
|
1049 |
+
"prompt_name": "null",
|
1050 |
+
"task_name": "gsarti/flores_101_hun",
|
1051 |
+
"word_perplexity": 8545882.19823639
|
1052 |
+
}
|
1053 |
+
},
|
1054 |
+
"gsarti/flores_101_hye+null": {
|
1055 |
+
"2022-07-14-10-03-25": {
|
1056 |
+
"bits_per_byte": 1.906169044483402,
|
1057 |
+
"byte_perplexity": 3.7481249397064547,
|
1058 |
+
"prompt_name": "null",
|
1059 |
+
"task_name": "gsarti/flores_101_hye",
|
1060 |
+
"word_perplexity": 99262887.01092263
|
1061 |
+
}
|
1062 |
+
},
|
1063 |
+
"gsarti/flores_101_ibo+null": {
|
1064 |
+
"2022-07-14-10-03-25": {
|
1065 |
+
"bits_per_byte": 2.6012385649422316,
|
1066 |
+
"byte_perplexity": 6.06807351892086,
|
1067 |
+
"prompt_name": "null",
|
1068 |
+
"task_name": "gsarti/flores_101_ibo",
|
1069 |
+
"word_perplexity": 99576.38125028457
|
1070 |
+
}
|
1071 |
+
},
|
1072 |
+
"gsarti/flores_101_ind+null": {
|
1073 |
+
"2022-07-14-10-03-25": {
|
1074 |
+
"bits_per_byte": 1.1501325666473412,
|
1075 |
+
"byte_perplexity": 2.2193428661828962,
|
1076 |
+
"prompt_name": "null",
|
1077 |
+
"task_name": "gsarti/flores_101_ind",
|
1078 |
+
"word_perplexity": 299.41864562936706
|
1079 |
+
}
|
1080 |
+
},
|
1081 |
+
"gsarti/flores_101_isl+null": {
|
1082 |
+
"2022-07-14-10-03-25": {
|
1083 |
+
"bits_per_byte": 3.1394769822824644,
|
1084 |
+
"byte_perplexity": 8.812045732299993,
|
1085 |
+
"prompt_name": "null",
|
1086 |
+
"task_name": "gsarti/flores_101_isl",
|
1087 |
+
"word_perplexity": 3947458.536983725
|
1088 |
+
}
|
1089 |
+
},
|
1090 |
+
"gsarti/flores_101_ita+null": {
|
1091 |
+
"2022-07-14-10-03-25": {
|
1092 |
+
"bits_per_byte": 1.695253347487448,
|
1093 |
+
"byte_perplexity": 3.238337491305615,
|
1094 |
+
"prompt_name": "null",
|
1095 |
+
"task_name": "gsarti/flores_101_ita",
|
1096 |
+
"word_perplexity": 1951.0663459405935
|
1097 |
+
}
|
1098 |
+
},
|
1099 |
+
"gsarti/flores_101_jav+null": {
|
1100 |
+
"2022-07-14-10-03-25": {
|
1101 |
+
"bits_per_byte": 2.899297993680408,
|
1102 |
+
"byte_perplexity": 7.460632752007581,
|
1103 |
+
"prompt_name": "null",
|
1104 |
+
"task_name": "gsarti/flores_101_jav",
|
1105 |
+
"word_perplexity": 956961.3940329206
|
1106 |
+
}
|
1107 |
+
},
|
1108 |
+
"gsarti/flores_101_jpn+null": {
|
1109 |
+
"2022-07-14-10-03-25": {
|
1110 |
+
"bits_per_byte": 1.539549942005635,
|
1111 |
+
"byte_perplexity": 2.907038023970581,
|
1112 |
+
"prompt_name": "null",
|
1113 |
+
"task_name": "gsarti/flores_101_jpn",
|
1114 |
+
"word_perplexity": 6.0024027118732196e+69
|
1115 |
+
}
|
1116 |
+
},
|
1117 |
+
"gsarti/flores_101_kam+null": {
|
1118 |
+
"2022-07-14-10-03-25": {
|
1119 |
+
"bits_per_byte": 3.515626316920499,
|
1120 |
+
"byte_perplexity": 11.436917146974627,
|
1121 |
+
"prompt_name": "null",
|
1122 |
+
"task_name": "gsarti/flores_101_kam",
|
1123 |
+
"word_perplexity": 4288601.196402131
|
1124 |
+
}
|
1125 |
+
},
|
1126 |
+
"gsarti/flores_101_kan+null": {
|
1127 |
+
"2022-07-14-10-03-25": {
|
1128 |
+
"bits_per_byte": 2.3991591199422513,
|
1129 |
+
"byte_perplexity": 5.274956219477929,
|
1130 |
+
"prompt_name": "null",
|
1131 |
+
"task_name": "gsarti/flores_101_kan",
|
1132 |
+
"word_perplexity": 5.3861539364992216e+16
|
1133 |
+
}
|
1134 |
+
},
|
1135 |
+
"gsarti/flores_101_kat+null": {
|
1136 |
+
"2022-07-14-10-03-25": {
|
1137 |
+
"bits_per_byte": 1.3325401608568794,
|
1138 |
+
"byte_perplexity": 2.5184571084900518,
|
1139 |
+
"prompt_name": "null",
|
1140 |
+
"task_name": "gsarti/flores_101_kat",
|
1141 |
+
"word_perplexity": 1133105340.614723
|
1142 |
+
}
|
1143 |
+
},
|
1144 |
+
"gsarti/flores_101_kaz+null": {
|
1145 |
+
"2022-07-14-10-03-25": {
|
1146 |
+
"bits_per_byte": 1.845791322405974,
|
1147 |
+
"byte_perplexity": 3.5945005448756477,
|
1148 |
+
"prompt_name": "null",
|
1149 |
+
"task_name": "gsarti/flores_101_kaz",
|
1150 |
+
"word_perplexity": 89537342.10068764
|
1151 |
+
}
|
1152 |
+
},
|
1153 |
+
"gsarti/flores_101_kea+null": {
|
1154 |
+
"2022-07-14-10-03-25": {
|
1155 |
+
"bits_per_byte": 3.2143692668645976,
|
1156 |
+
"byte_perplexity": 9.281572608888562,
|
1157 |
+
"prompt_name": "null",
|
1158 |
+
"task_name": "gsarti/flores_101_kea",
|
1159 |
+
"word_perplexity": 438558.0012817139
|
1160 |
+
}
|
1161 |
+
},
|
1162 |
+
"gsarti/flores_101_kir+null": {
|
1163 |
+
"2022-07-14-12-00-55": {
|
1164 |
+
"bits_per_byte": 1.9511242166700078,
|
1165 |
+
"byte_perplexity": 3.8667573034119127,
|
1166 |
+
"prompt_name": "null",
|
1167 |
+
"task_name": "gsarti/flores_101_kir",
|
1168 |
+
"word_perplexity": 235337758.18519488
|
1169 |
+
}
|
1170 |
+
},
|
1171 |
+
"gsarti/flores_101_kor+null": {
|
1172 |
+
"2022-07-14-12-00-55": {
|
1173 |
+
"bits_per_byte": 2.023500324792833,
|
1174 |
+
"byte_perplexity": 4.065690303705374,
|
1175 |
+
"prompt_name": "null",
|
1176 |
+
"task_name": "gsarti/flores_101_kor",
|
1177 |
+
"word_perplexity": 1684949.6449262113
|
1178 |
+
}
|
1179 |
+
},
|
1180 |
+
"gsarti/flores_101_lao+null": {
|
1181 |
+
"2022-07-14-12-00-55": {
|
1182 |
+
"bits_per_byte": 1.6376750107826055,
|
1183 |
+
"byte_perplexity": 3.1116396826339545,
|
1184 |
+
"prompt_name": "null",
|
1185 |
+
"task_name": "gsarti/flores_101_lao",
|
1186 |
+
"word_perplexity": 3.0817754157127624e+28
|
1187 |
+
}
|
1188 |
+
},
|
1189 |
+
"gsarti/flores_101_lav+null": {
|
1190 |
+
"2022-07-14-12-00-55": {
|
1191 |
+
"bits_per_byte": 3.075865182775687,
|
1192 |
+
"byte_perplexity": 8.431943399753028,
|
1193 |
+
"prompt_name": "null",
|
1194 |
+
"task_name": "gsarti/flores_101_lav",
|
1195 |
+
"word_perplexity": 20692036.880855087
|
1196 |
+
}
|
1197 |
+
},
|
1198 |
+
"gsarti/flores_101_lin+null": {
|
1199 |
+
"2022-07-14-12-00-55": {
|
1200 |
+
"bits_per_byte": 3.018221991102226,
|
1201 |
+
"byte_perplexity": 8.10168498947524,
|
1202 |
+
"prompt_name": "null",
|
1203 |
+
"task_name": "gsarti/flores_101_lin",
|
1204 |
+
"word_perplexity": 259077.7174090486
|
1205 |
+
}
|
1206 |
+
},
|
1207 |
+
"gsarti/flores_101_lit+null": {
|
1208 |
+
"2022-07-14-12-00-55": {
|
1209 |
+
"bits_per_byte": 3.0526165270213905,
|
1210 |
+
"byte_perplexity": 8.297153789252596,
|
1211 |
+
"prompt_name": "null",
|
1212 |
+
"task_name": "gsarti/flores_101_lit",
|
1213 |
+
"word_perplexity": 22011900.13997282
|
1214 |
+
}
|
1215 |
+
},
|
1216 |
+
"gsarti/flores_101_ltz+null": {
|
1217 |
+
"2022-07-14-12-00-55": {
|
1218 |
+
"bits_per_byte": 3.2407955989852377,
|
1219 |
+
"byte_perplexity": 9.453152958003827,
|
1220 |
+
"prompt_name": "null",
|
1221 |
+
"task_name": "gsarti/flores_101_ltz",
|
1222 |
+
"word_perplexity": 6731220.931729273
|
1223 |
+
}
|
1224 |
+
},
|
1225 |
+
"gsarti/flores_101_lug+null": {
|
1226 |
+
"2022-07-14-10-03-25": {
|
1227 |
+
"bits_per_byte": 3.2150119431528754,
|
1228 |
+
"byte_perplexity": 9.285708185212261,
|
1229 |
+
"prompt_name": "null",
|
1230 |
+
"task_name": "gsarti/flores_101_lug",
|
1231 |
+
"word_perplexity": 32046806.791237485
|
1232 |
+
}
|
1233 |
+
},
|
1234 |
+
"gsarti/flores_101_luo+null": {
|
1235 |
+
"2022-07-14-12-00-55": {
|
1236 |
+
"bits_per_byte": 3.609093857404177,
|
1237 |
+
"byte_perplexity": 12.202407052163576,
|
1238 |
+
"prompt_name": "null",
|
1239 |
+
"task_name": "gsarti/flores_101_luo",
|
1240 |
+
"word_perplexity": 1485111.1306447538
|
1241 |
+
}
|
1242 |
+
},
|
1243 |
+
"gsarti/flores_101_mal+null": {
|
1244 |
+
"2022-07-14-12-00-55": {
|
1245 |
+
"bits_per_byte": 2.1588237245178132,
|
1246 |
+
"byte_perplexity": 4.465506197375413,
|
1247 |
+
"prompt_name": "null",
|
1248 |
+
"task_name": "gsarti/flores_101_mal",
|
1249 |
+
"word_perplexity": 4.8990954217696134e+17
|
1250 |
+
}
|
1251 |
+
},
|
1252 |
+
"gsarti/flores_101_mar+null": {
|
1253 |
+
"2022-07-14-12-00-55": {
|
1254 |
+
"bits_per_byte": 2.454064685835334,
|
1255 |
+
"byte_perplexity": 5.479577601103449,
|
1256 |
+
"prompt_name": "null",
|
1257 |
+
"task_name": "gsarti/flores_101_mar",
|
1258 |
+
"word_perplexity": 53348101396468.1
|
1259 |
+
}
|
1260 |
+
},
|
1261 |
+
"gsarti/flores_101_mkd+null": {
|
1262 |
+
"2022-07-14-12-00-55": {
|
1263 |
+
"bits_per_byte": 1.6388651004482695,
|
1264 |
+
"byte_perplexity": 3.11420755589491,
|
1265 |
+
"prompt_name": "null",
|
1266 |
+
"task_name": "gsarti/flores_101_mkd",
|
1267 |
+
"word_perplexity": 513306.31562258815
|
1268 |
+
}
|
1269 |
+
},
|
1270 |
+
"gsarti/flores_101_mlt+null": {
|
1271 |
+
"2022-07-14-12-00-55": {
|
1272 |
+
"bits_per_byte": 4.014730236310589,
|
1273 |
+
"byte_perplexity": 16.164200382975334,
|
1274 |
+
"prompt_name": "null",
|
1275 |
+
"task_name": "gsarti/flores_101_mlt",
|
1276 |
+
"word_perplexity": 3271065298.9525104
|
1277 |
+
}
|
1278 |
+
},
|
1279 |
+
"gsarti/flores_101_mon+null": {
|
1280 |
+
"2022-07-14-12-00-55": {
|
1281 |
+
"bits_per_byte": 1.8368760183021453,
|
1282 |
+
"byte_perplexity": 3.5723563966116956,
|
1283 |
+
"prompt_name": "null",
|
1284 |
+
"task_name": "gsarti/flores_101_mon",
|
1285 |
+
"word_perplexity": 11967156.496346941
|
1286 |
+
}
|
1287 |
+
},
|
1288 |
+
"gsarti/flores_101_mri+null": {
|
1289 |
+
"2022-07-14-12-00-55": {
|
1290 |
+
"bits_per_byte": 3.037967287223778,
|
1291 |
+
"byte_perplexity": 8.213330128288407,
|
1292 |
+
"prompt_name": "null",
|
1293 |
+
"task_name": "gsarti/flores_101_mri",
|
1294 |
+
"word_perplexity": 42667.84366725716
|
1295 |
+
}
|
1296 |
+
},
|
1297 |
+
"gsarti/flores_101_msa+null": {
|
1298 |
+
"2022-07-14-12-00-55": {
|
1299 |
+
"bits_per_byte": 1.4109363519680242,
|
1300 |
+
"byte_perplexity": 2.659096901190639,
|
1301 |
+
"prompt_name": "null",
|
1302 |
+
"task_name": "gsarti/flores_101_msa",
|
1303 |
+
"word_perplexity": 1188.7251531670374
|
1304 |
+
}
|
1305 |
+
},
|
1306 |
+
"gsarti/flores_101_mya+null": {
|
1307 |
+
"2022-07-14-10-03-25": {
|
1308 |
+
"bits_per_byte": 1.4101030557435918,
|
1309 |
+
"byte_perplexity": 2.657561458464019,
|
1310 |
+
"prompt_name": "null",
|
1311 |
+
"task_name": "gsarti/flores_101_mya",
|
1312 |
+
"word_perplexity": 5.887577237013639e+18
|
1313 |
+
}
|
1314 |
+
},
|
1315 |
+
"gsarti/flores_101_nld+null": {
|
1316 |
+
"2022-07-14-10-03-25": {
|
1317 |
+
"bits_per_byte": 2.1813098607926804,
|
1318 |
+
"byte_perplexity": 4.535651709856251,
|
1319 |
+
"prompt_name": "null",
|
1320 |
+
"task_name": "gsarti/flores_101_nld",
|
1321 |
+
"word_perplexity": 13951.877058430618
|
1322 |
+
}
|
1323 |
+
},
|
1324 |
+
"gsarti/flores_101_nob+null": {
|
1325 |
+
"2022-07-14-12-00-55": {
|
1326 |
+
"bits_per_byte": 2.561165630453858,
|
1327 |
+
"byte_perplexity": 5.901843358131797,
|
1328 |
+
"prompt_name": "null",
|
1329 |
+
"task_name": "gsarti/flores_101_nob",
|
1330 |
+
"word_perplexity": 64134.3587194621
|
1331 |
+
}
|
1332 |
+
},
|
1333 |
+
"gsarti/flores_101_npi+null": {
|
1334 |
+
"2022-07-14-12-00-55": {
|
1335 |
+
"bits_per_byte": 2.361386302448311,
|
1336 |
+
"byte_perplexity": 5.138638996619111,
|
1337 |
+
"prompt_name": "null",
|
1338 |
+
"task_name": "gsarti/flores_101_npi",
|
1339 |
+
"word_perplexity": 7452421298650.788
|
1340 |
+
}
|
1341 |
+
},
|
1342 |
+
"gsarti/flores_101_nso+null": {
|
1343 |
+
"2022-07-14-12-00-55": {
|
1344 |
+
"bits_per_byte": 3.150046187635368,
|
1345 |
+
"byte_perplexity": 8.876839962509171,
|
1346 |
+
"prompt_name": "null",
|
1347 |
+
"task_name": "gsarti/flores_101_nso",
|
1348 |
+
"word_perplexity": 133251.3907730927
|
1349 |
+
}
|
1350 |
+
},
|
1351 |
+
"gsarti/flores_101_nya+null": {
|
1352 |
+
"2022-07-14-12-00-55": {
|
1353 |
+
"bits_per_byte": 3.166160871838487,
|
1354 |
+
"byte_perplexity": 8.97654874419086,
|
1355 |
+
"prompt_name": "null",
|
1356 |
+
"task_name": "gsarti/flores_101_nya",
|
1357 |
+
"word_perplexity": 13237249.320560299
|
1358 |
+
}
|
1359 |
+
},
|
1360 |
+
"gsarti/flores_101_oci+null": {
|
1361 |
+
"2022-07-14-12-00-55": {
|
1362 |
+
"bits_per_byte": 2.3544826611123932,
|
1363 |
+
"byte_perplexity": 5.114108118049416,
|
1364 |
+
"prompt_name": "null",
|
1365 |
+
"task_name": "gsarti/flores_101_oci",
|
1366 |
+
"word_perplexity": 29786.57326210068
|
1367 |
+
}
|
1368 |
+
},
|
1369 |
+
"gsarti/flores_101_orm+null": {
|
1370 |
+
"2022-07-14-12-00-55": {
|
1371 |
+
"bits_per_byte": 3.7457001993717243,
|
1372 |
+
"byte_perplexity": 13.414303089263644,
|
1373 |
+
"prompt_name": "null",
|
1374 |
+
"task_name": "gsarti/flores_101_orm",
|
1375 |
+
"word_perplexity": 1286222337.8393624
|
1376 |
+
}
|
1377 |
+
},
|
1378 |
+
"gsarti/flores_101_ory+null": {
|
1379 |
+
"2022-07-14-12-00-55": {
|
1380 |
+
"bits_per_byte": 2.3466784891528936,
|
1381 |
+
"byte_perplexity": 5.086518347981296,
|
1382 |
+
"prompt_name": "null",
|
1383 |
+
"task_name": "gsarti/flores_101_ory",
|
1384 |
+
"word_perplexity": 8232620282886.167
|
1385 |
+
}
|
1386 |
+
},
|
1387 |
+
"gsarti/flores_101_pan+null": {
|
1388 |
+
"2022-07-14-12-00-55": {
|
1389 |
+
"bits_per_byte": 2.3255600077385723,
|
1390 |
+
"byte_perplexity": 5.012603107956229,
|
1391 |
+
"prompt_name": "null",
|
1392 |
+
"task_name": "gsarti/flores_101_pan",
|
1393 |
+
"word_perplexity": 2003582065.835696
|
1394 |
+
}
|
1395 |
+
},
|
1396 |
+
"gsarti/flores_101_pol+null": {
|
1397 |
+
"2022-07-14-12-00-55": {
|
1398 |
+
"bits_per_byte": 2.3688414865658434,
|
1399 |
+
"byte_perplexity": 5.165261846492578,
|
1400 |
+
"prompt_name": "null",
|
1401 |
+
"task_name": "gsarti/flores_101_pol",
|
1402 |
+
"word_perplexity": 239703.75452947227
|
1403 |
+
}
|
1404 |
+
},
|
1405 |
+
"gsarti/flores_101_por+null": {
|
1406 |
+
"2022-07-14-12-00-55": {
|
1407 |
+
"bits_per_byte": 1.0087385096181816,
|
1408 |
+
"byte_perplexity": 2.012150908931838,
|
1409 |
+
"prompt_name": "null",
|
1410 |
+
"task_name": "gsarti/flores_101_por",
|
1411 |
+
"word_perplexity": 78.66129921108659
|
1412 |
+
}
|
1413 |
+
},
|
1414 |
+
"gsarti/flores_101_pus+null": {
|
1415 |
+
"2022-07-14-12-00-55": {
|
1416 |
+
"bits_per_byte": 2.2173729850313615,
|
1417 |
+
"byte_perplexity": 4.650458574106675,
|
1418 |
+
"prompt_name": "null",
|
1419 |
+
"task_name": "gsarti/flores_101_pus",
|
1420 |
+
"word_perplexity": 200303.57214724104
|
1421 |
+
}
|
1422 |
+
},
|
1423 |
+
"gsarti/flores_101_ron+null": {
|
1424 |
+
"2022-07-14-12-00-55": {
|
1425 |
+
"bits_per_byte": 2.486356022105963,
|
1426 |
+
"byte_perplexity": 5.603607947317877,
|
1427 |
+
"prompt_name": "null",
|
1428 |
+
"task_name": "gsarti/flores_101_ron",
|
1429 |
+
"word_perplexity": 80490.92705368399
|
1430 |
+
}
|
1431 |
+
},
|
1432 |
+
"gsarti/flores_101_rus+null": {
|
1433 |
+
"2022-07-14-12-00-55": {
|
1434 |
+
"bits_per_byte": 1.095728414417906,
|
1435 |
+
"byte_perplexity": 2.1372096174466697,
|
1436 |
+
"prompt_name": "null",
|
1437 |
+
"task_name": "gsarti/flores_101_rus",
|
1438 |
+
"word_perplexity": 22038.65288574451
|
1439 |
+
}
|
1440 |
+
},
|
1441 |
+
"gsarti/flores_101_slk+null": {
|
1442 |
+
"2022-07-14-12-00-55": {
|
1443 |
+
"bits_per_byte": 2.8667803584469502,
|
1444 |
+
"byte_perplexity": 7.294354718439043,
|
1445 |
+
"prompt_name": "null",
|
1446 |
+
"task_name": "gsarti/flores_101_slk",
|
1447 |
+
"word_perplexity": 1873211.2703176092
|
1448 |
+
}
|
1449 |
+
},
|
1450 |
+
"gsarti/flores_101_slv+null": {
|
1451 |
+
"2022-07-14-12-00-55": {
|
1452 |
+
"bits_per_byte": 2.894935550489075,
|
1453 |
+
"byte_perplexity": 7.438107250941839,
|
1454 |
+
"prompt_name": "null",
|
1455 |
+
"task_name": "gsarti/flores_101_slv",
|
1456 |
+
"word_perplexity": 609965.8362492598
|
1457 |
+
}
|
1458 |
+
},
|
1459 |
+
"gsarti/flores_101_sna+null": {
|
1460 |
+
"2022-07-14-12-00-55": {
|
1461 |
+
"bits_per_byte": 3.226698783453375,
|
1462 |
+
"byte_perplexity": 9.361234419948593,
|
1463 |
+
"prompt_name": "null",
|
1464 |
+
"task_name": "gsarti/flores_101_sna",
|
1465 |
+
"word_perplexity": 151658287.08006003
|
1466 |
+
}
|
1467 |
+
},
|
1468 |
+
"gsarti/flores_101_snd+null": {
|
1469 |
+
"2022-07-14-12-00-55": {
|
1470 |
+
"bits_per_byte": 2.505484320885354,
|
1471 |
+
"byte_perplexity": 5.678399375652783,
|
1472 |
+
"prompt_name": "null",
|
1473 |
+
"task_name": "gsarti/flores_101_snd",
|
1474 |
+
"word_perplexity": 2195879.0537875695
|
1475 |
+
}
|
1476 |
+
},
|
1477 |
+
"gsarti/flores_101_som+null": {
|
1478 |
+
"2022-07-14-12-00-55": {
|
1479 |
+
"bits_per_byte": 3.6579492747174616,
|
1480 |
+
"byte_perplexity": 12.622705630414286,
|
1481 |
+
"prompt_name": "null",
|
1482 |
+
"task_name": "gsarti/flores_101_som",
|
1483 |
+
"word_perplexity": 12921970.127169678
|
1484 |
+
}
|
1485 |
+
},
|
1486 |
+
"gsarti/flores_101_spa+null": {
|
1487 |
+
"2022-07-14-12-00-55": {
|
1488 |
+
"bits_per_byte": 0.9441289779054047,
|
1489 |
+
"byte_perplexity": 1.9240269109386998,
|
1490 |
+
"prompt_name": "null",
|
1491 |
+
"task_name": "gsarti/flores_101_spa",
|
1492 |
+
"word_perplexity": 55.14408503293887
|
1493 |
+
}
|
1494 |
+
},
|
1495 |
+
"gsarti/flores_101_srp+null": {
|
1496 |
+
"2022-07-14-12-00-55": {
|
1497 |
+
"bits_per_byte": 1.6091583939601046,
|
1498 |
+
"byte_perplexity": 3.050738229673983,
|
1499 |
+
"prompt_name": "null",
|
1500 |
+
"task_name": "gsarti/flores_101_srp",
|
1501 |
+
"word_perplexity": 359037.4163692842
|
1502 |
+
}
|
1503 |
+
},
|
1504 |
+
"gsarti/flores_101_swe+null": {
|
1505 |
+
"2022-07-14-12-00-55": {
|
1506 |
+
"bits_per_byte": 2.4943222333483153,
|
1507 |
+
"byte_perplexity": 5.634635291846611,
|
1508 |
+
"prompt_name": "null",
|
1509 |
+
"task_name": "gsarti/flores_101_swe",
|
1510 |
+
"word_perplexity": 104567.9891705103
|
1511 |
+
}
|
1512 |
+
},
|
1513 |
+
"gsarti/flores_101_swh+null": {
|
1514 |
+
"2022-07-14-12-00-55": {
|
1515 |
+
"bits_per_byte": 1.9721156771582438,
|
1516 |
+
"byte_perplexity": 3.923430589092355,
|
1517 |
+
"prompt_name": "null",
|
1518 |
+
"task_name": "gsarti/flores_101_swh",
|
1519 |
+
"word_perplexity": 6985.646204087442
|
1520 |
+
}
|
1521 |
+
},
|
1522 |
+
"gsarti/flores_101_tam+null": {
|
1523 |
+
"2022-07-14-12-00-55": {
|
1524 |
+
"bits_per_byte": 2.0999329236632325,
|
1525 |
+
"byte_perplexity": 4.286894531607389,
|
1526 |
+
"prompt_name": "null",
|
1527 |
+
"task_name": "gsarti/flores_101_tam",
|
1528 |
+
"word_perplexity": 4220234444737767.0
|
1529 |
+
}
|
1530 |
+
},
|
1531 |
+
"gsarti/flores_101_tel+null": {
|
1532 |
+
"2022-07-14-12-00-55": {
|
1533 |
+
"bits_per_byte": 2.549014618212334,
|
1534 |
+
"byte_perplexity": 5.852344181819556,
|
1535 |
+
"prompt_name": "null",
|
1536 |
+
"task_name": "gsarti/flores_101_tel",
|
1537 |
+
"word_perplexity": 7315913985648022.0
|
1538 |
+
}
|
1539 |
+
},
|
1540 |
+
"gsarti/flores_101_tgk+null": {
|
1541 |
+
"2022-07-14-12-00-55": {
|
1542 |
+
"bits_per_byte": 1.9399053923480125,
|
1543 |
+
"byte_perplexity": 3.836804862794101,
|
1544 |
+
"prompt_name": "null",
|
1545 |
+
"task_name": "gsarti/flores_101_tgk",
|
1546 |
+
"word_perplexity": 10003619.893239152
|
1547 |
+
}
|
1548 |
+
},
|
1549 |
+
"gsarti/flores_101_tgl+null": {
|
1550 |
+
"2022-07-14-10-03-25": {
|
1551 |
+
"bits_per_byte": 2.645461413001105,
|
1552 |
+
"byte_perplexity": 6.256957969905079,
|
1553 |
+
"prompt_name": "null",
|
1554 |
+
"task_name": "gsarti/flores_101_tgl",
|
1555 |
+
"word_perplexity": 87554.31770184237
|
1556 |
+
}
|
1557 |
+
},
|
1558 |
+
"gsarti/flores_101_tha+null": {
|
1559 |
+
"2022-07-14-12-00-55": {
|
1560 |
+
"bits_per_byte": 1.2979178211163922,
|
1561 |
+
"byte_perplexity": 2.458737675753546,
|
1562 |
+
"prompt_name": "null",
|
1563 |
+
"task_name": "gsarti/flores_101_tha",
|
1564 |
+
"word_perplexity": 6.85384626099906e+32
|
1565 |
+
}
|
1566 |
+
},
|
1567 |
+
"gsarti/flores_101_tur+null": {
|
1568 |
+
"2022-07-14-12-00-55": {
|
1569 |
+
"bits_per_byte": 2.4123830232149,
|
1570 |
+
"byte_perplexity": 5.323529328304652,
|
1571 |
+
"prompt_name": "null",
|
1572 |
+
"task_name": "gsarti/flores_101_tur",
|
1573 |
+
"word_perplexity": 1230000.8194755162
|
1574 |
+
}
|
1575 |
+
},
|
1576 |
+
"gsarti/flores_101_ukr+null": {
|
1577 |
+
"2022-07-14-12-00-55": {
|
1578 |
+
"bits_per_byte": 1.5282644195953918,
|
1579 |
+
"byte_perplexity": 2.8843863497020608,
|
1580 |
+
"prompt_name": "null",
|
1581 |
+
"task_name": "gsarti/flores_101_ukr",
|
1582 |
+
"word_perplexity": 780615.9486315987
|
1583 |
+
}
|
1584 |
+
},
|
1585 |
+
"gsarti/flores_101_umb+null": {
|
1586 |
+
"2022-07-14-12-00-55": {
|
1587 |
+
"bits_per_byte": 3.710219475046473,
|
1588 |
+
"byte_perplexity": 13.088423907901921,
|
1589 |
+
"prompt_name": "null",
|
1590 |
+
"task_name": "gsarti/flores_101_umb",
|
1591 |
+
"word_perplexity": 346118506.64866126
|
1592 |
+
}
|
1593 |
+
},
|
1594 |
+
"gsarti/flores_101_urd+null": {
|
1595 |
+
"2022-07-14-12-00-55": {
|
1596 |
+
"bits_per_byte": 1.0075988539165108,
|
1597 |
+
"byte_perplexity": 2.010562039704537,
|
1598 |
+
"prompt_name": "null",
|
1599 |
+
"task_name": "gsarti/flores_101_urd",
|
1600 |
+
"word_perplexity": 335.1943886252716
|
1601 |
+
}
|
1602 |
+
},
|
1603 |
+
"gsarti/flores_101_uzb+null": {
|
1604 |
+
"2022-07-14-12-00-55": {
|
1605 |
+
"bits_per_byte": 3.69831120498359,
|
1606 |
+
"byte_perplexity": 12.980834294137205,
|
1607 |
+
"prompt_name": "null",
|
1608 |
+
"task_name": "gsarti/flores_101_uzb",
|
1609 |
+
"word_perplexity": 1248263505.2751954
|
1610 |
+
}
|
1611 |
+
},
|
1612 |
+
"gsarti/flores_101_vie+null": {
|
1613 |
+
"2022-07-14-12-00-55": {
|
1614 |
+
"bits_per_byte": 0.8461114961807352,
|
1615 |
+
"byte_perplexity": 1.7976491760484148,
|
1616 |
+
"prompt_name": "null",
|
1617 |
+
"task_name": "gsarti/flores_101_vie",
|
1618 |
+
"word_perplexity": 33.51752264232948
|
1619 |
+
}
|
1620 |
+
},
|
1621 |
+
"gsarti/flores_101_wol+null": {
|
1622 |
+
"2022-07-14-12-00-55": {
|
1623 |
+
"bits_per_byte": 3.332383415073327,
|
1624 |
+
"byte_perplexity": 10.072733993132132,
|
1625 |
+
"prompt_name": "null",
|
1626 |
+
"task_name": "gsarti/flores_101_wol",
|
1627 |
+
"word_perplexity": 199684.7010180392
|
1628 |
+
}
|
1629 |
+
},
|
1630 |
+
"gsarti/flores_101_xho+null": {
|
1631 |
+
"2022-07-14-12-00-55": {
|
1632 |
+
"bits_per_byte": 3.0428982143908727,
|
1633 |
+
"byte_perplexity": 8.241450154294917,
|
1634 |
+
"prompt_name": "null",
|
1635 |
+
"task_name": "gsarti/flores_101_xho",
|
1636 |
+
"word_perplexity": 141017733.33017766
|
1637 |
+
}
|
1638 |
+
},
|
1639 |
+
"gsarti/flores_101_yor+null": {
|
1640 |
+
"2022-07-14-12-00-55": {
|
1641 |
+
"bits_per_byte": 2.62429549091613,
|
1642 |
+
"byte_perplexity": 6.165831615133067,
|
1643 |
+
"prompt_name": "null",
|
1644 |
+
"task_name": "gsarti/flores_101_yor",
|
1645 |
+
"word_perplexity": 171980.641422536
|
1646 |
+
}
|
1647 |
+
},
|
1648 |
+
"gsarti/flores_101_zho_simpl+null": {
|
1649 |
+
"2022-07-14-10-03-25": {
|
1650 |
+
"bits_per_byte": 1.2156521449449949,
|
1651 |
+
"byte_perplexity": 2.322457417595381,
|
1652 |
+
"prompt_name": "null",
|
1653 |
+
"task_name": "gsarti/flores_101_zho_simpl",
|
1654 |
+
"word_perplexity": 1.0554528210220222e+21
|
1655 |
+
}
|
1656 |
+
},
|
1657 |
+
"gsarti/flores_101_zho_trad+null": {
|
1658 |
+
"2022-07-14-10-03-25": {
|
1659 |
+
"bits_per_byte": 1.3622834584784203,
|
1660 |
+
"byte_perplexity": 2.5709177552415134,
|
1661 |
+
"prompt_name": "null",
|
1662 |
+
"task_name": "gsarti/flores_101_zho_trad",
|
1663 |
+
"word_perplexity": 4.787781515987923e+24
|
1664 |
+
}
|
1665 |
+
},
|
1666 |
+
"gsarti/flores_101_zul+null": {
|
1667 |
+
"2022-07-14-12-00-55": {
|
1668 |
+
"bits_per_byte": 3.2020451216662975,
|
1669 |
+
"byte_perplexity": 9.202622963132773,
|
1670 |
+
"prompt_name": "null",
|
1671 |
+
"task_name": "gsarti/flores_101_zul",
|
1672 |
+
"word_perplexity": 998742068.9481835
|
1673 |
+
}
|
1674 |
+
},
|
1675 |
+
"headqa": {
|
1676 |
+
"2022-07-13-11-29-13": {
|
1677 |
+
"acc": 0.25419401896425964,
|
1678 |
+
"acc_norm": 0.29576951130561635,
|
1679 |
+
"acc_norm_stderr": 0.008717251898361422,
|
1680 |
+
"acc_stderr": 0.008316509290190668
|
1681 |
+
}
|
1682 |
+
},
|
1683 |
+
"hellaswag": {
|
1684 |
+
"2022-07-13-11-29-13": {
|
1685 |
+
"acc": 0.37621987651862177,
|
1686 |
+
"acc_norm": 0.46564429396534557,
|
1687 |
+
"acc_norm_stderr": 0.004977988452502641,
|
1688 |
+
"acc_stderr": 0.004834461997944872
|
1689 |
+
}
|
1690 |
+
},
|
1691 |
+
"lambada": {
|
1692 |
+
"2022-07-13-11-29-13": {
|
1693 |
+
"acc": 0.46322530564719583,
|
1694 |
+
"acc_stderr": 0.006947110835634445,
|
1695 |
+
"ppl": 12.583447597222621,
|
1696 |
+
"ppl_stderr": 0.4021518609838198
|
1697 |
+
}
|
1698 |
+
},
|
1699 |
+
"logiqa": {
|
1700 |
+
"2022-07-13-11-29-13": {
|
1701 |
+
"acc": 0.21658986175115208,
|
1702 |
+
"acc_norm": 0.28110599078341014,
|
1703 |
+
"acc_norm_stderr": 0.017632374626460005,
|
1704 |
+
"acc_stderr": 0.016156860583178303
|
1705 |
+
}
|
1706 |
+
},
|
1707 |
+
"mathqa": {
|
1708 |
+
"2022-07-13-11-29-13": {
|
1709 |
+
"acc": 0.2489112227805695,
|
1710 |
+
"acc_norm": 0.2422110552763819,
|
1711 |
+
"acc_norm_stderr": 0.007842810183504986,
|
1712 |
+
"acc_stderr": 0.007915319798861361
|
1713 |
+
}
|
1714 |
+
},
|
1715 |
+
"mc_taco": {
|
1716 |
+
"2022-07-13-11-29-13": {
|
1717 |
+
"em": 0.12537537537537538,
|
1718 |
+
"f1": 0.4747075325110886
|
1719 |
+
}
|
1720 |
+
},
|
1721 |
+
"mnli+GPT-3 style": {
|
1722 |
+
"2022-07-12-22-45-57": {
|
1723 |
+
"acc": 0.3564951604686704,
|
1724 |
+
"acc_norm": 0.335303107488538,
|
1725 |
+
"acc_norm_stderr": 0.004765490263584639,
|
1726 |
+
"acc_stderr": 0.004834813222301984,
|
1727 |
+
"prompt_name": "GPT-3 style",
|
1728 |
+
"task_name": "mnli"
|
1729 |
+
}
|
1730 |
+
},
|
1731 |
+
"mnli+MNLI crowdsource": {
|
1732 |
+
"2022-07-12-22-45-57": {
|
1733 |
+
"acc": 0.3548650025471218,
|
1734 |
+
"acc_norm": 0.37982679572083544,
|
1735 |
+
"acc_norm_stderr": 0.004899212442097964,
|
1736 |
+
"acc_stderr": 0.004829852406948984,
|
1737 |
+
"prompt_name": "MNLI crowdsource",
|
1738 |
+
"task_name": "mnli"
|
1739 |
+
}
|
1740 |
+
},
|
1741 |
+
"mnli+always/sometimes/never": {
|
1742 |
+
"2022-07-12-22-45-57": {
|
1743 |
+
"acc": 0.31920529801324504,
|
1744 |
+
"acc_norm": 0.31818644931227713,
|
1745 |
+
"acc_norm_stderr": 0.004701653585969693,
|
1746 |
+
"acc_stderr": 0.004705655206722177,
|
1747 |
+
"prompt_name": "always/sometimes/never",
|
1748 |
+
"task_name": "mnli"
|
1749 |
+
}
|
1750 |
+
},
|
1751 |
+
"mnli+based on the previous passage": {
|
1752 |
+
"2022-07-12-22-45-57": {
|
1753 |
+
"acc": 0.34070300560366784,
|
1754 |
+
"acc_norm": 0.33245033112582784,
|
1755 |
+
"acc_norm_stderr": 0.004755346314564714,
|
1756 |
+
"acc_stderr": 0.004784157883834768,
|
1757 |
+
"prompt_name": "based on the previous passage",
|
1758 |
+
"task_name": "mnli"
|
1759 |
+
}
|
1760 |
+
},
|
1761 |
+
"mnli+can we infer": {
|
1762 |
+
"2022-07-12-22-45-57": {
|
1763 |
+
"acc": 0.36271013754457465,
|
1764 |
+
"acc_norm": 0.3392766174223128,
|
1765 |
+
"acc_norm_stderr": 0.004779294320017342,
|
1766 |
+
"acc_stderr": 0.004853167998709484,
|
1767 |
+
"prompt_name": "can we infer",
|
1768 |
+
"task_name": "mnli"
|
1769 |
+
}
|
1770 |
+
},
|
1771 |
+
"mnli+claim true/false/inconclusive": {
|
1772 |
+
"2022-07-12-22-45-57": {
|
1773 |
+
"acc": 0.35384615384615387,
|
1774 |
+
"acc_norm": 0.3169638308711156,
|
1775 |
+
"acc_norm_stderr": 0.004696817414398099,
|
1776 |
+
"acc_stderr": 0.004826720820135633,
|
1777 |
+
"prompt_name": "claim true/false/inconclusive",
|
1778 |
+
"task_name": "mnli"
|
1779 |
+
}
|
1780 |
+
},
|
1781 |
+
"mnli+consider always/sometimes/never": {
|
1782 |
+
"2022-07-12-22-45-57": {
|
1783 |
+
"acc": 0.3183902190524707,
|
1784 |
+
"acc_norm": 0.31818644931227713,
|
1785 |
+
"acc_norm_stderr": 0.004701653585969693,
|
1786 |
+
"acc_stderr": 0.004702455981984395,
|
1787 |
+
"prompt_name": "consider always/sometimes/never",
|
1788 |
+
"task_name": "mnli"
|
1789 |
+
}
|
1790 |
+
},
|
1791 |
+
"mnli+does it follow that": {
|
1792 |
+
"2022-07-12-22-45-57": {
|
1793 |
+
"acc": 0.3784004075394804,
|
1794 |
+
"acc_norm": 0.3499745287824758,
|
1795 |
+
"acc_norm_stderr": 0.004814601860231488,
|
1796 |
+
"acc_stderr": 0.00489562485968904,
|
1797 |
+
"prompt_name": "does it follow that",
|
1798 |
+
"task_name": "mnli"
|
1799 |
+
}
|
1800 |
+
},
|
1801 |
+
"mnli+does this imply": {
|
1802 |
+
"2022-07-12-22-45-57": {
|
1803 |
+
"acc": 0.33224656138563424,
|
1804 |
+
"acc_norm": 0.31920529801324504,
|
1805 |
+
"acc_norm_stderr": 0.004705655206722178,
|
1806 |
+
"acc_stderr": 0.004754614244749308,
|
1807 |
+
"prompt_name": "does this imply",
|
1808 |
+
"task_name": "mnli"
|
1809 |
+
}
|
1810 |
+
},
|
1811 |
+
"mnli+guaranteed true": {
|
1812 |
+
"2022-07-12-22-45-57": {
|
1813 |
+
"acc": 0.35731023942944473,
|
1814 |
+
"acc_norm": 0.3398879266428935,
|
1815 |
+
"acc_norm_stderr": 0.004781384619510542,
|
1816 |
+
"acc_stderr": 0.004837270730680468,
|
1817 |
+
"prompt_name": "guaranteed true",
|
1818 |
+
"task_name": "mnli"
|
1819 |
+
}
|
1820 |
+
},
|
1821 |
+
"mnli+guaranteed/possible/impossible": {
|
1822 |
+
"2022-07-12-22-45-57": {
|
1823 |
+
"acc": 0.32317880794701986,
|
1824 |
+
"acc_norm": 0.3390728476821192,
|
1825 |
+
"acc_norm_stderr": 0.004778595579555236,
|
1826 |
+
"acc_stderr": 0.004721015048648592,
|
1827 |
+
"prompt_name": "guaranteed/possible/impossible",
|
1828 |
+
"task_name": "mnli"
|
1829 |
+
}
|
1830 |
+
},
|
1831 |
+
"mnli+justified in saying": {
|
1832 |
+
"2022-07-12-22-45-57": {
|
1833 |
+
"acc": 0.3611818644931228,
|
1834 |
+
"acc_norm": 0.33438614365766683,
|
1835 |
+
"acc_norm_stderr": 0.004762251055102503,
|
1836 |
+
"acc_stderr": 0.0048487362318538965,
|
1837 |
+
"prompt_name": "justified in saying",
|
1838 |
+
"task_name": "mnli"
|
1839 |
+
}
|
1840 |
+
},
|
1841 |
+
"mnli+must be true": {
|
1842 |
+
"2022-07-12-22-45-57": {
|
1843 |
+
"acc": 0.3532348446255731,
|
1844 |
+
"acc_norm": 0.3400916963830871,
|
1845 |
+
"acc_norm_stderr": 0.004782079413482068,
|
1846 |
+
"acc_stderr": 0.004824830369595005,
|
1847 |
+
"prompt_name": "must be true",
|
1848 |
+
"task_name": "mnli"
|
1849 |
+
}
|
1850 |
+
},
|
1851 |
+
"mnli+should assume": {
|
1852 |
+
"2022-07-12-22-45-57": {
|
1853 |
+
"acc": 0.3532348446255731,
|
1854 |
+
"acc_norm": 0.32236372898624555,
|
1855 |
+
"acc_norm_stderr": 0.004717896188851781,
|
1856 |
+
"acc_stderr": 0.004824830369595005,
|
1857 |
+
"prompt_name": "should assume",
|
1858 |
+
"task_name": "mnli"
|
1859 |
+
}
|
1860 |
+
},
|
1861 |
+
"mnli+take the following as truth": {
|
1862 |
+
"2022-07-12-22-45-57": {
|
1863 |
+
"acc": 0.3540499235863474,
|
1864 |
+
"acc_norm": 0.32654100866021396,
|
1865 |
+
"acc_norm_stderr": 0.004733707466562015,
|
1866 |
+
"acc_stderr": 0.004827349052909375,
|
1867 |
+
"prompt_name": "take the following as truth",
|
1868 |
+
"task_name": "mnli"
|
1869 |
+
}
|
1870 |
+
},
|
1871 |
+
"mnli_mismatched+GPT-3 style": {
|
1872 |
+
"2022-07-12-22-45-57": {
|
1873 |
+
"acc": 0.3558787632221318,
|
1874 |
+
"acc_norm": 0.3365541090317331,
|
1875 |
+
"acc_norm_stderr": 0.0047657510794410825,
|
1876 |
+
"acc_stderr": 0.004828764189286043,
|
1877 |
+
"prompt_name": "GPT-3 style",
|
1878 |
+
"task_name": "mnli_mismatched"
|
1879 |
+
}
|
1880 |
+
},
|
1881 |
+
"mnli_mismatched+MNLI crowdsource": {
|
1882 |
+
"2022-07-12-22-45-57": {
|
1883 |
+
"acc": 0.3524206672091131,
|
1884 |
+
"acc_norm": 0.3876118795768918,
|
1885 |
+
"acc_norm_stderr": 0.004913750149712027,
|
1886 |
+
"acc_stderr": 0.004818127922877737,
|
1887 |
+
"prompt_name": "MNLI crowdsource",
|
1888 |
+
"task_name": "mnli_mismatched"
|
1889 |
+
}
|
1890 |
+
},
|
1891 |
+
"mnli_mismatched+always/sometimes/never": {
|
1892 |
+
"2022-07-12-22-45-57": {
|
1893 |
+
"acc": 0.3187550854353133,
|
1894 |
+
"acc_norm": 0.318246541903987,
|
1895 |
+
"acc_norm_stderr": 0.004697823254367764,
|
1896 |
+
"acc_stderr": 0.004699821349212815,
|
1897 |
+
"prompt_name": "always/sometimes/never",
|
1898 |
+
"task_name": "mnli_mismatched"
|
1899 |
+
}
|
1900 |
+
},
|
1901 |
+
"mnli_mismatched+based on the previous passage": {
|
1902 |
+
"2022-07-12-22-45-57": {
|
1903 |
+
"acc": 0.3442839707078926,
|
1904 |
+
"acc_norm": 0.3240439381611066,
|
1905 |
+
"acc_norm_stderr": 0.00472022103875238,
|
1906 |
+
"acc_stderr": 0.004792007109263922,
|
1907 |
+
"prompt_name": "based on the previous passage",
|
1908 |
+
"task_name": "mnli_mismatched"
|
1909 |
+
}
|
1910 |
+
},
|
1911 |
+
"mnli_mismatched+can we infer": {
|
1912 |
+
"2022-07-12-22-45-57": {
|
1913 |
+
"acc": 0.3628966639544345,
|
1914 |
+
"acc_norm": 0.33909682668836455,
|
1915 |
+
"acc_norm_stderr": 0.0047745443668395,
|
1916 |
+
"acc_stderr": 0.004849506876045877,
|
1917 |
+
"prompt_name": "can we infer",
|
1918 |
+
"task_name": "mnli_mismatched"
|
1919 |
+
}
|
1920 |
+
},
|
1921 |
+
"mnli_mismatched+claim true/false/inconclusive": {
|
1922 |
+
"2022-07-12-22-45-57": {
|
1923 |
+
"acc": 0.3517087062652563,
|
1924 |
+
"acc_norm": 0.31550040683482505,
|
1925 |
+
"acc_norm_stderr": 0.004686921836958016,
|
1926 |
+
"acc_stderr": 0.004815903833418159,
|
1927 |
+
"prompt_name": "claim true/false/inconclusive",
|
1928 |
+
"task_name": "mnli_mismatched"
|
1929 |
+
}
|
1930 |
+
},
|
1931 |
+
"mnli_mismatched+consider always/sometimes/never": {
|
1932 |
+
"2022-07-12-22-45-57": {
|
1933 |
+
"acc": 0.318246541903987,
|
1934 |
+
"acc_norm": 0.318246541903987,
|
1935 |
+
"acc_norm_stderr": 0.004697823254367764,
|
1936 |
+
"acc_stderr": 0.004697823254367764,
|
1937 |
+
"prompt_name": "consider always/sometimes/never",
|
1938 |
+
"task_name": "mnli_mismatched"
|
1939 |
+
}
|
1940 |
+
},
|
1941 |
+
"mnli_mismatched+does it follow that": {
|
1942 |
+
"2022-07-12-22-45-57": {
|
1943 |
+
"acc": 0.38923921887713586,
|
1944 |
+
"acc_norm": 0.34926769731489016,
|
1945 |
+
"acc_norm_stderr": 0.004808189163919754,
|
1946 |
+
"acc_stderr": 0.004917507365149974,
|
1947 |
+
"prompt_name": "does it follow that",
|
1948 |
+
"task_name": "mnli_mismatched"
|
1949 |
+
}
|
1950 |
+
},
|
1951 |
+
"mnli_mismatched+does this imply": {
|
1952 |
+
"2022-07-12-22-45-57": {
|
1953 |
+
"acc": 0.3233319772172498,
|
1954 |
+
"acc_norm": 0.3184499593165175,
|
1955 |
+
"acc_norm_stderr": 0.0046986232661144,
|
1956 |
+
"acc_stderr": 0.0047175151956513625,
|
1957 |
+
"prompt_name": "does this imply",
|
1958 |
+
"task_name": "mnli_mismatched"
|
1959 |
+
}
|
1960 |
+
},
|
1961 |
+
"mnli_mismatched+guaranteed true": {
|
1962 |
+
"2022-07-12-22-45-57": {
|
1963 |
+
"acc": 0.36208299430431246,
|
1964 |
+
"acc_norm": 0.3303498779495525,
|
1965 |
+
"acc_norm_stderr": 0.004743645253038162,
|
1966 |
+
"acc_stderr": 0.00484715944530685,
|
1967 |
+
"prompt_name": "guaranteed true",
|
1968 |
+
"task_name": "mnli_mismatched"
|
1969 |
+
}
|
1970 |
+
},
|
1971 |
+
"mnli_mismatched+guaranteed/possible/impossible": {
|
1972 |
+
"2022-07-12-22-45-57": {
|
1973 |
+
"acc": 0.32048413344182264,
|
1974 |
+
"acc_norm": 0.33848657445077296,
|
1975 |
+
"acc_norm_stderr": 0.004772448023078353,
|
1976 |
+
"acc_stderr": 0.004706566719294992,
|
1977 |
+
"prompt_name": "guaranteed/possible/impossible",
|
1978 |
+
"task_name": "mnli_mismatched"
|
1979 |
+
}
|
1980 |
+
},
|
1981 |
+
"mnli_mismatched+justified in saying": {
|
1982 |
+
"2022-07-12-22-45-57": {
|
1983 |
+
"acc": 0.371033360455655,
|
1984 |
+
"acc_norm": 0.32648494711147275,
|
1985 |
+
"acc_norm_stderr": 0.004729403696523803,
|
1986 |
+
"acc_stderr": 0.004872158826748743,
|
1987 |
+
"prompt_name": "justified in saying",
|
1988 |
+
"task_name": "mnli_mismatched"
|
1989 |
+
}
|
1990 |
+
},
|
1991 |
+
"mnli_mismatched+must be true": {
|
1992 |
+
"2022-07-12-22-45-57": {
|
1993 |
+
"acc": 0.3565907241659886,
|
1994 |
+
"acc_norm": 0.3373677786818552,
|
1995 |
+
"acc_norm_stderr": 0.004768581700693004,
|
1996 |
+
"acc_stderr": 0.004830919845456573,
|
1997 |
+
"prompt_name": "must be true",
|
1998 |
+
"task_name": "mnli_mismatched"
|
1999 |
+
}
|
2000 |
+
},
|
2001 |
+
"mnli_mismatched+should assume": {
|
2002 |
+
"2022-07-12-22-45-57": {
|
2003 |
+
"acc": 0.35740439381611067,
|
2004 |
+
"acc_norm": 0.32231489015459724,
|
2005 |
+
"acc_norm_stderr": 0.0047136280360736155,
|
2006 |
+
"acc_stderr": 0.0048333692129862065,
|
2007 |
+
"prompt_name": "should assume",
|
2008 |
+
"task_name": "mnli_mismatched"
|
2009 |
+
}
|
2010 |
+
},
|
2011 |
+
"mnli_mismatched+take the following as truth": {
|
2012 |
+
"2022-07-12-22-45-57": {
|
2013 |
+
"acc": 0.3522172497965826,
|
2014 |
+
"acc_norm": 0.3263832384052075,
|
2015 |
+
"acc_norm_stderr": 0.004729024000627127,
|
2016 |
+
"acc_stderr": 0.004817493665633715,
|
2017 |
+
"prompt_name": "take the following as truth",
|
2018 |
+
"task_name": "mnli_mismatched"
|
2019 |
+
}
|
2020 |
+
},
|
2021 |
+
"mrpc": {
|
2022 |
+
"2022-07-13-11-29-13": {
|
2023 |
+
"acc": 0.6813725490196079,
|
2024 |
+
"acc_stderr": 0.023095996571841474,
|
2025 |
+
"f1": 0.8104956268221574,
|
2026 |
+
"f1_stderr": 0.016329211455484924
|
2027 |
+
}
|
2028 |
+
},
|
2029 |
+
"multirc": {
|
2030 |
+
"2022-07-13-11-29-13": {
|
2031 |
+
"acc": 0.011542497376705142,
|
2032 |
+
"acc_stderr": 0.003461867320927179
|
2033 |
+
}
|
2034 |
+
},
|
2035 |
+
"multirc+I was going to say\u2026": {
|
2036 |
+
"2022-07-12-22-45-57": {
|
2037 |
+
"acc": 0.5082508250825083,
|
2038 |
+
"acc_norm": 0.4280115511551155,
|
2039 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2040 |
+
"acc_stderr": 0.007180825220905937,
|
2041 |
+
"prompt_name": "I was going to say\u2026",
|
2042 |
+
"task_name": "multirc"
|
2043 |
+
}
|
2044 |
+
},
|
2045 |
+
"multirc+Would it be good to answer\u2026": {
|
2046 |
+
"2022-07-12-22-45-57": {
|
2047 |
+
"acc": 0.45173267326732675,
|
2048 |
+
"acc_norm": 0.4278052805280528,
|
2049 |
+
"acc_norm_stderr": 0.007106544557507229,
|
2050 |
+
"acc_stderr": 0.007148261386088041,
|
2051 |
+
"prompt_name": "Would it be good to answer\u2026",
|
2052 |
+
"task_name": "multirc"
|
2053 |
+
}
|
2054 |
+
},
|
2055 |
+
"multirc+confirm": {
|
2056 |
+
"2022-07-12-22-45-57": {
|
2057 |
+
"acc": 0.4280115511551155,
|
2058 |
+
"acc_norm": 0.4280115511551155,
|
2059 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2060 |
+
"acc_stderr": 0.007106976252751536,
|
2061 |
+
"prompt_name": "confirm",
|
2062 |
+
"task_name": "multirc"
|
2063 |
+
}
|
2064 |
+
},
|
2065 |
+
"multirc+correct": {
|
2066 |
+
"2022-07-12-22-45-57": {
|
2067 |
+
"acc": 0.5532178217821783,
|
2068 |
+
"acc_norm": 0.4643151815181518,
|
2069 |
+
"acc_norm_stderr": 0.00716348904876326,
|
2070 |
+
"acc_stderr": 0.007141007544074806,
|
2071 |
+
"prompt_name": "correct",
|
2072 |
+
"task_name": "multirc"
|
2073 |
+
}
|
2074 |
+
},
|
2075 |
+
"multirc+decide_valid": {
|
2076 |
+
"2022-07-12-22-45-57": {
|
2077 |
+
"acc": 0.5107260726072608,
|
2078 |
+
"acc_norm": 0.4280115511551155,
|
2079 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2080 |
+
"acc_stderr": 0.007180150402551771,
|
2081 |
+
"prompt_name": "decide_valid",
|
2082 |
+
"task_name": "multirc"
|
2083 |
+
}
|
2084 |
+
},
|
2085 |
+
"multirc+found_this_answer": {
|
2086 |
+
"2022-07-12-22-45-57": {
|
2087 |
+
"acc": 0.4278052805280528,
|
2088 |
+
"acc_norm": 0.4280115511551155,
|
2089 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2090 |
+
"acc_stderr": 0.007106544557507229,
|
2091 |
+
"prompt_name": "found_this_answer",
|
2092 |
+
"task_name": "multirc"
|
2093 |
+
}
|
2094 |
+
},
|
2095 |
+
"multirc+grading": {
|
2096 |
+
"2022-07-12-22-45-57": {
|
2097 |
+
"acc": 0.429042904290429,
|
2098 |
+
"acc_norm": 0.4280115511551155,
|
2099 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2100 |
+
"acc_stderr": 0.007109115814226985,
|
2101 |
+
"prompt_name": "grading",
|
2102 |
+
"task_name": "multirc"
|
2103 |
+
}
|
2104 |
+
},
|
2105 |
+
"multirc+is the correct answer\u2026": {
|
2106 |
+
"2022-07-12-22-45-57": {
|
2107 |
+
"acc": 0.4498762376237624,
|
2108 |
+
"acc_norm": 0.4273927392739274,
|
2109 |
+
"acc_norm_stderr": 0.007105677382236137,
|
2110 |
+
"acc_stderr": 0.0071456249799065185,
|
2111 |
+
"prompt_name": "is the correct answer\u2026",
|
2112 |
+
"task_name": "multirc"
|
2113 |
+
}
|
2114 |
+
},
|
2115 |
+
"multirc+is\u2026 a correct answer?": {
|
2116 |
+
"2022-07-12-22-45-57": {
|
2117 |
+
"acc": 0.4278052805280528,
|
2118 |
+
"acc_norm": 0.4280115511551155,
|
2119 |
+
"acc_norm_stderr": 0.007106976252751536,
|
2120 |
+
"acc_stderr": 0.007106544557507229,
|
2121 |
+
"prompt_name": "is\u2026 a correct answer?",
|
2122 |
+
"task_name": "multirc"
|
2123 |
+
}
|
2124 |
+
},
|
2125 |
+
"multirc+paragraph\u2026 question\u2026 is it\u2026 ?": {
|
2126 |
+
"2022-07-12-22-45-57": {
|
2127 |
+
"acc": 0.5030940594059405,
|
2128 |
+
"acc_norm": 0.42883663366336633,
|
2129 |
+
"acc_norm_stderr": 0.007108690423137722,
|
2130 |
+
"acc_stderr": 0.007181665598939583,
|
2131 |
+
"prompt_name": "paragraph\u2026 question\u2026 is it\u2026 ?",
|
2132 |
+
"task_name": "multirc"
|
2133 |
+
}
|
2134 |
+
},
|
2135 |
+
"openbookqa": {
|
2136 |
+
"2022-07-13-11-29-13": {
|
2137 |
+
"acc": 0.214,
|
2138 |
+
"acc_norm": 0.298,
|
2139 |
+
"acc_norm_stderr": 0.020475118092988978,
|
2140 |
+
"acc_stderr": 0.01835979750238702
|
2141 |
+
}
|
2142 |
+
},
|
2143 |
+
"piqa": {
|
2144 |
+
"2022-07-13-11-29-13": {
|
2145 |
+
"acc": 0.6871599564744287,
|
2146 |
+
"acc_norm": 0.7002176278563657,
|
2147 |
+
"acc_norm_stderr": 0.010689686967138092,
|
2148 |
+
"acc_stderr": 0.010817714425701112
|
2149 |
+
}
|
2150 |
+
},
|
2151 |
+
"prost": {
|
2152 |
+
"2022-07-13-11-29-13": {
|
2153 |
+
"acc": 0.23505550811272416,
|
2154 |
+
"acc_norm": 0.2670260461144321,
|
2155 |
+
"acc_norm_stderr": 0.0032321702981822874,
|
2156 |
+
"acc_stderr": 0.0030979423271461875
|
2157 |
+
}
|
2158 |
+
},
|
2159 |
+
"pubmedqa": {
|
2160 |
+
"2022-07-13-11-29-13": {
|
2161 |
+
"acc": 0.56,
|
2162 |
+
"acc_stderr": 0.015704987954361798
|
2163 |
+
}
|
2164 |
+
},
|
2165 |
+
"qnli": {
|
2166 |
+
"2022-07-13-11-29-13": {
|
2167 |
+
"acc": 0.4962474830679114,
|
2168 |
+
"acc_stderr": 0.006765220016415222
|
2169 |
+
}
|
2170 |
+
},
|
2171 |
+
"qqp": {
|
2172 |
+
"2022-07-13-11-29-13": {
|
2173 |
+
"acc": 0.3681424684640119,
|
2174 |
+
"acc_stderr": 0.0023986729832071816,
|
2175 |
+
"f1": 0.5381138352498734,
|
2176 |
+
"f1_stderr": 0.002555831569895799
|
2177 |
+
}
|
2178 |
+
},
|
2179 |
+
"qqp+answer": {
|
2180 |
+
"2022-07-12-22-45-57": {
|
2181 |
+
"acc": 0.40558990848379917,
|
2182 |
+
"acc_norm": 0.36816720257234725,
|
2183 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2184 |
+
"acc_stderr": 0.002441969063495092,
|
2185 |
+
"prompt_name": "answer",
|
2186 |
+
"task_name": "qqp"
|
2187 |
+
}
|
2188 |
+
},
|
2189 |
+
"qqp+duplicate": {
|
2190 |
+
"2022-07-12-22-45-57": {
|
2191 |
+
"acc": 0.3788523373732377,
|
2192 |
+
"acc_norm": 0.36816720257234725,
|
2193 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2194 |
+
"acc_stderr": 0.002412603277723025,
|
2195 |
+
"prompt_name": "duplicate",
|
2196 |
+
"task_name": "qqp"
|
2197 |
+
}
|
2198 |
+
},
|
2199 |
+
"qqp+duplicate or not": {
|
2200 |
+
"2022-07-13-19-23-37": {
|
2201 |
+
"acc": 0.5761315854563444,
|
2202 |
+
"acc_norm": 0.6318327974276527,
|
2203 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2204 |
+
"acc_stderr": 0.0024577056660753426,
|
2205 |
+
"prompt_name": "duplicate or not",
|
2206 |
+
"task_name": "qqp"
|
2207 |
+
}
|
2208 |
+
},
|
2209 |
+
"qqp+meaning": {
|
2210 |
+
"2022-07-13-19-23-37": {
|
2211 |
+
"acc": 0.3681424684640119,
|
2212 |
+
"acc_norm": 0.36816720257234725,
|
2213 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2214 |
+
"acc_stderr": 0.0023986729832071916,
|
2215 |
+
"prompt_name": "meaning",
|
2216 |
+
"task_name": "qqp"
|
2217 |
+
}
|
2218 |
+
},
|
2219 |
+
"qqp+quora": {
|
2220 |
+
"2022-07-13-19-23-37": {
|
2221 |
+
"acc": 0.36821667078901804,
|
2222 |
+
"acc_norm": 0.36816720257234725,
|
2223 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2224 |
+
"acc_stderr": 0.0023987738450886556,
|
2225 |
+
"prompt_name": "quora",
|
2226 |
+
"task_name": "qqp"
|
2227 |
+
}
|
2228 |
+
},
|
2229 |
+
"qqp+same thing": {
|
2230 |
+
"2022-07-13-19-23-37": {
|
2231 |
+
"acc": 0.5099431115508286,
|
2232 |
+
"acc_norm": 0.36816720257234725,
|
2233 |
+
"acc_norm_stderr": 0.002398706610614492,
|
2234 |
+
"acc_stderr": 0.002486208885430481,
|
2235 |
+
"prompt_name": "same thing",
|
2236 |
+
"task_name": "qqp"
|
2237 |
+
}
|
2238 |
+
},
|
2239 |
+
"race": {
|
2240 |
+
"2022-07-13-11-29-13": {
|
2241 |
+
"acc": 0.3320574162679426,
|
2242 |
+
"acc_stderr": 0.014575582129545914
|
2243 |
+
}
|
2244 |
+
},
|
2245 |
+
"rte": {
|
2246 |
+
"2022-07-13-11-29-13": {
|
2247 |
+
"acc": 0.5342960288808665,
|
2248 |
+
"acc_stderr": 0.030025579819366426
|
2249 |
+
}
|
2250 |
+
},
|
2251 |
+
"rte+does the claim\u2026 follow the fact\u2026": {
|
2252 |
+
"2022-07-13-19-23-37": {
|
2253 |
+
"acc": 0.4729241877256318,
|
2254 |
+
"acc_norm": 0.5270758122743683,
|
2255 |
+
"acc_norm_stderr": 0.0300523034631437,
|
2256 |
+
"acc_stderr": 0.030052303463143706,
|
2257 |
+
"prompt_name": "does the claim\u2026 follow the fact\u2026",
|
2258 |
+
"task_name": "rte"
|
2259 |
+
}
|
2260 |
+
},
|
2261 |
+
"rte+entailment explained": {
|
2262 |
+
"2022-07-13-19-23-37": {
|
2263 |
+
"acc": 0.49458483754512633,
|
2264 |
+
"acc_norm": 0.4729241877256318,
|
2265 |
+
"acc_norm_stderr": 0.0300523034631437,
|
2266 |
+
"acc_stderr": 0.030094698123239966,
|
2267 |
+
"prompt_name": "entailment explained",
|
2268 |
+
"task_name": "rte"
|
2269 |
+
}
|
2270 |
+
},
|
2271 |
+
"rte+imply": {
|
2272 |
+
"2022-07-13-19-23-37": {
|
2273 |
+
"acc": 0.48375451263537905,
|
2274 |
+
"acc_norm": 0.5270758122743683,
|
2275 |
+
"acc_norm_stderr": 0.0300523034631437,
|
2276 |
+
"acc_stderr": 0.030080573208738064,
|
2277 |
+
"prompt_name": "imply",
|
2278 |
+
"task_name": "rte"
|
2279 |
+
}
|
2280 |
+
},
|
2281 |
+
"rte+imply separated": {
|
2282 |
+
"2022-07-13-19-23-37": {
|
2283 |
+
"acc": 0.45126353790613716,
|
2284 |
+
"acc_norm": 0.5270758122743683,
|
2285 |
+
"acc_norm_stderr": 0.0300523034631437,
|
2286 |
+
"acc_stderr": 0.029953149241808943,
|
2287 |
+
"prompt_name": "imply separated",
|
2288 |
+
"task_name": "rte"
|
2289 |
+
}
|
2290 |
+
},
|
2291 |
+
"rte+mean": {
|
2292 |
+
"2022-07-13-19-23-37": {
|
2293 |
+
"acc": 0.48014440433212996,
|
2294 |
+
"acc_norm": 0.5270758122743683,
|
2295 |
+
"acc_norm_stderr": 0.0300523034631437,
|
2296 |
+
"acc_stderr": 0.030072723167317194,
|
2297 |
+
"prompt_name": "mean",
|
2298 |
+
"task_name": "rte"
|
2299 |
+
}
|
2300 |
+
},
|
2301 |
+
"sciq": {
|
2302 |
+
"2022-07-13-11-29-13": {
|
2303 |
+
"acc": 0.853,
|
2304 |
+
"acc_norm": 0.771,
|
2305 |
+
"acc_norm_stderr": 0.013294199326613609,
|
2306 |
+
"acc_stderr": 0.011203415395160335
|
2307 |
+
}
|
2308 |
+
},
|
2309 |
+
"sst": {
|
2310 |
+
"2022-07-13-11-29-13": {
|
2311 |
+
"acc": 0.6823394495412844,
|
2312 |
+
"acc_stderr": 0.015775124845202545
|
2313 |
+
}
|
2314 |
+
},
|
2315 |
+
"sst+following positive negative": {
|
2316 |
+
"2022-07-13-19-23-37": {
|
2317 |
+
"acc": 0.8061926605504587,
|
2318 |
+
"acc_norm": 0.8061926605504587,
|
2319 |
+
"acc_norm_stderr": 0.013393542261521812,
|
2320 |
+
"acc_stderr": 0.013393542261521812,
|
2321 |
+
"prompt_name": "following positive negative",
|
2322 |
+
"task_name": "sst"
|
2323 |
+
}
|
2324 |
+
},
|
2325 |
+
"sst+happy or mad": {
|
2326 |
+
"2022-07-13-19-23-37": {
|
2327 |
+
"acc": 0.5091743119266054,
|
2328 |
+
"acc_norm": 0.5091743119266054,
|
2329 |
+
"acc_norm_stderr": 0.01693900152535154,
|
2330 |
+
"acc_stderr": 0.01693900152535154,
|
2331 |
+
"prompt_name": "happy or mad",
|
2332 |
+
"task_name": "sst"
|
2333 |
+
}
|
2334 |
+
},
|
2335 |
+
"sst+positive negative after": {
|
2336 |
+
"2022-07-13-19-23-37": {
|
2337 |
+
"acc": 0.6204128440366973,
|
2338 |
+
"acc_norm": 0.6204128440366973,
|
2339 |
+
"acc_norm_stderr": 0.016443227556688766,
|
2340 |
+
"acc_stderr": 0.016443227556688766,
|
2341 |
+
"prompt_name": "positive negative after",
|
2342 |
+
"task_name": "sst"
|
2343 |
+
}
|
2344 |
+
},
|
2345 |
+
"sst+review": {
|
2346 |
+
"2022-07-13-19-23-37": {
|
2347 |
+
"acc": 0.5091743119266054,
|
2348 |
+
"acc_norm": 0.5091743119266054,
|
2349 |
+
"acc_norm_stderr": 0.01693900152535154,
|
2350 |
+
"acc_stderr": 0.01693900152535154,
|
2351 |
+
"prompt_name": "review",
|
2352 |
+
"task_name": "sst"
|
2353 |
+
}
|
2354 |
+
},
|
2355 |
+
"sst+said": {
|
2356 |
+
"2022-07-13-19-23-37": {
|
2357 |
+
"acc": 0.4908256880733945,
|
2358 |
+
"acc_norm": 0.5091743119266054,
|
2359 |
+
"acc_norm_stderr": 0.01693900152535154,
|
2360 |
+
"acc_stderr": 0.01693900152535154,
|
2361 |
+
"prompt_name": "said",
|
2362 |
+
"task_name": "sst"
|
2363 |
+
}
|
2364 |
+
},
|
2365 |
+
"triviaqa": {
|
2366 |
+
"2022-07-13-11-29-13": {
|
2367 |
+
"acc": 0.0313798285158667,
|
2368 |
+
"acc_stderr": 0.0016392014864795154
|
2369 |
+
}
|
2370 |
+
},
|
2371 |
+
"webqs": {
|
2372 |
+
"2022-07-13-11-29-13": {
|
2373 |
+
"acc": 0.012795275590551181,
|
2374 |
+
"acc_stderr": 0.0024938680596856277
|
2375 |
+
}
|
2376 |
+
},
|
2377 |
+
"wic": {
|
2378 |
+
"2022-07-13-11-29-13": {
|
2379 |
+
"acc": 0.5,
|
2380 |
+
"acc_stderr": 0.01981072129375818
|
2381 |
+
}
|
2382 |
+
},
|
2383 |
+
"wic+GPT-3-prompt": {
|
2384 |
+
"2022-07-14-10-03-25": {
|
2385 |
+
"acc": 0.5,
|
2386 |
+
"acc_norm": 0.5,
|
2387 |
+
"acc_norm_stderr": 0.01981072129375818,
|
2388 |
+
"acc_stderr": 0.01981072129375818,
|
2389 |
+
"prompt_name": "GPT-3-prompt",
|
2390 |
+
"task_name": "wic"
|
2391 |
+
}
|
2392 |
+
},
|
2393 |
+
"wic+GPT-3-prompt-with-label": {
|
2394 |
+
"2022-07-14-10-03-25": {
|
2395 |
+
"acc": 0.49216300940438873,
|
2396 |
+
"acc_norm": 0.5,
|
2397 |
+
"acc_norm_stderr": 0.01981072129375818,
|
2398 |
+
"acc_stderr": 0.019808287657813832,
|
2399 |
+
"prompt_name": "GPT-3-prompt-with-label",
|
2400 |
+
"task_name": "wic"
|
2401 |
+
}
|
2402 |
+
},
|
2403 |
+
"wic+affirmation_true_or_false": {
|
2404 |
+
"2022-07-14-10-03-25": {
|
2405 |
+
"acc": 0.5,
|
2406 |
+
"acc_norm": 0.5078369905956113,
|
2407 |
+
"acc_norm_stderr": 0.019808287657813832,
|
2408 |
+
"acc_stderr": 0.01981072129375818,
|
2409 |
+
"prompt_name": "affirmation_true_or_false",
|
2410 |
+
"task_name": "wic"
|
2411 |
+
}
|
2412 |
+
},
|
2413 |
+
"wic+grammar_homework": {
|
2414 |
+
"2022-07-14-10-03-25": {
|
2415 |
+
"acc": 0.5094043887147336,
|
2416 |
+
"acc_norm": 0.49843260188087773,
|
2417 |
+
"acc_norm_stderr": 0.019810623954060382,
|
2418 |
+
"acc_stderr": 0.019807216763271497,
|
2419 |
+
"prompt_name": "grammar_homework",
|
2420 |
+
"task_name": "wic"
|
2421 |
+
}
|
2422 |
+
},
|
2423 |
+
"wic+polysemous": {
|
2424 |
+
"2022-07-14-10-03-25": {
|
2425 |
+
"acc": 0.512539184952978,
|
2426 |
+
"acc_norm": 0.49843260188087773,
|
2427 |
+
"acc_norm_stderr": 0.019810623954060382,
|
2428 |
+
"acc_stderr": 0.019804490588592596,
|
2429 |
+
"prompt_name": "polysemous",
|
2430 |
+
"task_name": "wic"
|
2431 |
+
}
|
2432 |
+
},
|
2433 |
+
"wic+question-context": {
|
2434 |
+
"2022-07-14-10-03-25": {
|
2435 |
+
"acc": 0.5266457680250783,
|
2436 |
+
"acc_norm": 0.5031347962382445,
|
2437 |
+
"acc_norm_stderr": 0.019810331932097542,
|
2438 |
+
"acc_stderr": 0.019782570188812167,
|
2439 |
+
"prompt_name": "question-context",
|
2440 |
+
"task_name": "wic"
|
2441 |
+
}
|
2442 |
+
},
|
2443 |
+
"wic+question-context-meaning": {
|
2444 |
+
"2022-07-14-10-03-25": {
|
2445 |
+
"acc": 0.5438871473354232,
|
2446 |
+
"acc_norm": 0.5015673981191222,
|
2447 |
+
"acc_norm_stderr": 0.019810623954060382,
|
2448 |
+
"acc_stderr": 0.019734259601993404,
|
2449 |
+
"prompt_name": "question-context-meaning",
|
2450 |
+
"task_name": "wic"
|
2451 |
+
}
|
2452 |
+
},
|
2453 |
+
"wic+question-context-meaning-with-label": {
|
2454 |
+
"2022-07-14-10-03-25": {
|
2455 |
+
"acc": 0.5156739811912225,
|
2456 |
+
"acc_norm": 0.5015673981191222,
|
2457 |
+
"acc_norm_stderr": 0.019810623954060382,
|
2458 |
+
"acc_stderr": 0.019800984955347847,
|
2459 |
+
"prompt_name": "question-context-meaning-with-label",
|
2460 |
+
"task_name": "wic"
|
2461 |
+
}
|
2462 |
+
},
|
2463 |
+
"wic+same_sense": {
|
2464 |
+
"2022-07-14-10-03-25": {
|
2465 |
+
"acc": 0.5047021943573667,
|
2466 |
+
"acc_norm": 0.5,
|
2467 |
+
"acc_norm_stderr": 0.01981072129375818,
|
2468 |
+
"acc_stderr": 0.019809845219259763,
|
2469 |
+
"prompt_name": "same_sense",
|
2470 |
+
"task_name": "wic"
|
2471 |
+
}
|
2472 |
+
},
|
2473 |
+
"wic+similar-sense": {
|
2474 |
+
"2022-07-14-10-03-25": {
|
2475 |
+
"acc": 0.542319749216301,
|
2476 |
+
"acc_norm": 0.5,
|
2477 |
+
"acc_norm_stderr": 0.01981072129375818,
|
2478 |
+
"acc_stderr": 0.01973963328373276,
|
2479 |
+
"prompt_name": "similar-sense",
|
2480 |
+
"task_name": "wic"
|
2481 |
+
}
|
2482 |
+
},
|
2483 |
+
"winogrande": {
|
2484 |
+
"2022-07-13-11-29-13": {
|
2485 |
+
"acc": 0.5730071033938438,
|
2486 |
+
"acc_stderr": 0.013901878072575058
|
2487 |
+
}
|
2488 |
+
},
|
2489 |
+
"wnli": {
|
2490 |
+
"2022-07-13-11-29-13": {
|
2491 |
+
"acc": 0.43661971830985913,
|
2492 |
+
"acc_stderr": 0.0592793555841297
|
2493 |
+
}
|
2494 |
+
},
|
2495 |
+
"wnli+confident": {
|
2496 |
+
"2022-07-14-10-03-25": {
|
2497 |
+
"acc": 0.43661971830985913,
|
2498 |
+
"acc_norm": 0.43661971830985913,
|
2499 |
+
"acc_norm_stderr": 0.0592793555841297,
|
2500 |
+
"acc_stderr": 0.0592793555841297,
|
2501 |
+
"prompt_name": "confident",
|
2502 |
+
"task_name": "wnli"
|
2503 |
+
}
|
2504 |
+
},
|
2505 |
+
"wnli+entailment explained": {
|
2506 |
+
"2022-07-14-10-03-25": {
|
2507 |
+
"acc": 0.39436619718309857,
|
2508 |
+
"acc_norm": 0.43661971830985913,
|
2509 |
+
"acc_norm_stderr": 0.0592793555841297,
|
2510 |
+
"acc_stderr": 0.058412510854444266,
|
2511 |
+
"prompt_name": "entailment explained",
|
2512 |
+
"task_name": "wnli"
|
2513 |
+
}
|
2514 |
+
},
|
2515 |
+
"wnli+imply": {
|
2516 |
+
"2022-07-14-10-03-25": {
|
2517 |
+
"acc": 0.4225352112676056,
|
2518 |
+
"acc_norm": 0.43661971830985913,
|
2519 |
+
"acc_norm_stderr": 0.0592793555841297,
|
2520 |
+
"acc_stderr": 0.05903984205682581,
|
2521 |
+
"prompt_name": "imply",
|
2522 |
+
"task_name": "wnli"
|
2523 |
+
}
|
2524 |
+
},
|
2525 |
+
"wnli+justified": {
|
2526 |
+
"2022-07-14-10-03-25": {
|
2527 |
+
"acc": 0.43661971830985913,
|
2528 |
+
"acc_norm": 0.43661971830985913,
|
2529 |
+
"acc_norm_stderr": 0.0592793555841297,
|
2530 |
+
"acc_stderr": 0.0592793555841297,
|
2531 |
+
"prompt_name": "justified",
|
2532 |
+
"task_name": "wnli"
|
2533 |
+
}
|
2534 |
+
},
|
2535 |
+
"wnli+mean": {
|
2536 |
+
"2022-07-14-10-03-25": {
|
2537 |
+
"acc": 0.6619718309859155,
|
2538 |
+
"acc_norm": 0.43661971830985913,
|
2539 |
+
"acc_norm_stderr": 0.0592793555841297,
|
2540 |
+
"acc_stderr": 0.05653887739133513,
|
2541 |
+
"prompt_name": "mean",
|
2542 |
+
"task_name": "wnli"
|
2543 |
+
}
|
2544 |
+
},
|
2545 |
+
"wsc": {
|
2546 |
+
"2022-07-13-11-29-13": {
|
2547 |
+
"acc": 0.36538461538461536,
|
2548 |
+
"acc_stderr": 0.0474473339327792
|
2549 |
+
}
|
2550 |
+
},
|
2551 |
+
"wsc+GPT-3 Style": {
|
2552 |
+
"2022-07-14-10-03-25": {
|
2553 |
+
"acc": 0.36538461538461536,
|
2554 |
+
"acc_norm": 0.36538461538461536,
|
2555 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2556 |
+
"acc_stderr": 0.0474473339327792,
|
2557 |
+
"prompt_name": "GPT-3 Style",
|
2558 |
+
"task_name": "wsc"
|
2559 |
+
}
|
2560 |
+
},
|
2561 |
+
"wsc+I think they mean": {
|
2562 |
+
"2022-07-14-10-03-25": {
|
2563 |
+
"acc": 0.36538461538461536,
|
2564 |
+
"acc_norm": 0.36538461538461536,
|
2565 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2566 |
+
"acc_stderr": 0.0474473339327792,
|
2567 |
+
"prompt_name": "I think they mean",
|
2568 |
+
"task_name": "wsc"
|
2569 |
+
}
|
2570 |
+
},
|
2571 |
+
"wsc+Who or what is/are": {
|
2572 |
+
"2022-07-14-10-03-25": {
|
2573 |
+
"acc": 0.40384615384615385,
|
2574 |
+
"acc_norm": 0.36538461538461536,
|
2575 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2576 |
+
"acc_stderr": 0.048346889526540184,
|
2577 |
+
"prompt_name": "Who or what is/are",
|
2578 |
+
"task_name": "wsc"
|
2579 |
+
}
|
2580 |
+
},
|
2581 |
+
"wsc+by p they mean": {
|
2582 |
+
"2022-07-14-10-03-25": {
|
2583 |
+
"acc": 0.36538461538461536,
|
2584 |
+
"acc_norm": 0.36538461538461536,
|
2585 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2586 |
+
"acc_stderr": 0.0474473339327792,
|
2587 |
+
"prompt_name": "by p they mean",
|
2588 |
+
"task_name": "wsc"
|
2589 |
+
}
|
2590 |
+
},
|
2591 |
+
"wsc+does p stand for": {
|
2592 |
+
"2022-07-14-10-03-25": {
|
2593 |
+
"acc": 0.375,
|
2594 |
+
"acc_norm": 0.36538461538461536,
|
2595 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2596 |
+
"acc_stderr": 0.04770204856076104,
|
2597 |
+
"prompt_name": "does p stand for",
|
2598 |
+
"task_name": "wsc"
|
2599 |
+
}
|
2600 |
+
},
|
2601 |
+
"wsc+does the pronoun refer to": {
|
2602 |
+
"2022-07-14-10-03-25": {
|
2603 |
+
"acc": 0.5480769230769231,
|
2604 |
+
"acc_norm": 0.36538461538461536,
|
2605 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2606 |
+
"acc_stderr": 0.049038186969314335,
|
2607 |
+
"prompt_name": "does the pronoun refer to",
|
2608 |
+
"task_name": "wsc"
|
2609 |
+
}
|
2610 |
+
},
|
2611 |
+
"wsc+in other words": {
|
2612 |
+
"2022-07-14-10-03-25": {
|
2613 |
+
"acc": 0.36538461538461536,
|
2614 |
+
"acc_norm": 0.5288461538461539,
|
2615 |
+
"acc_norm_stderr": 0.04918440626354964,
|
2616 |
+
"acc_stderr": 0.0474473339327792,
|
2617 |
+
"prompt_name": "in other words",
|
2618 |
+
"task_name": "wsc"
|
2619 |
+
}
|
2620 |
+
},
|
2621 |
+
"wsc+p is/are r": {
|
2622 |
+
"2022-07-14-10-03-25": {
|
2623 |
+
"acc": 0.36538461538461536,
|
2624 |
+
"acc_norm": 0.34615384615384615,
|
2625 |
+
"acc_norm_stderr": 0.04687634642174987,
|
2626 |
+
"acc_stderr": 0.0474473339327792,
|
2627 |
+
"prompt_name": "p is/are r",
|
2628 |
+
"task_name": "wsc"
|
2629 |
+
}
|
2630 |
+
},
|
2631 |
+
"wsc+replaced with": {
|
2632 |
+
"2022-07-14-10-03-25": {
|
2633 |
+
"acc": 0.6153846153846154,
|
2634 |
+
"acc_norm": 0.36538461538461536,
|
2635 |
+
"acc_norm_stderr": 0.0474473339327792,
|
2636 |
+
"acc_stderr": 0.047936688680750406,
|
2637 |
+
"prompt_name": "replaced with",
|
2638 |
+
"task_name": "wsc"
|
2639 |
+
}
|
2640 |
+
},
|
2641 |
+
"wsc+the pronoun refers to": {
|
2642 |
+
"2022-07-14-10-03-25": {
|
2643 |
+
"acc": 0.36538461538461536,
|
2644 |
+
"acc_norm": 0.5865384615384616,
|
2645 |
+
"acc_norm_stderr": 0.04852294969729053,
|
2646 |
+
"acc_stderr": 0.0474473339327792,
|
2647 |
+
"prompt_name": "the pronoun refers to",
|
2648 |
+
"task_name": "wsc"
|
2649 |
+
}
|
2650 |
+
}
|
2651 |
+
},
|
2652 |
+
"versions": {
|
2653 |
+
"arc_challenge": 0,
|
2654 |
+
"arc_easy": 0,
|
2655 |
+
"axb+GPT-3 style": 0,
|
2656 |
+
"axb+MNLI crowdsource": 0,
|
2657 |
+
"axb+based on the previous passage": 0,
|
2658 |
+
"axb+can we infer": 0,
|
2659 |
+
"axb+does it follow that": 0,
|
2660 |
+
"axb+does this imply": 0,
|
2661 |
+
"axb+guaranteed true": 0,
|
2662 |
+
"axb+justified in saying": 0,
|
2663 |
+
"axb+must be true": 0,
|
2664 |
+
"axb+should assume": 0,
|
2665 |
+
"axg+GPT-3 style": 0,
|
2666 |
+
"axg+MNLI crowdsource": 0,
|
2667 |
+
"axg+based on the previous passage": 0,
|
2668 |
+
"axg+can we infer": 0,
|
2669 |
+
"axg+does it follow that": 0,
|
2670 |
+
"axg+does this imply": 0,
|
2671 |
+
"axg+guaranteed true": 0,
|
2672 |
+
"axg+justified in saying": 0,
|
2673 |
+
"axg+must be true": 0,
|
2674 |
+
"axg+should assume": 0,
|
2675 |
+
"boolq": 1,
|
2676 |
+
"boolq+GPT-3 Style": 0,
|
2677 |
+
"boolq+I wonder\u2026": 0,
|
2678 |
+
"boolq+after_reading": 0,
|
2679 |
+
"boolq+based on the following passage": 0,
|
2680 |
+
"boolq+based on the previous passage": 0,
|
2681 |
+
"boolq+could you tell me\u2026": 0,
|
2682 |
+
"boolq+exam": 0,
|
2683 |
+
"boolq+exercise": 0,
|
2684 |
+
"boolq+valid_binary": 0,
|
2685 |
+
"boolq+yes_no_question": 0,
|
2686 |
+
"cb+GPT-3 style": 0,
|
2687 |
+
"cb+MNLI crowdsource": 0,
|
2688 |
+
"cb+always/sometimes/never": 0,
|
2689 |
+
"cb+based on the previous passage": 0,
|
2690 |
+
"cb+can we infer": 0,
|
2691 |
+
"cb+claim true/false/inconclusive": 0,
|
2692 |
+
"cb+consider always/sometimes/never": 0,
|
2693 |
+
"cb+does it follow that": 0,
|
2694 |
+
"cb+does this imply": 0,
|
2695 |
+
"cb+guaranteed true": 0,
|
2696 |
+
"cb+guaranteed/possible/impossible": 0,
|
2697 |
+
"cb+justified in saying": 0,
|
2698 |
+
"cb+must be true": 0,
|
2699 |
+
"cb+should assume": 0,
|
2700 |
+
"cb+take the following as truth": 0,
|
2701 |
+
"cola+Following sentence acceptable": 0,
|
2702 |
+
"cola+Make sense yes no": 0,
|
2703 |
+
"cola+Previous sentence acceptable": 0,
|
2704 |
+
"cola+editing": 0,
|
2705 |
+
"cola+is_this_correct": 0,
|
2706 |
+
"copa": 0,
|
2707 |
+
"copa+C1 or C2? premise, so/because\u2026": 0,
|
2708 |
+
"copa+best_option": 0,
|
2709 |
+
"copa+cause_effect": 0,
|
2710 |
+
"copa+choose": 0,
|
2711 |
+
"copa+exercise": 0,
|
2712 |
+
"copa+i_am_hesitating": 0,
|
2713 |
+
"copa+more likely": 0,
|
2714 |
+
"copa+plausible_alternatives": 0,
|
2715 |
+
"crows_pairs_english+1": 0,
|
2716 |
+
"crows_pairs_english+2": 0,
|
2717 |
+
"crows_pairs_english+3": 0,
|
2718 |
+
"crows_pairs_english+4": 0,
|
2719 |
+
"crows_pairs_english+A_preference": 0,
|
2720 |
+
"crows_pairs_english+A_reality_check": 0,
|
2721 |
+
"crows_pairs_english+A_stereotype_true": 0,
|
2722 |
+
"crows_pairs_french+1_fr": 0,
|
2723 |
+
"crows_pairs_french+2_fr": 0,
|
2724 |
+
"crows_pairs_french+3_fr": 0,
|
2725 |
+
"crows_pairs_french+4_fr": 0,
|
2726 |
+
"crows_pairs_french+A_preference_fr": 0,
|
2727 |
+
"crows_pairs_french+A_reality_check_fr": 0,
|
2728 |
+
"crows_pairs_french+A_stereotype_true_fr": 0,
|
2729 |
+
"diabla+Is the error present? (same lang)": 0,
|
2730 |
+
"diabla+Which is automatic?": 0,
|
2731 |
+
"gsarti/flores_101_afr+null": 0,
|
2732 |
+
"gsarti/flores_101_amh+null": 0,
|
2733 |
+
"gsarti/flores_101_ara+null": 0,
|
2734 |
+
"gsarti/flores_101_asm+null": 0,
|
2735 |
+
"gsarti/flores_101_ast+null": 0,
|
2736 |
+
"gsarti/flores_101_azj+null": 0,
|
2737 |
+
"gsarti/flores_101_bel+null": 0,
|
2738 |
+
"gsarti/flores_101_ben+null": 0,
|
2739 |
+
"gsarti/flores_101_bos+null": 0,
|
2740 |
+
"gsarti/flores_101_bul+null": 0,
|
2741 |
+
"gsarti/flores_101_cat+null": 0,
|
2742 |
+
"gsarti/flores_101_ceb+null": 0,
|
2743 |
+
"gsarti/flores_101_ces+null": 0,
|
2744 |
+
"gsarti/flores_101_ckb+null": 0,
|
2745 |
+
"gsarti/flores_101_cym+null": 0,
|
2746 |
+
"gsarti/flores_101_dan+null": 0,
|
2747 |
+
"gsarti/flores_101_deu+null": 0,
|
2748 |
+
"gsarti/flores_101_ell+null": 0,
|
2749 |
+
"gsarti/flores_101_eng+null": 0,
|
2750 |
+
"gsarti/flores_101_est+null": 0,
|
2751 |
+
"gsarti/flores_101_fas+null": 0,
|
2752 |
+
"gsarti/flores_101_fin+null": 0,
|
2753 |
+
"gsarti/flores_101_fra+null": 0,
|
2754 |
+
"gsarti/flores_101_ful+null": 0,
|
2755 |
+
"gsarti/flores_101_gle+null": 0,
|
2756 |
+
"gsarti/flores_101_glg+null": 0,
|
2757 |
+
"gsarti/flores_101_guj+null": 0,
|
2758 |
+
"gsarti/flores_101_hau+null": 0,
|
2759 |
+
"gsarti/flores_101_heb+null": 0,
|
2760 |
+
"gsarti/flores_101_hin+null": 0,
|
2761 |
+
"gsarti/flores_101_hrv+null": 0,
|
2762 |
+
"gsarti/flores_101_hun+null": 0,
|
2763 |
+
"gsarti/flores_101_hye+null": 0,
|
2764 |
+
"gsarti/flores_101_ibo+null": 0,
|
2765 |
+
"gsarti/flores_101_ind+null": 0,
|
2766 |
+
"gsarti/flores_101_isl+null": 0,
|
2767 |
+
"gsarti/flores_101_ita+null": 0,
|
2768 |
+
"gsarti/flores_101_jav+null": 0,
|
2769 |
+
"gsarti/flores_101_jpn+null": 0,
|
2770 |
+
"gsarti/flores_101_kam+null": 0,
|
2771 |
+
"gsarti/flores_101_kan+null": 0,
|
2772 |
+
"gsarti/flores_101_kat+null": 0,
|
2773 |
+
"gsarti/flores_101_kaz+null": 0,
|
2774 |
+
"gsarti/flores_101_kea+null": 0,
|
2775 |
+
"gsarti/flores_101_kir+null": 0,
|
2776 |
+
"gsarti/flores_101_kor+null": 0,
|
2777 |
+
"gsarti/flores_101_lao+null": 0,
|
2778 |
+
"gsarti/flores_101_lav+null": 0,
|
2779 |
+
"gsarti/flores_101_lin+null": 0,
|
2780 |
+
"gsarti/flores_101_lit+null": 0,
|
2781 |
+
"gsarti/flores_101_ltz+null": 0,
|
2782 |
+
"gsarti/flores_101_lug+null": 0,
|
2783 |
+
"gsarti/flores_101_luo+null": 0,
|
2784 |
+
"gsarti/flores_101_mal+null": 0,
|
2785 |
+
"gsarti/flores_101_mar+null": 0,
|
2786 |
+
"gsarti/flores_101_mkd+null": 0,
|
2787 |
+
"gsarti/flores_101_mlt+null": 0,
|
2788 |
+
"gsarti/flores_101_mon+null": 0,
|
2789 |
+
"gsarti/flores_101_mri+null": 0,
|
2790 |
+
"gsarti/flores_101_msa+null": 0,
|
2791 |
+
"gsarti/flores_101_mya+null": 0,
|
2792 |
+
"gsarti/flores_101_nld+null": 0,
|
2793 |
+
"gsarti/flores_101_nob+null": 0,
|
2794 |
+
"gsarti/flores_101_npi+null": 0,
|
2795 |
+
"gsarti/flores_101_nso+null": 0,
|
2796 |
+
"gsarti/flores_101_nya+null": 0,
|
2797 |
+
"gsarti/flores_101_oci+null": 0,
|
2798 |
+
"gsarti/flores_101_orm+null": 0,
|
2799 |
+
"gsarti/flores_101_ory+null": 0,
|
2800 |
+
"gsarti/flores_101_pan+null": 0,
|
2801 |
+
"gsarti/flores_101_pol+null": 0,
|
2802 |
+
"gsarti/flores_101_por+null": 0,
|
2803 |
+
"gsarti/flores_101_pus+null": 0,
|
2804 |
+
"gsarti/flores_101_ron+null": 0,
|
2805 |
+
"gsarti/flores_101_rus+null": 0,
|
2806 |
+
"gsarti/flores_101_slk+null": 0,
|
2807 |
+
"gsarti/flores_101_slv+null": 0,
|
2808 |
+
"gsarti/flores_101_sna+null": 0,
|
2809 |
+
"gsarti/flores_101_snd+null": 0,
|
2810 |
+
"gsarti/flores_101_som+null": 0,
|
2811 |
+
"gsarti/flores_101_spa+null": 0,
|
2812 |
+
"gsarti/flores_101_srp+null": 0,
|
2813 |
+
"gsarti/flores_101_swe+null": 0,
|
2814 |
+
"gsarti/flores_101_swh+null": 0,
|
2815 |
+
"gsarti/flores_101_tam+null": 0,
|
2816 |
+
"gsarti/flores_101_tel+null": 0,
|
2817 |
+
"gsarti/flores_101_tgk+null": 0,
|
2818 |
+
"gsarti/flores_101_tgl+null": 0,
|
2819 |
+
"gsarti/flores_101_tha+null": 0,
|
2820 |
+
"gsarti/flores_101_tur+null": 0,
|
2821 |
+
"gsarti/flores_101_ukr+null": 0,
|
2822 |
+
"gsarti/flores_101_umb+null": 0,
|
2823 |
+
"gsarti/flores_101_urd+null": 0,
|
2824 |
+
"gsarti/flores_101_uzb+null": 0,
|
2825 |
+
"gsarti/flores_101_vie+null": 0,
|
2826 |
+
"gsarti/flores_101_wol+null": 0,
|
2827 |
+
"gsarti/flores_101_xho+null": 0,
|
2828 |
+
"gsarti/flores_101_yor+null": 0,
|
2829 |
+
"gsarti/flores_101_zho_simpl+null": 0,
|
2830 |
+
"gsarti/flores_101_zho_trad+null": 0,
|
2831 |
+
"gsarti/flores_101_zul+null": 0,
|
2832 |
+
"headqa": 0,
|
2833 |
+
"hellaswag": 0,
|
2834 |
+
"lambada": 0,
|
2835 |
+
"logiqa": 0,
|
2836 |
+
"mathqa": 0,
|
2837 |
+
"mc_taco": 0,
|
2838 |
+
"mnli+GPT-3 style": 0,
|
2839 |
+
"mnli+MNLI crowdsource": 0,
|
2840 |
+
"mnli+always/sometimes/never": 0,
|
2841 |
+
"mnli+based on the previous passage": 0,
|
2842 |
+
"mnli+can we infer": 0,
|
2843 |
+
"mnli+claim true/false/inconclusive": 0,
|
2844 |
+
"mnli+consider always/sometimes/never": 0,
|
2845 |
+
"mnli+does it follow that": 0,
|
2846 |
+
"mnli+does this imply": 0,
|
2847 |
+
"mnli+guaranteed true": 0,
|
2848 |
+
"mnli+guaranteed/possible/impossible": 0,
|
2849 |
+
"mnli+justified in saying": 0,
|
2850 |
+
"mnli+must be true": 0,
|
2851 |
+
"mnli+should assume": 0,
|
2852 |
+
"mnli+take the following as truth": 0,
|
2853 |
+
"mnli_mismatched+GPT-3 style": 0,
|
2854 |
+
"mnli_mismatched+MNLI crowdsource": 0,
|
2855 |
+
"mnli_mismatched+always/sometimes/never": 0,
|
2856 |
+
"mnli_mismatched+based on the previous passage": 0,
|
2857 |
+
"mnli_mismatched+can we infer": 0,
|
2858 |
+
"mnli_mismatched+claim true/false/inconclusive": 0,
|
2859 |
+
"mnli_mismatched+consider always/sometimes/never": 0,
|
2860 |
+
"mnli_mismatched+does it follow that": 0,
|
2861 |
+
"mnli_mismatched+does this imply": 0,
|
2862 |
+
"mnli_mismatched+guaranteed true": 0,
|
2863 |
+
"mnli_mismatched+guaranteed/possible/impossible": 0,
|
2864 |
+
"mnli_mismatched+justified in saying": 0,
|
2865 |
+
"mnli_mismatched+must be true": 0,
|
2866 |
+
"mnli_mismatched+should assume": 0,
|
2867 |
+
"mnli_mismatched+take the following as truth": 0,
|
2868 |
+
"mrpc": 0,
|
2869 |
+
"multirc": 1,
|
2870 |
+
"multirc+I was going to say\u2026": 0,
|
2871 |
+
"multirc+Would it be good to answer\u2026": 0,
|
2872 |
+
"multirc+confirm": 0,
|
2873 |
+
"multirc+correct": 0,
|
2874 |
+
"multirc+decide_valid": 0,
|
2875 |
+
"multirc+found_this_answer": 0,
|
2876 |
+
"multirc+grading": 0,
|
2877 |
+
"multirc+is the correct answer\u2026": 0,
|
2878 |
+
"multirc+is\u2026 a correct answer?": 0,
|
2879 |
+
"multirc+paragraph\u2026 question\u2026 is it\u2026 ?": 0,
|
2880 |
+
"openbookqa": 0,
|
2881 |
+
"piqa": 0,
|
2882 |
+
"prost": 0,
|
2883 |
+
"pubmedqa": 0,
|
2884 |
+
"qnli": 0,
|
2885 |
+
"qqp": 0,
|
2886 |
+
"qqp+answer": 0,
|
2887 |
+
"qqp+duplicate": 0,
|
2888 |
+
"qqp+duplicate or not": 0,
|
2889 |
+
"qqp+meaning": 0,
|
2890 |
+
"qqp+quora": 0,
|
2891 |
+
"qqp+same thing": 0,
|
2892 |
+
"race": 1,
|
2893 |
+
"rte": 0,
|
2894 |
+
"rte+does the claim\u2026 follow the fact\u2026": 0,
|
2895 |
+
"rte+entailment explained": 0,
|
2896 |
+
"rte+imply": 0,
|
2897 |
+
"rte+imply separated": 0,
|
2898 |
+
"rte+mean": 0,
|
2899 |
+
"sciq": 0,
|
2900 |
+
"sst": 0,
|
2901 |
+
"sst+following positive negative": 0,
|
2902 |
+
"sst+happy or mad": 0,
|
2903 |
+
"sst+positive negative after": 0,
|
2904 |
+
"sst+review": 0,
|
2905 |
+
"sst+said": 0,
|
2906 |
+
"triviaqa": 0,
|
2907 |
+
"webqs": 0,
|
2908 |
+
"wic": 0,
|
2909 |
+
"wic+GPT-3-prompt": 0,
|
2910 |
+
"wic+GPT-3-prompt-with-label": 0,
|
2911 |
+
"wic+affirmation_true_or_false": 0,
|
2912 |
+
"wic+grammar_homework": 0,
|
2913 |
+
"wic+polysemous": 0,
|
2914 |
+
"wic+question-context": 0,
|
2915 |
+
"wic+question-context-meaning": 0,
|
2916 |
+
"wic+question-context-meaning-with-label": 0,
|
2917 |
+
"wic+same_sense": 0,
|
2918 |
+
"wic+similar-sense": 0,
|
2919 |
+
"winogrande": 0,
|
2920 |
+
"wnli": 1,
|
2921 |
+
"wnli+confident": 1,
|
2922 |
+
"wnli+entailment explained": 1,
|
2923 |
+
"wnli+imply": 1,
|
2924 |
+
"wnli+justified": 1,
|
2925 |
+
"wnli+mean": 1,
|
2926 |
+
"wsc": 0,
|
2927 |
+
"wsc+GPT-3 Style": 0,
|
2928 |
+
"wsc+I think they mean": 0,
|
2929 |
+
"wsc+Who or what is/are": 0,
|
2930 |
+
"wsc+by p they mean": 0,
|
2931 |
+
"wsc+does p stand for": 0,
|
2932 |
+
"wsc+does the pronoun refer to": 0,
|
2933 |
+
"wsc+in other words": 0,
|
2934 |
+
"wsc+p is/are r": 0,
|
2935 |
+
"wsc+replaced with": 0,
|
2936 |
+
"wsc+the pronoun refers to": 0
|
2937 |
+
}
|
2938 |
+
}
|
evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11-1b3-ml-evalharness-results_lm-eval_global_step340500_2022-07-13-11-29-13.json
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"arc_challenge": {
|
4 |
+
"acc": 0.23464163822525597,
|
5 |
+
"acc_stderr": 0.012383873560768673,
|
6 |
+
"acc_norm": 0.26791808873720135,
|
7 |
+
"acc_norm_stderr": 0.012942030195136423
|
8 |
+
},
|
9 |
+
"arc_easy": {
|
10 |
+
"acc": 0.5631313131313131,
|
11 |
+
"acc_stderr": 0.010177672928157678,
|
12 |
+
"acc_norm": 0.4810606060606061,
|
13 |
+
"acc_norm_stderr": 0.010252420496894487
|
14 |
+
},
|
15 |
+
"boolq": {
|
16 |
+
"acc": 0.617737003058104,
|
17 |
+
"acc_stderr": 0.008499149690449272
|
18 |
+
},
|
19 |
+
"copa": {
|
20 |
+
"acc": 0.7,
|
21 |
+
"acc_stderr": 0.046056618647183814
|
22 |
+
},
|
23 |
+
"headqa": {
|
24 |
+
"acc": 0.25419401896425964,
|
25 |
+
"acc_stderr": 0.008316509290190668,
|
26 |
+
"acc_norm": 0.29576951130561635,
|
27 |
+
"acc_norm_stderr": 0.008717251898361422
|
28 |
+
},
|
29 |
+
"hellaswag": {
|
30 |
+
"acc": 0.37621987651862177,
|
31 |
+
"acc_stderr": 0.004834461997944872,
|
32 |
+
"acc_norm": 0.46564429396534557,
|
33 |
+
"acc_norm_stderr": 0.004977988452502641
|
34 |
+
},
|
35 |
+
"lambada": {
|
36 |
+
"ppl": 12.583447597222621,
|
37 |
+
"ppl_stderr": 0.4021518609838198,
|
38 |
+
"acc": 0.46322530564719583,
|
39 |
+
"acc_stderr": 0.006947110835634445
|
40 |
+
},
|
41 |
+
"logiqa": {
|
42 |
+
"acc": 0.21658986175115208,
|
43 |
+
"acc_stderr": 0.016156860583178303,
|
44 |
+
"acc_norm": 0.28110599078341014,
|
45 |
+
"acc_norm_stderr": 0.017632374626460005
|
46 |
+
},
|
47 |
+
"mathqa": {
|
48 |
+
"acc": 0.2489112227805695,
|
49 |
+
"acc_stderr": 0.007915319798861361,
|
50 |
+
"acc_norm": 0.2422110552763819,
|
51 |
+
"acc_norm_stderr": 0.007842810183504986
|
52 |
+
},
|
53 |
+
"mc_taco": {
|
54 |
+
"em": 0.12537537537537538,
|
55 |
+
"f1": 0.4747075325110886
|
56 |
+
},
|
57 |
+
"mrpc": {
|
58 |
+
"acc": 0.6813725490196079,
|
59 |
+
"acc_stderr": 0.023095996571841474,
|
60 |
+
"f1": 0.8104956268221574,
|
61 |
+
"f1_stderr": 0.016329211455484924
|
62 |
+
},
|
63 |
+
"multirc": {
|
64 |
+
"acc": 0.011542497376705142,
|
65 |
+
"acc_stderr": 0.003461867320927179
|
66 |
+
},
|
67 |
+
"openbookqa": {
|
68 |
+
"acc": 0.214,
|
69 |
+
"acc_stderr": 0.01835979750238702,
|
70 |
+
"acc_norm": 0.298,
|
71 |
+
"acc_norm_stderr": 0.020475118092988978
|
72 |
+
},
|
73 |
+
"piqa": {
|
74 |
+
"acc": 0.6871599564744287,
|
75 |
+
"acc_stderr": 0.010817714425701112,
|
76 |
+
"acc_norm": 0.7002176278563657,
|
77 |
+
"acc_norm_stderr": 0.010689686967138092
|
78 |
+
},
|
79 |
+
"prost": {
|
80 |
+
"acc": 0.23505550811272416,
|
81 |
+
"acc_stderr": 0.0030979423271461875,
|
82 |
+
"acc_norm": 0.2670260461144321,
|
83 |
+
"acc_norm_stderr": 0.0032321702981822874
|
84 |
+
},
|
85 |
+
"pubmedqa": {
|
86 |
+
"acc": 0.56,
|
87 |
+
"acc_stderr": 0.015704987954361798
|
88 |
+
},
|
89 |
+
"qnli": {
|
90 |
+
"acc": 0.4962474830679114,
|
91 |
+
"acc_stderr": 0.006765220016415222
|
92 |
+
},
|
93 |
+
"qqp": {
|
94 |
+
"acc": 0.3681424684640119,
|
95 |
+
"acc_stderr": 0.0023986729832071816,
|
96 |
+
"f1": 0.5381138352498734,
|
97 |
+
"f1_stderr": 0.002555831569895799
|
98 |
+
},
|
99 |
+
"race": {
|
100 |
+
"acc": 0.3320574162679426,
|
101 |
+
"acc_stderr": 0.014575582129545914
|
102 |
+
},
|
103 |
+
"rte": {
|
104 |
+
"acc": 0.5342960288808665,
|
105 |
+
"acc_stderr": 0.030025579819366426
|
106 |
+
},
|
107 |
+
"sciq": {
|
108 |
+
"acc": 0.853,
|
109 |
+
"acc_stderr": 0.011203415395160335,
|
110 |
+
"acc_norm": 0.771,
|
111 |
+
"acc_norm_stderr": 0.013294199326613609
|
112 |
+
},
|
113 |
+
"sst": {
|
114 |
+
"acc": 0.6823394495412844,
|
115 |
+
"acc_stderr": 0.015775124845202545
|
116 |
+
},
|
117 |
+
"triviaqa": {
|
118 |
+
"acc": 0.0313798285158667,
|
119 |
+
"acc_stderr": 0.0016392014864795154
|
120 |
+
},
|
121 |
+
"webqs": {
|
122 |
+
"acc": 0.012795275590551181,
|
123 |
+
"acc_stderr": 0.0024938680596856277
|
124 |
+
},
|
125 |
+
"wic": {
|
126 |
+
"acc": 0.5,
|
127 |
+
"acc_stderr": 0.01981072129375818
|
128 |
+
},
|
129 |
+
"winogrande": {
|
130 |
+
"acc": 0.5730071033938438,
|
131 |
+
"acc_stderr": 0.013901878072575058
|
132 |
+
},
|
133 |
+
"wnli": {
|
134 |
+
"acc": 0.43661971830985913,
|
135 |
+
"acc_stderr": 0.0592793555841297
|
136 |
+
},
|
137 |
+
"wsc": {
|
138 |
+
"acc": 0.36538461538461536,
|
139 |
+
"acc_stderr": 0.0474473339327792
|
140 |
+
}
|
141 |
+
},
|
142 |
+
"versions": {
|
143 |
+
"arc_challenge": 0,
|
144 |
+
"arc_easy": 0,
|
145 |
+
"boolq": 1,
|
146 |
+
"copa": 0,
|
147 |
+
"headqa": 0,
|
148 |
+
"hellaswag": 0,
|
149 |
+
"lambada": 0,
|
150 |
+
"logiqa": 0,
|
151 |
+
"mathqa": 0,
|
152 |
+
"mc_taco": 0,
|
153 |
+
"mrpc": 0,
|
154 |
+
"multirc": 1,
|
155 |
+
"openbookqa": 0,
|
156 |
+
"piqa": 0,
|
157 |
+
"prost": 0,
|
158 |
+
"pubmedqa": 0,
|
159 |
+
"qnli": 0,
|
160 |
+
"qqp": 0,
|
161 |
+
"race": 1,
|
162 |
+
"rte": 0,
|
163 |
+
"sciq": 0,
|
164 |
+
"sst": 0,
|
165 |
+
"triviaqa": 0,
|
166 |
+
"webqs": 0,
|
167 |
+
"wic": 0,
|
168 |
+
"winogrande": 0,
|
169 |
+
"wnli": 1,
|
170 |
+
"wsc": 0
|
171 |
+
}
|
172 |
+
}
|
evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-12-22-45-57.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluation/results/tr11/bloom1b3/bslmevalfiles/tr11b-1b3-ml-bsevalharness-results_lm-eval_global_step340500_2022-07-15-11-47-34.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluation/results/tr11/bloom1b3/humaneval_temp02.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.04033536585365854, "pass@10": 0.06579071150715766, "pass@100": 0.08764228719065376}
|
evaluation/results/tr11/bloom1b3/humaneval_temp06.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.031249999999999993, "pass@10": 0.07447701667197712, "pass@100": 0.1253791767704454}
|
evaluation/results/tr11/bloom1b3/humaneval_temp08.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.023475609756097564, "pass@10": 0.06591235746713595, "pass@100": 0.12748827115496364}
|
evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-12-23-19-06.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-13-19-42-29.json
ADDED
@@ -0,0 +1,1917 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "multirc",
|
5 |
+
"prompt_name": "I was going to say\u2026",
|
6 |
+
"acc": 0.5724009900990099,
|
7 |
+
"fixed_answer_choice_list": [
|
8 |
+
"No",
|
9 |
+
"Yes"
|
10 |
+
],
|
11 |
+
"dataset_path": "super_glue",
|
12 |
+
"dataset_name": "multirc",
|
13 |
+
"subset": null,
|
14 |
+
"prompt_id": "d2d78b88-8845-45b5-935a-6451da00b285",
|
15 |
+
"prompt_jinja": "{{ paragraph }}\n{{ question }} \nI was going to say \"{{ answer }}\". Does that sound right? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
16 |
+
"prompt_original_task": true,
|
17 |
+
"comment": "",
|
18 |
+
"acc_stderr": 0.007106111600745623
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"task_name": "multirc",
|
22 |
+
"prompt_name": "I was going to say\u2026",
|
23 |
+
"acc_norm": 0.42883663366336633,
|
24 |
+
"fixed_answer_choice_list": [
|
25 |
+
"No",
|
26 |
+
"Yes"
|
27 |
+
],
|
28 |
+
"dataset_path": "super_glue",
|
29 |
+
"dataset_name": "multirc",
|
30 |
+
"subset": null,
|
31 |
+
"prompt_id": "d2d78b88-8845-45b5-935a-6451da00b285",
|
32 |
+
"prompt_jinja": "{{ paragraph }}\n{{ question }} \nI was going to say \"{{ answer }}\". Does that sound right? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
33 |
+
"prompt_original_task": true,
|
34 |
+
"comment": "",
|
35 |
+
"acc_norm_stderr": 0.00710869042313772
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"task_name": "multirc",
|
39 |
+
"prompt_name": "Would it be good to answer\u2026",
|
40 |
+
"acc": 0.5204207920792079,
|
41 |
+
"fixed_answer_choice_list": [
|
42 |
+
"No",
|
43 |
+
"Yes"
|
44 |
+
],
|
45 |
+
"dataset_path": "super_glue",
|
46 |
+
"dataset_name": "multirc",
|
47 |
+
"subset": null,
|
48 |
+
"prompt_id": "4fc9e1ea-7451-4dba-a2cb-ce870e35ef8b",
|
49 |
+
"prompt_jinja": "{{ paragraph }}\n{{ question }} \nWould it be good to answer \"{{ answer }}\"? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
50 |
+
"prompt_original_task": true,
|
51 |
+
"comment": "",
|
52 |
+
"acc_stderr": 0.0071758108566598
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"task_name": "multirc",
|
56 |
+
"prompt_name": "Would it be good to answer\u2026",
|
57 |
+
"acc_norm": 0.43337458745874585,
|
58 |
+
"fixed_answer_choice_list": [
|
59 |
+
"No",
|
60 |
+
"Yes"
|
61 |
+
],
|
62 |
+
"dataset_path": "super_glue",
|
63 |
+
"dataset_name": "multirc",
|
64 |
+
"subset": null,
|
65 |
+
"prompt_id": "4fc9e1ea-7451-4dba-a2cb-ce870e35ef8b",
|
66 |
+
"prompt_jinja": "{{ paragraph }}\n{{ question }} \nWould it be good to answer \"{{ answer }}\"? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
67 |
+
"prompt_original_task": true,
|
68 |
+
"comment": "",
|
69 |
+
"acc_norm_stderr": 0.00711775827463544
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"task_name": "multirc",
|
73 |
+
"prompt_name": "confirm",
|
74 |
+
"acc": 0.4329620462046205,
|
75 |
+
"fixed_answer_choice_list": [
|
76 |
+
"No",
|
77 |
+
"Yes"
|
78 |
+
],
|
79 |
+
"dataset_path": "super_glue",
|
80 |
+
"dataset_name": "multirc",
|
81 |
+
"subset": null,
|
82 |
+
"prompt_id": "b63fd1c3-b4a6-43c3-8429-6a389235b2a4",
|
83 |
+
"prompt_jinja": "{{paragraph}}\n\nQuestion: {{question}}\nI think \"{{answer}}\" is a valid answer. Could you confirm? Yes or no?\n|||\n{% if label != -1 %}{{answer_choices[label]}}{% endif %}",
|
84 |
+
"prompt_original_task": true,
|
85 |
+
"comment": "",
|
86 |
+
"acc_stderr": 0.007116959070151668
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"task_name": "multirc",
|
90 |
+
"prompt_name": "confirm",
|
91 |
+
"acc_norm": 0.4280115511551155,
|
92 |
+
"fixed_answer_choice_list": [
|
93 |
+
"No",
|
94 |
+
"Yes"
|
95 |
+
],
|
96 |
+
"dataset_path": "super_glue",
|
97 |
+
"dataset_name": "multirc",
|
98 |
+
"subset": null,
|
99 |
+
"prompt_id": "b63fd1c3-b4a6-43c3-8429-6a389235b2a4",
|
100 |
+
"prompt_jinja": "{{paragraph}}\n\nQuestion: {{question}}\nI think \"{{answer}}\" is a valid answer. Could you confirm? Yes or no?\n|||\n{% if label != -1 %}{{answer_choices[label]}}{% endif %}",
|
101 |
+
"prompt_original_task": true,
|
102 |
+
"comment": "",
|
103 |
+
"acc_norm_stderr": 0.007106976252751536
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"task_name": "multirc",
|
107 |
+
"prompt_name": "correct",
|
108 |
+
"acc": 0.5721947194719472,
|
109 |
+
"fixed_answer_choice_list": [
|
110 |
+
"No",
|
111 |
+
"Yes"
|
112 |
+
],
|
113 |
+
"dataset_path": "super_glue",
|
114 |
+
"dataset_name": "multirc",
|
115 |
+
"subset": null,
|
116 |
+
"prompt_id": "ae9b2b0b-1731-4370-adcc-36c4a959490d",
|
117 |
+
"prompt_jinja": "Is \"{{answer}}\" a correct answer to the following question?\nQuestion: {{question}}\n\nRely on the following text: {{paragraph}}\n|||\n{% if label != -1 %}{{answer_choices[label]}}{% endif %}",
|
118 |
+
"prompt_original_task": true,
|
119 |
+
"comment": "",
|
120 |
+
"acc_stderr": 0.007106544557507229
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"task_name": "multirc",
|
124 |
+
"prompt_name": "correct",
|
125 |
+
"acc_norm": 0.4709158415841584,
|
126 |
+
"fixed_answer_choice_list": [
|
127 |
+
"No",
|
128 |
+
"Yes"
|
129 |
+
],
|
130 |
+
"dataset_path": "super_glue",
|
131 |
+
"dataset_name": "multirc",
|
132 |
+
"subset": null,
|
133 |
+
"prompt_id": "ae9b2b0b-1731-4370-adcc-36c4a959490d",
|
134 |
+
"prompt_jinja": "Is \"{{answer}}\" a correct answer to the following question?\nQuestion: {{question}}\n\nRely on the following text: {{paragraph}}\n|||\n{% if label != -1 %}{{answer_choices[label]}}{% endif %}",
|
135 |
+
"prompt_original_task": true,
|
136 |
+
"comment": "",
|
137 |
+
"acc_norm_stderr": 0.00716964280499065
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"task_name": "multirc",
|
141 |
+
"prompt_name": "decide_valid",
|
142 |
+
"acc": 0.5375412541254125,
|
143 |
+
"fixed_answer_choice_list": [
|
144 |
+
"No",
|
145 |
+
"Yes"
|
146 |
+
],
|
147 |
+
"dataset_path": "super_glue",
|
148 |
+
"dataset_name": "multirc",
|
149 |
+
"subset": null,
|
150 |
+
"prompt_id": "7bf537ea-ff8d-44c7-8fc9-305b35e3be66",
|
151 |
+
"prompt_jinja": "{{paragraph}}\n\nDecide whether \"{{answer}}\" is a valid answer to the following question: {{question}}\nAnswer yes or no.\n|||\n{% if label != -1 %}{{answer_choices[label]}}{% endif %}",
|
152 |
+
"prompt_original_task": true,
|
153 |
+
"comment": "",
|
154 |
+
"acc_stderr": 0.007161531207958062
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"task_name": "multirc",
|
158 |
+
"prompt_name": "decide_valid",
|
159 |
+
"acc_norm": 0.4280115511551155,
|
160 |
+
"fixed_answer_choice_list": [
|
161 |
+
"No",
|
162 |
+
"Yes"
|
163 |
+
],
|
164 |
+
"dataset_path": "super_glue",
|
165 |
+
"dataset_name": "multirc",
|
166 |
+
"subset": null,
|
167 |
+
"prompt_id": "7bf537ea-ff8d-44c7-8fc9-305b35e3be66",
|
168 |
+
"prompt_jinja": "{{paragraph}}\n\nDecide whether \"{{answer}}\" is a valid answer to the following question: {{question}}\nAnswer yes or no.\n|||\n{% if label != -1 %}{{answer_choices[label]}}{% endif %}",
|
169 |
+
"prompt_original_task": true,
|
170 |
+
"comment": "",
|
171 |
+
"acc_norm_stderr": 0.007106976252751536
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"task_name": "multirc",
|
175 |
+
"prompt_name": "found_this_answer",
|
176 |
+
"acc": 0.4773102310231023,
|
177 |
+
"fixed_answer_choice_list": [
|
178 |
+
"No",
|
179 |
+
"Yes"
|
180 |
+
],
|
181 |
+
"dataset_path": "super_glue",
|
182 |
+
"dataset_name": "multirc",
|
183 |
+
"subset": null,
|
184 |
+
"prompt_id": "2d95962b-a545-41ae-8d76-07ee6704ef65",
|
185 |
+
"prompt_jinja": "{{paragraph}}\n\nQuestion: {{question}}\nI found this answer \"{{answer}}\". Is that correct? Yes or no?\n|||\n{% if label != -1 %}{{answer_choices[label]}}{% endif %}",
|
186 |
+
"prompt_original_task": true,
|
187 |
+
"comment": "",
|
188 |
+
"acc_stderr": 0.007174404542630741
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"task_name": "multirc",
|
192 |
+
"prompt_name": "found_this_answer",
|
193 |
+
"acc_norm": 0.4280115511551155,
|
194 |
+
"fixed_answer_choice_list": [
|
195 |
+
"No",
|
196 |
+
"Yes"
|
197 |
+
],
|
198 |
+
"dataset_path": "super_glue",
|
199 |
+
"dataset_name": "multirc",
|
200 |
+
"subset": null,
|
201 |
+
"prompt_id": "2d95962b-a545-41ae-8d76-07ee6704ef65",
|
202 |
+
"prompt_jinja": "{{paragraph}}\n\nQuestion: {{question}}\nI found this answer \"{{answer}}\". Is that correct? Yes or no?\n|||\n{% if label != -1 %}{{answer_choices[label]}}{% endif %}",
|
203 |
+
"prompt_original_task": true,
|
204 |
+
"comment": "",
|
205 |
+
"acc_norm_stderr": 0.007106976252751536
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"task_name": "multirc",
|
209 |
+
"prompt_name": "grading",
|
210 |
+
"acc": 0.5874587458745875,
|
211 |
+
"fixed_answer_choice_list": [
|
212 |
+
"No",
|
213 |
+
"Yes"
|
214 |
+
],
|
215 |
+
"dataset_path": "super_glue",
|
216 |
+
"dataset_name": "multirc",
|
217 |
+
"subset": null,
|
218 |
+
"prompt_id": "431a5c97-af33-4053-83c8-afb0dfc04448",
|
219 |
+
"prompt_jinja": "{{paragraph}}\nQuestion: {{question}}\n\nI am grading my students' exercises. Is the answer \"{{answer}}\" correct?\n|||\n{% if label != -1 %}{{answer_choices[label]}}{% endif %}",
|
220 |
+
"prompt_original_task": true,
|
221 |
+
"comment": "",
|
222 |
+
"acc_stderr": 0.007071081930208332
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"task_name": "multirc",
|
226 |
+
"prompt_name": "grading",
|
227 |
+
"acc_norm": 0.4280115511551155,
|
228 |
+
"fixed_answer_choice_list": [
|
229 |
+
"No",
|
230 |
+
"Yes"
|
231 |
+
],
|
232 |
+
"dataset_path": "super_glue",
|
233 |
+
"dataset_name": "multirc",
|
234 |
+
"subset": null,
|
235 |
+
"prompt_id": "431a5c97-af33-4053-83c8-afb0dfc04448",
|
236 |
+
"prompt_jinja": "{{paragraph}}\nQuestion: {{question}}\n\nI am grading my students' exercises. Is the answer \"{{answer}}\" correct?\n|||\n{% if label != -1 %}{{answer_choices[label]}}{% endif %}",
|
237 |
+
"prompt_original_task": true,
|
238 |
+
"comment": "",
|
239 |
+
"acc_norm_stderr": 0.007106976252751536
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"task_name": "multirc",
|
243 |
+
"prompt_name": "is the correct answer\u2026",
|
244 |
+
"acc": 0.5478547854785478,
|
245 |
+
"fixed_answer_choice_list": [
|
246 |
+
"No",
|
247 |
+
"Yes"
|
248 |
+
],
|
249 |
+
"dataset_path": "super_glue",
|
250 |
+
"dataset_name": "multirc",
|
251 |
+
"subset": null,
|
252 |
+
"prompt_id": "7d878b89-2774-429a-82fb-ac801379e3ae",
|
253 |
+
"prompt_jinja": "{{ paragraph }}\nQuestion: {{ question }} \nIs the correct answer {{ answer }}? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
254 |
+
"prompt_original_task": true,
|
255 |
+
"comment": "",
|
256 |
+
"acc_stderr": 0.007148833615093023
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"task_name": "multirc",
|
260 |
+
"prompt_name": "is the correct answer\u2026",
|
261 |
+
"acc_norm": 0.4278052805280528,
|
262 |
+
"fixed_answer_choice_list": [
|
263 |
+
"No",
|
264 |
+
"Yes"
|
265 |
+
],
|
266 |
+
"dataset_path": "super_glue",
|
267 |
+
"dataset_name": "multirc",
|
268 |
+
"subset": null,
|
269 |
+
"prompt_id": "7d878b89-2774-429a-82fb-ac801379e3ae",
|
270 |
+
"prompt_jinja": "{{ paragraph }}\nQuestion: {{ question }} \nIs the correct answer {{ answer }}? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
271 |
+
"prompt_original_task": true,
|
272 |
+
"comment": "",
|
273 |
+
"acc_norm_stderr": 0.007106544557507229
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"task_name": "multirc",
|
277 |
+
"prompt_name": "is\u2026 a correct answer?",
|
278 |
+
"acc": 0.45028877887788776,
|
279 |
+
"fixed_answer_choice_list": [
|
280 |
+
"No",
|
281 |
+
"Yes"
|
282 |
+
],
|
283 |
+
"dataset_path": "super_glue",
|
284 |
+
"dataset_name": "multirc",
|
285 |
+
"subset": null,
|
286 |
+
"prompt_id": "42d47df9-09de-4691-8e49-7cfadd636cdd",
|
287 |
+
"prompt_jinja": "{{ paragraph }}\nBased on the previous passage, {{ question }} \nIs \"{{ answer }}\" a correct answer? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
288 |
+
"prompt_original_task": true,
|
289 |
+
"comment": "",
|
290 |
+
"acc_stderr": 0.007146219530521704
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"task_name": "multirc",
|
294 |
+
"prompt_name": "is\u2026 a correct answer?",
|
295 |
+
"acc_norm": 0.4280115511551155,
|
296 |
+
"fixed_answer_choice_list": [
|
297 |
+
"No",
|
298 |
+
"Yes"
|
299 |
+
],
|
300 |
+
"dataset_path": "super_glue",
|
301 |
+
"dataset_name": "multirc",
|
302 |
+
"subset": null,
|
303 |
+
"prompt_id": "42d47df9-09de-4691-8e49-7cfadd636cdd",
|
304 |
+
"prompt_jinja": "{{ paragraph }}\nBased on the previous passage, {{ question }} \nIs \"{{ answer }}\" a correct answer? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
305 |
+
"prompt_original_task": true,
|
306 |
+
"comment": "",
|
307 |
+
"acc_norm_stderr": 0.007106976252751536
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"task_name": "multirc",
|
311 |
+
"prompt_name": "paragraph\u2026 question\u2026 is it\u2026 ?",
|
312 |
+
"acc": 0.5581683168316832,
|
313 |
+
"fixed_answer_choice_list": [
|
314 |
+
"No",
|
315 |
+
"Yes"
|
316 |
+
],
|
317 |
+
"dataset_path": "super_glue",
|
318 |
+
"dataset_name": "multirc",
|
319 |
+
"subset": null,
|
320 |
+
"prompt_id": "59a2d847-27f3-4002-a125-cf9a291b3098",
|
321 |
+
"prompt_jinja": "{{ paragraph }}\nQuestion: {{ question }} \nIs it {{ answer }}? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
322 |
+
"prompt_original_task": true,
|
323 |
+
"comment": "",
|
324 |
+
"acc_stderr": 0.007133037518848498
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"task_name": "multirc",
|
328 |
+
"prompt_name": "paragraph\u2026 question\u2026 is it\u2026 ?",
|
329 |
+
"acc_norm": 0.429042904290429,
|
330 |
+
"fixed_answer_choice_list": [
|
331 |
+
"No",
|
332 |
+
"Yes"
|
333 |
+
],
|
334 |
+
"dataset_path": "super_glue",
|
335 |
+
"dataset_name": "multirc",
|
336 |
+
"subset": null,
|
337 |
+
"prompt_id": "59a2d847-27f3-4002-a125-cf9a291b3098",
|
338 |
+
"prompt_jinja": "{{ paragraph }}\nQuestion: {{ question }} \nIs it {{ answer }}? ||| {% if label != -1 %}{{ answer_choices[label] }}{% endif %}",
|
339 |
+
"prompt_original_task": true,
|
340 |
+
"comment": "",
|
341 |
+
"acc_norm_stderr": 0.007109115814226985
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"task_name": "qqp",
|
345 |
+
"prompt_name": "answer",
|
346 |
+
"acc": 0.4095720999257977,
|
347 |
+
"fixed_answer_choice_list": [
|
348 |
+
"no",
|
349 |
+
"yes"
|
350 |
+
],
|
351 |
+
"dataset_path": "glue",
|
352 |
+
"dataset_name": "qqp",
|
353 |
+
"subset": null,
|
354 |
+
"prompt_id": "c0182cd1-c7ac-4abe-829f-4651536af951",
|
355 |
+
"prompt_jinja": "Can an answer to \"{{question1}}\" also be used to answer \"{{question2}}\"? ||| {{ answer_choices[label] }}",
|
356 |
+
"prompt_original_task": false,
|
357 |
+
"comment": "",
|
358 |
+
"acc_stderr": 0.0024456940020775335
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"task_name": "qqp",
|
362 |
+
"prompt_name": "answer",
|
363 |
+
"acc_norm": 0.36816720257234725,
|
364 |
+
"fixed_answer_choice_list": [
|
365 |
+
"no",
|
366 |
+
"yes"
|
367 |
+
],
|
368 |
+
"dataset_path": "glue",
|
369 |
+
"dataset_name": "qqp",
|
370 |
+
"subset": null,
|
371 |
+
"prompt_id": "c0182cd1-c7ac-4abe-829f-4651536af951",
|
372 |
+
"prompt_jinja": "Can an answer to \"{{question1}}\" also be used to answer \"{{question2}}\"? ||| {{ answer_choices[label] }}",
|
373 |
+
"prompt_original_task": false,
|
374 |
+
"comment": "",
|
375 |
+
"acc_norm_stderr": 0.002398706610614492
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"task_name": "qqp",
|
379 |
+
"prompt_name": "duplicate",
|
380 |
+
"acc": 0.5389809547365817,
|
381 |
+
"fixed_answer_choice_list": [
|
382 |
+
"no",
|
383 |
+
"yes"
|
384 |
+
],
|
385 |
+
"dataset_path": "glue",
|
386 |
+
"dataset_name": "qqp",
|
387 |
+
"subset": null,
|
388 |
+
"prompt_id": "fd244bd3-ca3b-4e4f-9722-fd006c50e157",
|
389 |
+
"prompt_jinja": "I received the questions \"{{question1}}\" and \"{{question2}}\". Are they duplicates? ||| {{ answer_choices[label] }}",
|
390 |
+
"prompt_original_task": true,
|
391 |
+
"comment": "",
|
392 |
+
"acc_stderr": 0.0024791319564636633
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"task_name": "qqp",
|
396 |
+
"prompt_name": "duplicate",
|
397 |
+
"acc_norm": 0.36816720257234725,
|
398 |
+
"fixed_answer_choice_list": [
|
399 |
+
"no",
|
400 |
+
"yes"
|
401 |
+
],
|
402 |
+
"dataset_path": "glue",
|
403 |
+
"dataset_name": "qqp",
|
404 |
+
"subset": null,
|
405 |
+
"prompt_id": "fd244bd3-ca3b-4e4f-9722-fd006c50e157",
|
406 |
+
"prompt_jinja": "I received the questions \"{{question1}}\" and \"{{question2}}\". Are they duplicates? ||| {{ answer_choices[label] }}",
|
407 |
+
"prompt_original_task": true,
|
408 |
+
"comment": "",
|
409 |
+
"acc_norm_stderr": 0.002398706610614492
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"task_name": "qqp",
|
413 |
+
"prompt_name": "duplicate or not",
|
414 |
+
"acc": 0.3811526094484294,
|
415 |
+
"fixed_answer_choice_list": [
|
416 |
+
"not duplicates",
|
417 |
+
"duplicates"
|
418 |
+
],
|
419 |
+
"dataset_path": "glue",
|
420 |
+
"dataset_name": "qqp",
|
421 |
+
"subset": null,
|
422 |
+
"prompt_id": "94972071-a726-42a3-a726-13f414b65e67",
|
423 |
+
"prompt_jinja": "{{question1}}\n{{question2}}\nPick one: These questions are \"{{\"duplicates\"}}\" or \"{{\"not duplicates\"}}\".\n|||\n{{ answer_choices[label] }}",
|
424 |
+
"prompt_original_task": true,
|
425 |
+
"comment": "",
|
426 |
+
"acc_stderr": 0.0024154315297388092
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"task_name": "qqp",
|
430 |
+
"prompt_name": "duplicate or not",
|
431 |
+
"acc_norm": 0.6317585951026465,
|
432 |
+
"fixed_answer_choice_list": [
|
433 |
+
"not duplicates",
|
434 |
+
"duplicates"
|
435 |
+
],
|
436 |
+
"dataset_path": "glue",
|
437 |
+
"dataset_name": "qqp",
|
438 |
+
"subset": null,
|
439 |
+
"prompt_id": "94972071-a726-42a3-a726-13f414b65e67",
|
440 |
+
"prompt_jinja": "{{question1}}\n{{question2}}\nPick one: These questions are \"{{\"duplicates\"}}\" or \"{{\"not duplicates\"}}\".\n|||\n{{ answer_choices[label] }}",
|
441 |
+
"prompt_original_task": true,
|
442 |
+
"comment": "",
|
443 |
+
"acc_norm_stderr": 0.00239880745215712
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"task_name": "qqp",
|
447 |
+
"prompt_name": "meaning",
|
448 |
+
"acc": 0.3842443729903537,
|
449 |
+
"fixed_answer_choice_list": [
|
450 |
+
"No",
|
451 |
+
"Yes"
|
452 |
+
],
|
453 |
+
"dataset_path": "glue",
|
454 |
+
"dataset_name": "qqp",
|
455 |
+
"subset": null,
|
456 |
+
"prompt_id": "c0724198-97e7-44a1-89d8-c51e97ce0b04",
|
457 |
+
"prompt_jinja": "Question 1: {{question1}}\nQuestion 2: {{question2}}\n\nDo these two questions convey the same meaning? Yes or no? ||| {{answer_choices[label]}}",
|
458 |
+
"prompt_original_task": true,
|
459 |
+
"comment": "",
|
460 |
+
"acc_stderr": 0.0024191425100536248
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"task_name": "qqp",
|
464 |
+
"prompt_name": "meaning",
|
465 |
+
"acc_norm": 0.36816720257234725,
|
466 |
+
"fixed_answer_choice_list": [
|
467 |
+
"No",
|
468 |
+
"Yes"
|
469 |
+
],
|
470 |
+
"dataset_path": "glue",
|
471 |
+
"dataset_name": "qqp",
|
472 |
+
"subset": null,
|
473 |
+
"prompt_id": "c0724198-97e7-44a1-89d8-c51e97ce0b04",
|
474 |
+
"prompt_jinja": "Question 1: {{question1}}\nQuestion 2: {{question2}}\n\nDo these two questions convey the same meaning? Yes or no? ||| {{answer_choices[label]}}",
|
475 |
+
"prompt_original_task": true,
|
476 |
+
"comment": "",
|
477 |
+
"acc_norm_stderr": 0.002398706610614492
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"task_name": "qqp",
|
481 |
+
"prompt_name": "quora",
|
482 |
+
"acc": 0.36826613900568883,
|
483 |
+
"fixed_answer_choice_list": [
|
484 |
+
"no",
|
485 |
+
"yes"
|
486 |
+
],
|
487 |
+
"dataset_path": "glue",
|
488 |
+
"dataset_name": "qqp",
|
489 |
+
"subset": null,
|
490 |
+
"prompt_id": "8e711799-a57c-4941-833b-466bedfb80ad",
|
491 |
+
"prompt_jinja": "I'm an administrator on the website Quora. There are two posts, one that asks \"{{question1}}\" and another that asks \"{{question2}}\". I can merge questions if they are asking the same thing. Can I merge these two questions? ||| {{ answer_choices[label] }}",
|
492 |
+
"prompt_original_task": true,
|
493 |
+
"comment": "",
|
494 |
+
"acc_stderr": 0.002398841052447127
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"task_name": "qqp",
|
498 |
+
"prompt_name": "quora",
|
499 |
+
"acc_norm": 0.36816720257234725,
|
500 |
+
"fixed_answer_choice_list": [
|
501 |
+
"no",
|
502 |
+
"yes"
|
503 |
+
],
|
504 |
+
"dataset_path": "glue",
|
505 |
+
"dataset_name": "qqp",
|
506 |
+
"subset": null,
|
507 |
+
"prompt_id": "8e711799-a57c-4941-833b-466bedfb80ad",
|
508 |
+
"prompt_jinja": "I'm an administrator on the website Quora. There are two posts, one that asks \"{{question1}}\" and another that asks \"{{question2}}\". I can merge questions if they are asking the same thing. Can I merge these two questions? ||| {{ answer_choices[label] }}",
|
509 |
+
"prompt_original_task": true,
|
510 |
+
"comment": "",
|
511 |
+
"acc_norm_stderr": 0.002398706610614492
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"task_name": "qqp",
|
515 |
+
"prompt_name": "same thing",
|
516 |
+
"acc": 0.5813999505317833,
|
517 |
+
"fixed_answer_choice_list": [
|
518 |
+
"no",
|
519 |
+
"yes"
|
520 |
+
],
|
521 |
+
"dataset_path": "glue",
|
522 |
+
"dataset_name": "qqp",
|
523 |
+
"subset": null,
|
524 |
+
"prompt_id": "a45ad5cd-a3ba-4ab2-a728-a9ea0f27102b",
|
525 |
+
"prompt_jinja": "Are the questions \"{{question1}}\" and \"{{question2}}\" asking the same thing? ||| {{ answer_choices[label] }}",
|
526 |
+
"prompt_original_task": true,
|
527 |
+
"comment": "",
|
528 |
+
"acc_stderr": 0.0024535258231136925
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"task_name": "qqp",
|
532 |
+
"prompt_name": "same thing",
|
533 |
+
"acc_norm": 0.36816720257234725,
|
534 |
+
"fixed_answer_choice_list": [
|
535 |
+
"no",
|
536 |
+
"yes"
|
537 |
+
],
|
538 |
+
"dataset_path": "glue",
|
539 |
+
"dataset_name": "qqp",
|
540 |
+
"subset": null,
|
541 |
+
"prompt_id": "a45ad5cd-a3ba-4ab2-a728-a9ea0f27102b",
|
542 |
+
"prompt_jinja": "Are the questions \"{{question1}}\" and \"{{question2}}\" asking the same thing? ||| {{ answer_choices[label] }}",
|
543 |
+
"prompt_original_task": true,
|
544 |
+
"comment": "",
|
545 |
+
"acc_norm_stderr": 0.002398706610614492
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"task_name": "rte",
|
549 |
+
"prompt_name": "does the claim\u2026 follow the fact\u2026",
|
550 |
+
"acc": 0.4729241877256318,
|
551 |
+
"fixed_answer_choice_list": [
|
552 |
+
"yes",
|
553 |
+
"no"
|
554 |
+
],
|
555 |
+
"dataset_path": "glue",
|
556 |
+
"dataset_name": "rte",
|
557 |
+
"subset": null,
|
558 |
+
"prompt_id": "4ee6ff27-de63-4e7b-a9d4-82a17eba407a",
|
559 |
+
"prompt_jinja": "Does the claim \"{{sentence2}}\" follow from the fact that \"{{sentence1}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
|
560 |
+
"prompt_original_task": true,
|
561 |
+
"comment": "",
|
562 |
+
"acc_stderr": 0.0300523034631437
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"task_name": "rte",
|
566 |
+
"prompt_name": "does the claim\u2026 follow the fact\u2026",
|
567 |
+
"acc_norm": 0.5270758122743683,
|
568 |
+
"fixed_answer_choice_list": [
|
569 |
+
"yes",
|
570 |
+
"no"
|
571 |
+
],
|
572 |
+
"dataset_path": "glue",
|
573 |
+
"dataset_name": "rte",
|
574 |
+
"subset": null,
|
575 |
+
"prompt_id": "4ee6ff27-de63-4e7b-a9d4-82a17eba407a",
|
576 |
+
"prompt_jinja": "Does the claim \"{{sentence2}}\" follow from the fact that \"{{sentence1}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
|
577 |
+
"prompt_original_task": true,
|
578 |
+
"comment": "",
|
579 |
+
"acc_norm_stderr": 0.0300523034631437
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"task_name": "rte",
|
583 |
+
"prompt_name": "entailment explained",
|
584 |
+
"acc": 0.516245487364621,
|
585 |
+
"fixed_answer_choice_list": [
|
586 |
+
"entailment",
|
587 |
+
"not entailment"
|
588 |
+
],
|
589 |
+
"dataset_path": "glue",
|
590 |
+
"dataset_name": "rte",
|
591 |
+
"subset": null,
|
592 |
+
"prompt_id": "9e2b4267-ec23-44c8-b82a-107e2c890fec",
|
593 |
+
"prompt_jinja": "We say that one sentence \"{{\"entails\"}}\" another sentence when the first sentence implies the second sentence. Consider the following two sentences:\n{{sentence1}}\n{{sentence2}}\nIs the relationship from the first to the second sentence \"{{\"entailment\"}}\" or \"{{\"not entailment\"}}\"?\n|||\n{{answer_choices[label]}}",
|
594 |
+
"prompt_original_task": true,
|
595 |
+
"comment": "",
|
596 |
+
"acc_stderr": 0.030080573208738064
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"task_name": "rte",
|
600 |
+
"prompt_name": "entailment explained",
|
601 |
+
"acc_norm": 0.4729241877256318,
|
602 |
+
"fixed_answer_choice_list": [
|
603 |
+
"entailment",
|
604 |
+
"not entailment"
|
605 |
+
],
|
606 |
+
"dataset_path": "glue",
|
607 |
+
"dataset_name": "rte",
|
608 |
+
"subset": null,
|
609 |
+
"prompt_id": "9e2b4267-ec23-44c8-b82a-107e2c890fec",
|
610 |
+
"prompt_jinja": "We say that one sentence \"{{\"entails\"}}\" another sentence when the first sentence implies the second sentence. Consider the following two sentences:\n{{sentence1}}\n{{sentence2}}\nIs the relationship from the first to the second sentence \"{{\"entailment\"}}\" or \"{{\"not entailment\"}}\"?\n|||\n{{answer_choices[label]}}",
|
611 |
+
"prompt_original_task": true,
|
612 |
+
"comment": "",
|
613 |
+
"acc_norm_stderr": 0.0300523034631437
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"task_name": "rte",
|
617 |
+
"prompt_name": "imply",
|
618 |
+
"acc": 0.47653429602888087,
|
619 |
+
"fixed_answer_choice_list": [
|
620 |
+
"yes",
|
621 |
+
"no"
|
622 |
+
],
|
623 |
+
"dataset_path": "glue",
|
624 |
+
"dataset_name": "rte",
|
625 |
+
"subset": null,
|
626 |
+
"prompt_id": "c8dfc879-40f2-412d-be1e-4cd70107f6e6",
|
627 |
+
"prompt_jinja": "Does \"{{sentence1}}\" imply that \"{{sentence2}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
|
628 |
+
"prompt_original_task": true,
|
629 |
+
"comment": "",
|
630 |
+
"acc_stderr": 0.030063300411902652
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"task_name": "rte",
|
634 |
+
"prompt_name": "imply",
|
635 |
+
"acc_norm": 0.5270758122743683,
|
636 |
+
"fixed_answer_choice_list": [
|
637 |
+
"yes",
|
638 |
+
"no"
|
639 |
+
],
|
640 |
+
"dataset_path": "glue",
|
641 |
+
"dataset_name": "rte",
|
642 |
+
"subset": null,
|
643 |
+
"prompt_id": "c8dfc879-40f2-412d-be1e-4cd70107f6e6",
|
644 |
+
"prompt_jinja": "Does \"{{sentence1}}\" imply that \"{{sentence2}}\"? Please answer either {{\"yes\"}} or {{\"no\"}}.\n|||\n{{answer_choices[label]}}",
|
645 |
+
"prompt_original_task": true,
|
646 |
+
"comment": "",
|
647 |
+
"acc_norm_stderr": 0.0300523034631437
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"task_name": "rte",
|
651 |
+
"prompt_name": "imply separated",
|
652 |
+
"acc": 0.4620938628158845,
|
653 |
+
"fixed_answer_choice_list": [
|
654 |
+
"yes",
|
655 |
+
"no"
|
656 |
+
],
|
657 |
+
"dataset_path": "glue",
|
658 |
+
"dataset_name": "rte",
|
659 |
+
"subset": null,
|
660 |
+
"prompt_id": "f56ffced-9b16-431a-8a17-501e63cddf73",
|
661 |
+
"prompt_jinja": "{{sentence1}}\nDoes this imply\n{{sentence2}}\nPlease answer {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
|
662 |
+
"prompt_original_task": true,
|
663 |
+
"comment": "",
|
664 |
+
"acc_stderr": 0.03000984891252911
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"task_name": "rte",
|
668 |
+
"prompt_name": "imply separated",
|
669 |
+
"acc_norm": 0.5270758122743683,
|
670 |
+
"fixed_answer_choice_list": [
|
671 |
+
"yes",
|
672 |
+
"no"
|
673 |
+
],
|
674 |
+
"dataset_path": "glue",
|
675 |
+
"dataset_name": "rte",
|
676 |
+
"subset": null,
|
677 |
+
"prompt_id": "f56ffced-9b16-431a-8a17-501e63cddf73",
|
678 |
+
"prompt_jinja": "{{sentence1}}\nDoes this imply\n{{sentence2}}\nPlease answer {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
|
679 |
+
"prompt_original_task": true,
|
680 |
+
"comment": "",
|
681 |
+
"acc_norm_stderr": 0.0300523034631437
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"task_name": "rte",
|
685 |
+
"prompt_name": "mean",
|
686 |
+
"acc": 0.47653429602888087,
|
687 |
+
"fixed_answer_choice_list": [
|
688 |
+
"yes",
|
689 |
+
"no"
|
690 |
+
],
|
691 |
+
"dataset_path": "glue",
|
692 |
+
"dataset_name": "rte",
|
693 |
+
"subset": null,
|
694 |
+
"prompt_id": "03a7ae07-5ddd-46c4-92f3-2152223d44ec",
|
695 |
+
"prompt_jinja": "{{sentence1}}\nDoes this mean that \"{{sentence2}}\" is true? {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
|
696 |
+
"prompt_original_task": true,
|
697 |
+
"comment": "",
|
698 |
+
"acc_stderr": 0.030063300411902652
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"task_name": "rte",
|
702 |
+
"prompt_name": "mean",
|
703 |
+
"acc_norm": 0.5270758122743683,
|
704 |
+
"fixed_answer_choice_list": [
|
705 |
+
"yes",
|
706 |
+
"no"
|
707 |
+
],
|
708 |
+
"dataset_path": "glue",
|
709 |
+
"dataset_name": "rte",
|
710 |
+
"subset": null,
|
711 |
+
"prompt_id": "03a7ae07-5ddd-46c4-92f3-2152223d44ec",
|
712 |
+
"prompt_jinja": "{{sentence1}}\nDoes this mean that \"{{sentence2}}\" is true? {{\"A) yes or B) no.\"}}\n|||\n{{answer_choices[label]}}",
|
713 |
+
"prompt_original_task": true,
|
714 |
+
"comment": "",
|
715 |
+
"acc_norm_stderr": 0.0300523034631437
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"task_name": "sst",
|
719 |
+
"prompt_name": "following positive negative",
|
720 |
+
"acc": 0.7603211009174312,
|
721 |
+
"fixed_answer_choice_list": [
|
722 |
+
"negative",
|
723 |
+
"positive"
|
724 |
+
],
|
725 |
+
"dataset_path": "glue",
|
726 |
+
"dataset_name": "sst2",
|
727 |
+
"subset": null,
|
728 |
+
"prompt_id": "63c6b2be-8ecd-42ad-88c7-0d1dc1a8323a",
|
729 |
+
"prompt_jinja": "Does the following sentence have a {{\"positive\"}} or {{\"negative\"}} sentiment?\n{{sentence}}\n|||\n{{ answer_choices[label] }}",
|
730 |
+
"prompt_original_task": true,
|
731 |
+
"comment": "",
|
732 |
+
"acc_stderr": 0.014464530608155847
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"task_name": "sst",
|
736 |
+
"prompt_name": "following positive negative",
|
737 |
+
"acc_norm": 0.7603211009174312,
|
738 |
+
"fixed_answer_choice_list": [
|
739 |
+
"negative",
|
740 |
+
"positive"
|
741 |
+
],
|
742 |
+
"dataset_path": "glue",
|
743 |
+
"dataset_name": "sst2",
|
744 |
+
"subset": null,
|
745 |
+
"prompt_id": "63c6b2be-8ecd-42ad-88c7-0d1dc1a8323a",
|
746 |
+
"prompt_jinja": "Does the following sentence have a {{\"positive\"}} or {{\"negative\"}} sentiment?\n{{sentence}}\n|||\n{{ answer_choices[label] }}",
|
747 |
+
"prompt_original_task": true,
|
748 |
+
"comment": "",
|
749 |
+
"acc_norm_stderr": 0.014464530608155847
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"task_name": "sst",
|
753 |
+
"prompt_name": "happy or mad",
|
754 |
+
"acc": 0.5091743119266054,
|
755 |
+
"fixed_answer_choice_list": [
|
756 |
+
"bad",
|
757 |
+
"good"
|
758 |
+
],
|
759 |
+
"dataset_path": "glue",
|
760 |
+
"dataset_name": "sst2",
|
761 |
+
"subset": null,
|
762 |
+
"prompt_id": "6dd74cd5-e074-4612-9e96-c17ca88c3bc4",
|
763 |
+
"prompt_jinja": "Someone sent me an email with the sentence \"{{sentence}}\". Do you think they are feeling {{\"good\"}} or {{\"bad\"}}? ||| {{ answer_choices[label] }}",
|
764 |
+
"prompt_original_task": true,
|
765 |
+
"comment": "",
|
766 |
+
"acc_stderr": 0.01693900152535154
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"task_name": "sst",
|
770 |
+
"prompt_name": "happy or mad",
|
771 |
+
"acc_norm": 0.5091743119266054,
|
772 |
+
"fixed_answer_choice_list": [
|
773 |
+
"bad",
|
774 |
+
"good"
|
775 |
+
],
|
776 |
+
"dataset_path": "glue",
|
777 |
+
"dataset_name": "sst2",
|
778 |
+
"subset": null,
|
779 |
+
"prompt_id": "6dd74cd5-e074-4612-9e96-c17ca88c3bc4",
|
780 |
+
"prompt_jinja": "Someone sent me an email with the sentence \"{{sentence}}\". Do you think they are feeling {{\"good\"}} or {{\"bad\"}}? ||| {{ answer_choices[label] }}",
|
781 |
+
"prompt_original_task": true,
|
782 |
+
"comment": "",
|
783 |
+
"acc_norm_stderr": 0.01693900152535154
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"task_name": "sst",
|
787 |
+
"prompt_name": "positive negative after",
|
788 |
+
"acc": 0.5263761467889908,
|
789 |
+
"fixed_answer_choice_list": [
|
790 |
+
"negative",
|
791 |
+
"positive"
|
792 |
+
],
|
793 |
+
"dataset_path": "glue",
|
794 |
+
"dataset_name": "sst2",
|
795 |
+
"subset": null,
|
796 |
+
"prompt_id": "11d1c505-9232-4c35-82a4-4c3642843e2e",
|
797 |
+
"prompt_jinja": "{{sentence}}\nQuestion: Was that sentence {{\"positive\"}} or {{\"negative\"}}? Answer: ||| {{ answer_choices[label] }}",
|
798 |
+
"prompt_original_task": true,
|
799 |
+
"comment": "",
|
800 |
+
"acc_stderr": 0.016918264333564144
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"task_name": "sst",
|
804 |
+
"prompt_name": "positive negative after",
|
805 |
+
"acc_norm": 0.5263761467889908,
|
806 |
+
"fixed_answer_choice_list": [
|
807 |
+
"negative",
|
808 |
+
"positive"
|
809 |
+
],
|
810 |
+
"dataset_path": "glue",
|
811 |
+
"dataset_name": "sst2",
|
812 |
+
"subset": null,
|
813 |
+
"prompt_id": "11d1c505-9232-4c35-82a4-4c3642843e2e",
|
814 |
+
"prompt_jinja": "{{sentence}}\nQuestion: Was that sentence {{\"positive\"}} or {{\"negative\"}}? Answer: ||| {{ answer_choices[label] }}",
|
815 |
+
"prompt_original_task": true,
|
816 |
+
"comment": "",
|
817 |
+
"acc_norm_stderr": 0.016918264333564144
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"task_name": "sst",
|
821 |
+
"prompt_name": "review",
|
822 |
+
"acc": 0.5722477064220184,
|
823 |
+
"fixed_answer_choice_list": [
|
824 |
+
"negative",
|
825 |
+
"positive"
|
826 |
+
],
|
827 |
+
"dataset_path": "glue",
|
828 |
+
"dataset_name": "sst2",
|
829 |
+
"subset": null,
|
830 |
+
"prompt_id": "228fcae7-7f4c-4e3c-9ac4-e49b26bc103d",
|
831 |
+
"prompt_jinja": "I'm reading a review that says \"{{sentence}}\".\n\nDo you think the review is {{\"positive\"}} or {{\"negative\"}}? ||| {{ answer_choices[label] }}",
|
832 |
+
"prompt_original_task": true,
|
833 |
+
"comment": "",
|
834 |
+
"acc_stderr": 0.016764056901835654
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"task_name": "sst",
|
838 |
+
"prompt_name": "review",
|
839 |
+
"acc_norm": 0.5722477064220184,
|
840 |
+
"fixed_answer_choice_list": [
|
841 |
+
"negative",
|
842 |
+
"positive"
|
843 |
+
],
|
844 |
+
"dataset_path": "glue",
|
845 |
+
"dataset_name": "sst2",
|
846 |
+
"subset": null,
|
847 |
+
"prompt_id": "228fcae7-7f4c-4e3c-9ac4-e49b26bc103d",
|
848 |
+
"prompt_jinja": "I'm reading a review that says \"{{sentence}}\".\n\nDo you think the review is {{\"positive\"}} or {{\"negative\"}}? ||| {{ answer_choices[label] }}",
|
849 |
+
"prompt_original_task": true,
|
850 |
+
"comment": "",
|
851 |
+
"acc_norm_stderr": 0.016764056901835654
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"task_name": "sst",
|
855 |
+
"prompt_name": "said",
|
856 |
+
"acc": 0.5022935779816514,
|
857 |
+
"fixed_answer_choice_list": [
|
858 |
+
"sad",
|
859 |
+
"happy"
|
860 |
+
],
|
861 |
+
"dataset_path": "glue",
|
862 |
+
"dataset_name": "sst2",
|
863 |
+
"subset": null,
|
864 |
+
"prompt_id": "5aa0cea9-0f8d-454d-b25b-b0d4cda273b8",
|
865 |
+
"prompt_jinja": "Someone just said to me \"{{sentence}}\".\n\nDo you think they are {{\"sad\"}} or {{\"happy\"}}? ||| {{ answer_choices[label] }}",
|
866 |
+
"prompt_original_task": true,
|
867 |
+
"comment": "",
|
868 |
+
"acc_stderr": 0.016941675443113525
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"task_name": "sst",
|
872 |
+
"prompt_name": "said",
|
873 |
+
"acc_norm": 0.5091743119266054,
|
874 |
+
"fixed_answer_choice_list": [
|
875 |
+
"sad",
|
876 |
+
"happy"
|
877 |
+
],
|
878 |
+
"dataset_path": "glue",
|
879 |
+
"dataset_name": "sst2",
|
880 |
+
"subset": null,
|
881 |
+
"prompt_id": "5aa0cea9-0f8d-454d-b25b-b0d4cda273b8",
|
882 |
+
"prompt_jinja": "Someone just said to me \"{{sentence}}\".\n\nDo you think they are {{\"sad\"}} or {{\"happy\"}}? ||| {{ answer_choices[label] }}",
|
883 |
+
"prompt_original_task": true,
|
884 |
+
"comment": "",
|
885 |
+
"acc_norm_stderr": 0.01693900152535154
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"task_name": "tydiqa_primary",
|
889 |
+
"prompt_name": "en_after_reading_the_text",
|
890 |
+
"acc": 0.35064935064935066,
|
891 |
+
"fixed_answer_choice_list": [
|
892 |
+
"Yes",
|
893 |
+
"No"
|
894 |
+
],
|
895 |
+
"dataset_path": "tydiqa",
|
896 |
+
"dataset_name": "primary_task",
|
897 |
+
"subset": null,
|
898 |
+
"prompt_id": "9c42e3fd-d46e-4149-bb60-4b3118104d95",
|
899 |
+
"prompt_jinja": "{% if language == \"english\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nAfter reading the following text snippet from Wikipedia, please answer the question: {{question_text}} \n{{document_plaintext}}\n||| \n{{annotations.yes_no_answer[0] | capitalize}}\n {% endif %}\n{% endif %}",
|
900 |
+
"prompt_original_task": true,
|
901 |
+
"comment": "",
|
902 |
+
"acc_stderr": 0.054735534443086
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"task_name": "tydiqa_primary",
|
906 |
+
"prompt_name": "en_after_reading_the_text",
|
907 |
+
"acc_norm": 0.6493506493506493,
|
908 |
+
"fixed_answer_choice_list": [
|
909 |
+
"Yes",
|
910 |
+
"No"
|
911 |
+
],
|
912 |
+
"dataset_path": "tydiqa",
|
913 |
+
"dataset_name": "primary_task",
|
914 |
+
"subset": null,
|
915 |
+
"prompt_id": "9c42e3fd-d46e-4149-bb60-4b3118104d95",
|
916 |
+
"prompt_jinja": "{% if language == \"english\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nAfter reading the following text snippet from Wikipedia, please answer the question: {{question_text}} \n{{document_plaintext}}\n||| \n{{annotations.yes_no_answer[0] | capitalize}}\n {% endif %}\n{% endif %}",
|
917 |
+
"prompt_original_task": true,
|
918 |
+
"comment": "",
|
919 |
+
"acc_norm_stderr": 0.054735534443086
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"task_name": "tydiqa_primary",
|
923 |
+
"prompt_name": "en_based_on_the_text",
|
924 |
+
"acc": 0.33766233766233766,
|
925 |
+
"fixed_answer_choice_list": [
|
926 |
+
"Yes",
|
927 |
+
"No"
|
928 |
+
],
|
929 |
+
"dataset_path": "tydiqa",
|
930 |
+
"dataset_name": "primary_task",
|
931 |
+
"subset": null,
|
932 |
+
"prompt_id": "e593017f-9bcf-4442-944d-fcdf2edcb4f7",
|
933 |
+
"prompt_jinja": "{% if language == \"english\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nBased on the following text snippet, {{question_text}} \n{{document_plaintext}}\n||| \n{{annotations.yes_no_answer[0] | capitalize}}\n {% endif %}\n{% endif %}",
|
934 |
+
"prompt_original_task": true,
|
935 |
+
"comment": "",
|
936 |
+
"acc_stderr": 0.05424681453014242
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"task_name": "tydiqa_primary",
|
940 |
+
"prompt_name": "en_based_on_the_text",
|
941 |
+
"acc_norm": 0.6363636363636364,
|
942 |
+
"fixed_answer_choice_list": [
|
943 |
+
"Yes",
|
944 |
+
"No"
|
945 |
+
],
|
946 |
+
"dataset_path": "tydiqa",
|
947 |
+
"dataset_name": "primary_task",
|
948 |
+
"subset": null,
|
949 |
+
"prompt_id": "e593017f-9bcf-4442-944d-fcdf2edcb4f7",
|
950 |
+
"prompt_jinja": "{% if language == \"english\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nBased on the following text snippet, {{question_text}} \n{{document_plaintext}}\n||| \n{{annotations.yes_no_answer[0] | capitalize}}\n {% endif %}\n{% endif %}",
|
951 |
+
"prompt_original_task": true,
|
952 |
+
"comment": "",
|
953 |
+
"acc_norm_stderr": 0.055179725333353066
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"task_name": "tydiqa_primary",
|
957 |
+
"prompt_name": "en_heres_what_I_found",
|
958 |
+
"acc": 0.03685741998060136,
|
959 |
+
"fixed_answer_choice_list": [
|
960 |
+
"Yes",
|
961 |
+
"No",
|
962 |
+
"None"
|
963 |
+
],
|
964 |
+
"dataset_path": "tydiqa",
|
965 |
+
"dataset_name": "primary_task",
|
966 |
+
"subset": null,
|
967 |
+
"prompt_id": "16f11e56-a78d-4e33-bba1-586f9947baf7",
|
968 |
+
"prompt_jinja": "{% if language == \"english\" %}\nI wonder {{question_text}}.\nHelp me answer this question with \"{{answer_choices[0]}}\" or \"{{answer_choices[1]}}\" or \"{{answer_choices[2]}}\" if none of the first two answers apply.\nHere's what I found on the internet:\nTopic: {{document_title}}\nArticle: {{document_plaintext}}\n|||\n{{annotations.yes_no_answer[0] | capitalize}}\n{% endif %}",
|
969 |
+
"prompt_original_task": true,
|
970 |
+
"comment": "",
|
971 |
+
"acc_stderr": 0.005870689955728106
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"task_name": "tydiqa_primary",
|
975 |
+
"prompt_name": "en_heres_what_I_found",
|
976 |
+
"acc_norm": 0.8661493695441319,
|
977 |
+
"fixed_answer_choice_list": [
|
978 |
+
"Yes",
|
979 |
+
"No",
|
980 |
+
"None"
|
981 |
+
],
|
982 |
+
"dataset_path": "tydiqa",
|
983 |
+
"dataset_name": "primary_task",
|
984 |
+
"subset": null,
|
985 |
+
"prompt_id": "16f11e56-a78d-4e33-bba1-586f9947baf7",
|
986 |
+
"prompt_jinja": "{% if language == \"english\" %}\nI wonder {{question_text}}.\nHelp me answer this question with \"{{answer_choices[0]}}\" or \"{{answer_choices[1]}}\" or \"{{answer_choices[2]}}\" if none of the first two answers apply.\nHere's what I found on the internet:\nTopic: {{document_title}}\nArticle: {{document_plaintext}}\n|||\n{{annotations.yes_no_answer[0] | capitalize}}\n{% endif %}",
|
987 |
+
"prompt_original_task": true,
|
988 |
+
"comment": "",
|
989 |
+
"acc_norm_stderr": 0.010609330898735572
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"task_name": "tydiqa_primary",
|
993 |
+
"prompt_name": "en_open_domain_qa",
|
994 |
+
"acc": 0.6753246753246753,
|
995 |
+
"fixed_answer_choice_list": [
|
996 |
+
"Yes",
|
997 |
+
"No"
|
998 |
+
],
|
999 |
+
"dataset_path": "tydiqa",
|
1000 |
+
"dataset_name": "primary_task",
|
1001 |
+
"subset": null,
|
1002 |
+
"prompt_id": "b4f7c441-41b1-4665-93f9-f2e875aed92a",
|
1003 |
+
"prompt_jinja": "{% if language == \"english\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nAnswer the question about {{document_title}}.\nQuestion: {{question_text}}. Yes or No?\n||| \n{{annotations.yes_no_answer[0] | capitalize}}\n {% endif %}\n{% endif %}",
|
1004 |
+
"prompt_original_task": false,
|
1005 |
+
"comment": "",
|
1006 |
+
"acc_stderr": 0.05371235012133188
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"task_name": "tydiqa_primary",
|
1010 |
+
"prompt_name": "en_open_domain_qa",
|
1011 |
+
"acc_norm": 0.6753246753246753,
|
1012 |
+
"fixed_answer_choice_list": [
|
1013 |
+
"Yes",
|
1014 |
+
"No"
|
1015 |
+
],
|
1016 |
+
"dataset_path": "tydiqa",
|
1017 |
+
"dataset_name": "primary_task",
|
1018 |
+
"subset": null,
|
1019 |
+
"prompt_id": "b4f7c441-41b1-4665-93f9-f2e875aed92a",
|
1020 |
+
"prompt_jinja": "{% if language == \"english\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nAnswer the question about {{document_title}}.\nQuestion: {{question_text}}. Yes or No?\n||| \n{{annotations.yes_no_answer[0] | capitalize}}\n {% endif %}\n{% endif %}",
|
1021 |
+
"prompt_original_task": false,
|
1022 |
+
"comment": "",
|
1023 |
+
"acc_norm_stderr": 0.05371235012133188
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"task_name": "tydiqa_primary",
|
1027 |
+
"prompt_name": "en_open_domain_qa_without_choices",
|
1028 |
+
"acc": 0.6753246753246753,
|
1029 |
+
"fixed_answer_choice_list": [
|
1030 |
+
"Yes",
|
1031 |
+
"No"
|
1032 |
+
],
|
1033 |
+
"dataset_path": "tydiqa",
|
1034 |
+
"dataset_name": "primary_task",
|
1035 |
+
"subset": null,
|
1036 |
+
"prompt_id": "4b21e3be-fba4-49b7-beb1-a61de26eb0ac",
|
1037 |
+
"prompt_jinja": "{% if language == \"english\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nAnswer the question about {{document_title}}. {{question_text}}\n||| \n{{annotations.yes_no_answer[0] | capitalize}} \n {% endif %} \n{% endif %} ",
|
1038 |
+
"prompt_original_task": false,
|
1039 |
+
"comment": "",
|
1040 |
+
"acc_stderr": 0.05371235012133188
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"task_name": "tydiqa_primary",
|
1044 |
+
"prompt_name": "en_open_domain_qa_without_choices",
|
1045 |
+
"acc_norm": 0.6753246753246753,
|
1046 |
+
"fixed_answer_choice_list": [
|
1047 |
+
"Yes",
|
1048 |
+
"No"
|
1049 |
+
],
|
1050 |
+
"dataset_path": "tydiqa",
|
1051 |
+
"dataset_name": "primary_task",
|
1052 |
+
"subset": null,
|
1053 |
+
"prompt_id": "4b21e3be-fba4-49b7-beb1-a61de26eb0ac",
|
1054 |
+
"prompt_jinja": "{% if language == \"english\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nAnswer the question about {{document_title}}. {{question_text}}\n||| \n{{annotations.yes_no_answer[0] | capitalize}} \n {% endif %} \n{% endif %} ",
|
1055 |
+
"prompt_original_task": false,
|
1056 |
+
"comment": "",
|
1057 |
+
"acc_norm_stderr": 0.05371235012133188
|
1058 |
+
},
|
1059 |
+
{
|
1060 |
+
"task_name": "tydiqa_primary",
|
1061 |
+
"prompt_name": "en_read_and_answer",
|
1062 |
+
"acc": 0.03685741998060136,
|
1063 |
+
"fixed_answer_choice_list": [
|
1064 |
+
"Yes",
|
1065 |
+
"No",
|
1066 |
+
"None"
|
1067 |
+
],
|
1068 |
+
"dataset_path": "tydiqa",
|
1069 |
+
"dataset_name": "primary_task",
|
1070 |
+
"subset": null,
|
1071 |
+
"prompt_id": "7b8b7707-dbad-40d2-a5c2-430e6ace10bb",
|
1072 |
+
"prompt_jinja": "{% if language == \"english\" %}\nAnswer the following question with \"{{answer_choices[0]}}\" or \"{{answer_choices[1]}}\" or \"{{answer_choices[2]}}\" if none of the first two answers apply.\nQuestion: {{question_text}}\nTopic: {{document_title}}\nArticle: {{document_plaintext}}\n|||\n{{annotations.yes_no_answer[0] | capitalize}}\n{% endif %}",
|
1073 |
+
"prompt_original_task": true,
|
1074 |
+
"comment": "",
|
1075 |
+
"acc_stderr": 0.005870689955728103
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"task_name": "tydiqa_primary",
|
1079 |
+
"prompt_name": "en_read_and_answer",
|
1080 |
+
"acc_norm": 0.8845780795344326,
|
1081 |
+
"fixed_answer_choice_list": [
|
1082 |
+
"Yes",
|
1083 |
+
"No",
|
1084 |
+
"None"
|
1085 |
+
],
|
1086 |
+
"dataset_path": "tydiqa",
|
1087 |
+
"dataset_name": "primary_task",
|
1088 |
+
"subset": null,
|
1089 |
+
"prompt_id": "7b8b7707-dbad-40d2-a5c2-430e6ace10bb",
|
1090 |
+
"prompt_jinja": "{% if language == \"english\" %}\nAnswer the following question with \"{{answer_choices[0]}}\" or \"{{answer_choices[1]}}\" or \"{{answer_choices[2]}}\" if none of the first two answers apply.\nQuestion: {{question_text}}\nTopic: {{document_title}}\nArticle: {{document_plaintext}}\n|||\n{{annotations.yes_no_answer[0] | capitalize}}\n{% endif %}",
|
1091 |
+
"prompt_original_task": true,
|
1092 |
+
"comment": "",
|
1093 |
+
"acc_norm_stderr": 0.009956200231519313
|
1094 |
+
},
|
1095 |
+
{
|
1096 |
+
"task_name": "tydiqa_primary",
|
1097 |
+
"prompt_name": "en_yes_no_none",
|
1098 |
+
"acc": 0.037827352085354024,
|
1099 |
+
"fixed_answer_choice_list": [
|
1100 |
+
"Yes",
|
1101 |
+
"No",
|
1102 |
+
"None"
|
1103 |
+
],
|
1104 |
+
"dataset_path": "tydiqa",
|
1105 |
+
"dataset_name": "primary_task",
|
1106 |
+
"subset": null,
|
1107 |
+
"prompt_id": "297fc59f-bd92-493b-ae61-3c3adcb46eb3",
|
1108 |
+
"prompt_jinja": "{% if language == \"english\" %} \nQuestion: {{question_text}}\nAnswer the question with {{\"Yes\"}} or {{\"No\"}}. If it is not possible then answer {{\"None\"}}.\nHint: {{document_plaintext}}\n|||\n{{annotations.yes_no_answer[0] | capitalize}}\n{% endif %}",
|
1109 |
+
"prompt_original_task": true,
|
1110 |
+
"comment": "",
|
1111 |
+
"acc_stderr": 0.005944438823944305
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"task_name": "tydiqa_primary",
|
1115 |
+
"prompt_name": "en_yes_no_none",
|
1116 |
+
"acc_norm": 0.871968962172648,
|
1117 |
+
"fixed_answer_choice_list": [
|
1118 |
+
"Yes",
|
1119 |
+
"No",
|
1120 |
+
"None"
|
1121 |
+
],
|
1122 |
+
"dataset_path": "tydiqa",
|
1123 |
+
"dataset_name": "primary_task",
|
1124 |
+
"subset": null,
|
1125 |
+
"prompt_id": "297fc59f-bd92-493b-ae61-3c3adcb46eb3",
|
1126 |
+
"prompt_jinja": "{% if language == \"english\" %} \nQuestion: {{question_text}}\nAnswer the question with {{\"Yes\"}} or {{\"No\"}}. If it is not possible then answer {{\"None\"}}.\nHint: {{document_plaintext}}\n|||\n{{annotations.yes_no_answer[0] | capitalize}}\n{% endif %}",
|
1127 |
+
"prompt_original_task": true,
|
1128 |
+
"comment": "",
|
1129 |
+
"acc_norm_stderr": 0.01041093017771443
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"task_name": "tydiqa_primary",
|
1133 |
+
"prompt_name": "en_yes_no_question",
|
1134 |
+
"acc": 0.7652764306498545,
|
1135 |
+
"fixed_answer_choice_list": [
|
1136 |
+
"Yes",
|
1137 |
+
"No"
|
1138 |
+
],
|
1139 |
+
"dataset_path": "tydiqa",
|
1140 |
+
"dataset_name": "primary_task",
|
1141 |
+
"subset": null,
|
1142 |
+
"prompt_id": "6835dd64-96bd-4bf8-9ba5-645d6a7b8472",
|
1143 |
+
"prompt_jinja": "{% if language == \"english\" %}\n{{question_text}}\nIs this a \"Yes/No\" question?\n|||\n{% if annotations. yes_no_answer[0] == \"NONE\" %}\nNo\n{% else %}\nYes\n{% endif %}\n{% endif %}",
|
1144 |
+
"prompt_original_task": false,
|
1145 |
+
"comment": "",
|
1146 |
+
"acc_stderr": 0.013205927447521368
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"task_name": "tydiqa_primary",
|
1150 |
+
"prompt_name": "en_yes_no_question",
|
1151 |
+
"acc_norm": 0.07565470417070805,
|
1152 |
+
"fixed_answer_choice_list": [
|
1153 |
+
"Yes",
|
1154 |
+
"No"
|
1155 |
+
],
|
1156 |
+
"dataset_path": "tydiqa",
|
1157 |
+
"dataset_name": "primary_task",
|
1158 |
+
"subset": null,
|
1159 |
+
"prompt_id": "6835dd64-96bd-4bf8-9ba5-645d6a7b8472",
|
1160 |
+
"prompt_jinja": "{% if language == \"english\" %}\n{{question_text}}\nIs this a \"Yes/No\" question?\n|||\n{% if annotations. yes_no_answer[0] == \"NONE\" %}\nNo\n{% else %}\nYes\n{% endif %}\n{% endif %}",
|
1161 |
+
"prompt_original_task": false,
|
1162 |
+
"comment": "",
|
1163 |
+
"acc_norm_stderr": 0.008239796273494257
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"task_name": "tydiqa_primary",
|
1167 |
+
"prompt_name": "id_after_reading_the_text",
|
1168 |
+
"acc": 0.2711864406779661,
|
1169 |
+
"fixed_answer_choice_list": [
|
1170 |
+
"Ya",
|
1171 |
+
"Tidak"
|
1172 |
+
],
|
1173 |
+
"dataset_path": "tydiqa",
|
1174 |
+
"dataset_name": "primary_task",
|
1175 |
+
"subset": null,
|
1176 |
+
"prompt_id": "f93c6cde-cd5e-4d25-8549-f186546cea26",
|
1177 |
+
"prompt_jinja": "{% if language == \"indonesian\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nSetelah membaca potongan teks Wikipedia di bawah ini, mohon jawab pertanyaan: \n{{question_text}} \n{{document_plaintext}}\n||| \n{{{\"NO\":\"Tidak\", \"YES\":\"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n {% endif %}\n{% endif %}",
|
1178 |
+
"prompt_original_task": true,
|
1179 |
+
"comment": "",
|
1180 |
+
"acc_stderr": 0.058375177038848765
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"task_name": "tydiqa_primary",
|
1184 |
+
"prompt_name": "id_after_reading_the_text",
|
1185 |
+
"acc_norm": 0.2033898305084746,
|
1186 |
+
"fixed_answer_choice_list": [
|
1187 |
+
"Ya",
|
1188 |
+
"Tidak"
|
1189 |
+
],
|
1190 |
+
"dataset_path": "tydiqa",
|
1191 |
+
"dataset_name": "primary_task",
|
1192 |
+
"subset": null,
|
1193 |
+
"prompt_id": "f93c6cde-cd5e-4d25-8549-f186546cea26",
|
1194 |
+
"prompt_jinja": "{% if language == \"indonesian\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nSetelah membaca potongan teks Wikipedia di bawah ini, mohon jawab pertanyaan: \n{{question_text}} \n{{document_plaintext}}\n||| \n{{{\"NO\":\"Tidak\", \"YES\":\"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n {% endif %}\n{% endif %}",
|
1195 |
+
"prompt_original_task": true,
|
1196 |
+
"comment": "",
|
1197 |
+
"acc_norm_stderr": 0.052853474644238056
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"task_name": "tydiqa_primary",
|
1201 |
+
"prompt_name": "id_based_on_the_text",
|
1202 |
+
"acc": 0.23728813559322035,
|
1203 |
+
"fixed_answer_choice_list": [
|
1204 |
+
"Ya",
|
1205 |
+
"Tidak"
|
1206 |
+
],
|
1207 |
+
"dataset_path": "tydiqa",
|
1208 |
+
"dataset_name": "primary_task",
|
1209 |
+
"subset": null,
|
1210 |
+
"prompt_id": "fe910acd-a156-4f46-a757-4382821fcfd2",
|
1211 |
+
"prompt_jinja": "{% if language == \"indonesian\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nMenurut potongan teks berikut, {{question_text}}\n{{document_plaintext}}\n||| \n{{{\"NO\":\"Tidak\", \"YES\":\"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n {% endif %}\n{% endif %}",
|
1212 |
+
"prompt_original_task": true,
|
1213 |
+
"comment": "",
|
1214 |
+
"acc_stderr": 0.05586042894941199
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"task_name": "tydiqa_primary",
|
1218 |
+
"prompt_name": "id_based_on_the_text",
|
1219 |
+
"acc_norm": 0.2033898305084746,
|
1220 |
+
"fixed_answer_choice_list": [
|
1221 |
+
"Ya",
|
1222 |
+
"Tidak"
|
1223 |
+
],
|
1224 |
+
"dataset_path": "tydiqa",
|
1225 |
+
"dataset_name": "primary_task",
|
1226 |
+
"subset": null,
|
1227 |
+
"prompt_id": "fe910acd-a156-4f46-a757-4382821fcfd2",
|
1228 |
+
"prompt_jinja": "{% if language == \"indonesian\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nMenurut potongan teks berikut, {{question_text}}\n{{document_plaintext}}\n||| \n{{{\"NO\":\"Tidak\", \"YES\":\"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n {% endif %}\n{% endif %}",
|
1229 |
+
"prompt_original_task": true,
|
1230 |
+
"comment": "",
|
1231 |
+
"acc_norm_stderr": 0.052853474644238056
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"task_name": "tydiqa_primary",
|
1235 |
+
"prompt_name": "id_heres_what_I_found",
|
1236 |
+
"acc": 0.007202216066481994,
|
1237 |
+
"fixed_answer_choice_list": [
|
1238 |
+
"Ya",
|
1239 |
+
"Tidak",
|
1240 |
+
"Tidak ada"
|
1241 |
+
],
|
1242 |
+
"dataset_path": "tydiqa",
|
1243 |
+
"dataset_name": "primary_task",
|
1244 |
+
"subset": null,
|
1245 |
+
"prompt_id": "764fda4e-dc13-4766-b8ab-eafd79fe875e",
|
1246 |
+
"prompt_jinja": "{% if language == \"indonesian\" %}\nSaya penasaran {{question_text}}.\nTolong bantu saya menjawab pertanyaan ini dengan \"{{answer_choices[0]}}\", \"{{answer_choices[1]}}\" atau \"{{answer_choices[2]}}\" jika dua opsi pertama tidak bisa diaplikasikan.\nIni yang saya temukan di internet:\nTopik: {{document_title}}\nArtikel: {{document_plaintext}}\n|||\n{{{\"NO\":\"Tidak\",\"YES\": \"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n{% endif %}",
|
1247 |
+
"prompt_original_task": true,
|
1248 |
+
"comment": "",
|
1249 |
+
"acc_stderr": 0.001990880560147875
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"task_name": "tydiqa_primary",
|
1253 |
+
"prompt_name": "id_heres_what_I_found",
|
1254 |
+
"acc_norm": 0.9662049861495845,
|
1255 |
+
"fixed_answer_choice_list": [
|
1256 |
+
"Ya",
|
1257 |
+
"Tidak",
|
1258 |
+
"Tidak ada"
|
1259 |
+
],
|
1260 |
+
"dataset_path": "tydiqa",
|
1261 |
+
"dataset_name": "primary_task",
|
1262 |
+
"subset": null,
|
1263 |
+
"prompt_id": "764fda4e-dc13-4766-b8ab-eafd79fe875e",
|
1264 |
+
"prompt_jinja": "{% if language == \"indonesian\" %}\nSaya penasaran {{question_text}}.\nTolong bantu saya menjawab pertanyaan ini dengan \"{{answer_choices[0]}}\", \"{{answer_choices[1]}}\" atau \"{{answer_choices[2]}}\" jika dua opsi pertama tidak bisa diaplikasikan.\nIni yang saya temukan di internet:\nTopik: {{document_title}}\nArtikel: {{document_plaintext}}\n|||\n{{{\"NO\":\"Tidak\",\"YES\": \"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n{% endif %}",
|
1265 |
+
"prompt_original_task": true,
|
1266 |
+
"comment": "",
|
1267 |
+
"acc_norm_stderr": 0.0042544427599910594
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"task_name": "tydiqa_primary",
|
1271 |
+
"prompt_name": "id_open_domain_qa",
|
1272 |
+
"acc": 0.4576271186440678,
|
1273 |
+
"fixed_answer_choice_list": [
|
1274 |
+
"Ya",
|
1275 |
+
"Tidak"
|
1276 |
+
],
|
1277 |
+
"dataset_path": "tydiqa",
|
1278 |
+
"dataset_name": "primary_task",
|
1279 |
+
"subset": null,
|
1280 |
+
"prompt_id": "976fb48f-7135-4344-91c8-cee2e535b8ab",
|
1281 |
+
"prompt_jinja": "{% if language == \"indonesian\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nJawab pertanyaan terkait {{document_title}}.\nPertanyaan: {{question_text}}. Ya atau Tidak?\n||| \n{{{\"NO\":\"Tidak\",\"YES\": \"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n {% endif %}\n{% endif %}",
|
1282 |
+
"prompt_original_task": false,
|
1283 |
+
"comment": "",
|
1284 |
+
"acc_stderr": 0.06541703602400106
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"task_name": "tydiqa_primary",
|
1288 |
+
"prompt_name": "id_open_domain_qa",
|
1289 |
+
"acc_norm": 0.2033898305084746,
|
1290 |
+
"fixed_answer_choice_list": [
|
1291 |
+
"Ya",
|
1292 |
+
"Tidak"
|
1293 |
+
],
|
1294 |
+
"dataset_path": "tydiqa",
|
1295 |
+
"dataset_name": "primary_task",
|
1296 |
+
"subset": null,
|
1297 |
+
"prompt_id": "976fb48f-7135-4344-91c8-cee2e535b8ab",
|
1298 |
+
"prompt_jinja": "{% if language == \"indonesian\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nJawab pertanyaan terkait {{document_title}}.\nPertanyaan: {{question_text}}. Ya atau Tidak?\n||| \n{{{\"NO\":\"Tidak\",\"YES\": \"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n {% endif %}\n{% endif %}",
|
1299 |
+
"prompt_original_task": false,
|
1300 |
+
"comment": "",
|
1301 |
+
"acc_norm_stderr": 0.052853474644238056
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"task_name": "tydiqa_primary",
|
1305 |
+
"prompt_name": "id_open_domain_qa_without_choices",
|
1306 |
+
"acc": 0.2711864406779661,
|
1307 |
+
"fixed_answer_choice_list": [
|
1308 |
+
"Ya",
|
1309 |
+
"Tidak"
|
1310 |
+
],
|
1311 |
+
"dataset_path": "tydiqa",
|
1312 |
+
"dataset_name": "primary_task",
|
1313 |
+
"subset": null,
|
1314 |
+
"prompt_id": "d6139cbc-7b25-4539-80c7-2b0832183951",
|
1315 |
+
"prompt_jinja": "{% if language == \"indonesian\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nJawab pertanyaan terkait {{document_title}}. {{question_text}}\n||| \n{{{\"NO\":\"Tidak\",\"YES\": \"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n {% endif %} \n{% endif %} ",
|
1316 |
+
"prompt_original_task": false,
|
1317 |
+
"comment": "",
|
1318 |
+
"acc_stderr": 0.05837517703884878
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"task_name": "tydiqa_primary",
|
1322 |
+
"prompt_name": "id_open_domain_qa_without_choices",
|
1323 |
+
"acc_norm": 0.2033898305084746,
|
1324 |
+
"fixed_answer_choice_list": [
|
1325 |
+
"Ya",
|
1326 |
+
"Tidak"
|
1327 |
+
],
|
1328 |
+
"dataset_path": "tydiqa",
|
1329 |
+
"dataset_name": "primary_task",
|
1330 |
+
"subset": null,
|
1331 |
+
"prompt_id": "d6139cbc-7b25-4539-80c7-2b0832183951",
|
1332 |
+
"prompt_jinja": "{% if language == \"indonesian\" %} \n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \nJawab pertanyaan terkait {{document_title}}. {{question_text}}\n||| \n{{{\"NO\":\"Tidak\",\"YES\": \"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n {% endif %} \n{% endif %} ",
|
1333 |
+
"prompt_original_task": false,
|
1334 |
+
"comment": "",
|
1335 |
+
"acc_norm_stderr": 0.052853474644238056
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"task_name": "tydiqa_primary",
|
1339 |
+
"prompt_name": "id_read_and_answer",
|
1340 |
+
"acc": 0.007202216066481994,
|
1341 |
+
"fixed_answer_choice_list": [
|
1342 |
+
"Ya",
|
1343 |
+
"Tidak",
|
1344 |
+
"Tidak ada"
|
1345 |
+
],
|
1346 |
+
"dataset_path": "tydiqa",
|
1347 |
+
"dataset_name": "primary_task",
|
1348 |
+
"subset": null,
|
1349 |
+
"prompt_id": "b368b4af-b8b1-4b0f-ab72-a4db0649ca65",
|
1350 |
+
"prompt_jinja": "{% if language == \"indonesian\" %}\nJawab pertanyaan berikut dengan \"{{answer_choices[0]}}\" atau \"{{answer_choices[1]}}\" atau \"{{answer_choices[2]}}\" jika dua\nopsi pertama tidak dapat diaplikasikan.\nPertanyaan: {{question_text}}\nTopik: {{document_title}}\nArtikel: {{document_plaintext}}\n|||\n{{{\"NO\":\"Tidak\",\"YES\": \"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n{% endif %}",
|
1351 |
+
"prompt_original_task": true,
|
1352 |
+
"comment": "",
|
1353 |
+
"acc_stderr": 0.0019908805601478756
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"task_name": "tydiqa_primary",
|
1357 |
+
"prompt_name": "id_read_and_answer",
|
1358 |
+
"acc_norm": 0.9662049861495845,
|
1359 |
+
"fixed_answer_choice_list": [
|
1360 |
+
"Ya",
|
1361 |
+
"Tidak",
|
1362 |
+
"Tidak ada"
|
1363 |
+
],
|
1364 |
+
"dataset_path": "tydiqa",
|
1365 |
+
"dataset_name": "primary_task",
|
1366 |
+
"subset": null,
|
1367 |
+
"prompt_id": "b368b4af-b8b1-4b0f-ab72-a4db0649ca65",
|
1368 |
+
"prompt_jinja": "{% if language == \"indonesian\" %}\nJawab pertanyaan berikut dengan \"{{answer_choices[0]}}\" atau \"{{answer_choices[1]}}\" atau \"{{answer_choices[2]}}\" jika dua\nopsi pertama tidak dapat diaplikasikan.\nPertanyaan: {{question_text}}\nTopik: {{document_title}}\nArtikel: {{document_plaintext}}\n|||\n{{{\"NO\":\"Tidak\",\"YES\": \"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n{% endif %}",
|
1369 |
+
"prompt_original_task": true,
|
1370 |
+
"comment": "",
|
1371 |
+
"acc_norm_stderr": 0.0042544427599910594
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"task_name": "tydiqa_primary",
|
1375 |
+
"prompt_name": "id_yes_no_none",
|
1376 |
+
"acc": 0.008310249307479225,
|
1377 |
+
"fixed_answer_choice_list": [
|
1378 |
+
"Ya",
|
1379 |
+
"Tidak",
|
1380 |
+
"Tidak ada"
|
1381 |
+
],
|
1382 |
+
"dataset_path": "tydiqa",
|
1383 |
+
"dataset_name": "primary_task",
|
1384 |
+
"subset": null,
|
1385 |
+
"prompt_id": "5c48e84c-10e4-44ee-b2b3-94a4d018e833",
|
1386 |
+
"prompt_jinja": "{% if language == \"indonesian\" %} \nPertanyaan: {{question_text}}\nJawab pertanyaan tersebut dengan {{\"Ya\"}} atau {{\"Tidak\"}}. Jika tidak memungkinkan, jawab dengan {{\"Tidak ada\"}}.\nPetunjuk: {{document_plaintext}}\n|||\n{{{\"NO\":\"Tidak\",\"YES\": \"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n{% endif %}",
|
1387 |
+
"prompt_original_task": true,
|
1388 |
+
"comment": "",
|
1389 |
+
"acc_stderr": 0.002137355052582956
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"task_name": "tydiqa_primary",
|
1393 |
+
"prompt_name": "id_yes_no_none",
|
1394 |
+
"acc_norm": 0.9662049861495845,
|
1395 |
+
"fixed_answer_choice_list": [
|
1396 |
+
"Ya",
|
1397 |
+
"Tidak",
|
1398 |
+
"Tidak ada"
|
1399 |
+
],
|
1400 |
+
"dataset_path": "tydiqa",
|
1401 |
+
"dataset_name": "primary_task",
|
1402 |
+
"subset": null,
|
1403 |
+
"prompt_id": "5c48e84c-10e4-44ee-b2b3-94a4d018e833",
|
1404 |
+
"prompt_jinja": "{% if language == \"indonesian\" %} \nPertanyaan: {{question_text}}\nJawab pertanyaan tersebut dengan {{\"Ya\"}} atau {{\"Tidak\"}}. Jika tidak memungkinkan, jawab dengan {{\"Tidak ada\"}}.\nPetunjuk: {{document_plaintext}}\n|||\n{{{\"NO\":\"Tidak\",\"YES\": \"Ya\", \"NONE\": \"Tidak ada\"}[annotations.yes_no_answer[0]]}}\n{% endif %}",
|
1405 |
+
"prompt_original_task": true,
|
1406 |
+
"comment": "",
|
1407 |
+
"acc_norm_stderr": 0.0042544427599910594
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"task_name": "tydiqa_primary",
|
1411 |
+
"prompt_name": "id_yes_no_question",
|
1412 |
+
"acc": 0.8138504155124654,
|
1413 |
+
"fixed_answer_choice_list": [
|
1414 |
+
"Ya",
|
1415 |
+
"Tidak"
|
1416 |
+
],
|
1417 |
+
"dataset_path": "tydiqa",
|
1418 |
+
"dataset_name": "primary_task",
|
1419 |
+
"subset": null,
|
1420 |
+
"prompt_id": "ebba1db1-daf2-4e40-9dca-4cbe4298cd3e",
|
1421 |
+
"prompt_jinja": "{% if language == \"indonesian\" %}\n{{question_text}}\nApakah ini termasuk kalimat tanya \"Ya/Tidak\"?\n|||\n{% if annotations. yes_no_answer[0] == \"NONE\" %}\nTidak\n{% else %}\nYa\n{% endif %}\n{% endif %}",
|
1422 |
+
"prompt_original_task": false,
|
1423 |
+
"comment": "",
|
1424 |
+
"acc_stderr": 0.009163999646097152
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"task_name": "tydiqa_primary",
|
1428 |
+
"prompt_name": "id_yes_no_question",
|
1429 |
+
"acc_norm": 0.9673130193905817,
|
1430 |
+
"fixed_answer_choice_list": [
|
1431 |
+
"Ya",
|
1432 |
+
"Tidak"
|
1433 |
+
],
|
1434 |
+
"dataset_path": "tydiqa",
|
1435 |
+
"dataset_name": "primary_task",
|
1436 |
+
"subset": null,
|
1437 |
+
"prompt_id": "ebba1db1-daf2-4e40-9dca-4cbe4298cd3e",
|
1438 |
+
"prompt_jinja": "{% if language == \"indonesian\" %}\n{{question_text}}\nApakah ini termasuk kalimat tanya \"Ya/Tidak\"?\n|||\n{% if annotations. yes_no_answer[0] == \"NONE\" %}\nTidak\n{% else %}\nYa\n{% endif %}\n{% endif %}",
|
1439 |
+
"prompt_original_task": false,
|
1440 |
+
"comment": "",
|
1441 |
+
"acc_norm_stderr": 0.0041865150102794995
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"task_name": "tydiqa_primary",
|
1445 |
+
"prompt_name": "jp_after_reading_the_text",
|
1446 |
+
"acc": 0.7635135135135135,
|
1447 |
+
"fixed_answer_choice_list": [
|
1448 |
+
"\u306f\u3044",
|
1449 |
+
"\u3044\u3044\u3048"
|
1450 |
+
],
|
1451 |
+
"dataset_path": "tydiqa",
|
1452 |
+
"dataset_name": "primary_task",
|
1453 |
+
"subset": null,
|
1454 |
+
"prompt_id": "d160228e-9169-456d-a16a-0f5288452c9a",
|
1455 |
+
"prompt_jinja": "{% if language == \"japanese\" %}\n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \n \u30a6\u30a3\u30ad\u30da\u30c7\u30a3\u30a2\u306e\u8a18\u4e8b\u3092\u8aad\u3093\u3060\u3042\u3068\u3001\u6b21\u306e\u8cea\u554f\u306b\u7b54\u3048\u3066\u304f\u3060\u3055\u3044: {{question_text}}\n {{document_plaintext}}\n |||\n {{{\"YES\":\"\u306f\u3044\", \"NO\":\"\u3044\u3044\u3048\", \"NONE\": \"\u3069\u3061\u3089\u3067\u3082\u306a\u3044\"}[annotations.yes_no_answer[0]]}}\n {% endif %}\n{% endif %}",
|
1456 |
+
"prompt_original_task": true,
|
1457 |
+
"comment": "",
|
1458 |
+
"acc_stderr": 0.03504716241250439
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"task_name": "tydiqa_primary",
|
1462 |
+
"prompt_name": "jp_after_reading_the_text",
|
1463 |
+
"acc_norm": 0.2972972972972973,
|
1464 |
+
"fixed_answer_choice_list": [
|
1465 |
+
"\u306f\u3044",
|
1466 |
+
"\u3044\u3044\u3048"
|
1467 |
+
],
|
1468 |
+
"dataset_path": "tydiqa",
|
1469 |
+
"dataset_name": "primary_task",
|
1470 |
+
"subset": null,
|
1471 |
+
"prompt_id": "d160228e-9169-456d-a16a-0f5288452c9a",
|
1472 |
+
"prompt_jinja": "{% if language == \"japanese\" %}\n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %} \n \u30a6\u30a3\u30ad\u30da\u30c7\u30a3\u30a2\u306e\u8a18\u4e8b\u3092\u8aad\u3093\u3060\u3042\u3068\u3001\u6b21\u306e\u8cea\u554f\u306b\u7b54\u3048\u3066\u304f\u3060\u3055\u3044: {{question_text}}\n {{document_plaintext}}\n |||\n {{{\"YES\":\"\u306f\u3044\", \"NO\":\"\u3044\u3044\u3048\", \"NONE\": \"\u3069\u3061\u3089\u3067\u3082\u306a\u3044\"}[annotations.yes_no_answer[0]]}}\n {% endif %}\n{% endif %}",
|
1473 |
+
"prompt_original_task": true,
|
1474 |
+
"comment": "",
|
1475 |
+
"acc_norm_stderr": 0.037698374558241474
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"task_name": "tydiqa_primary",
|
1479 |
+
"prompt_name": "jp_based_on_the_text",
|
1480 |
+
"acc": 0.7635135135135135,
|
1481 |
+
"fixed_answer_choice_list": [
|
1482 |
+
"\u306f\u3044",
|
1483 |
+
"\u3044\u3044\u3048"
|
1484 |
+
],
|
1485 |
+
"dataset_path": "tydiqa",
|
1486 |
+
"dataset_name": "primary_task",
|
1487 |
+
"subset": null,
|
1488 |
+
"prompt_id": "733a3ff3-6edd-4440-b038-bf9736ebaff7",
|
1489 |
+
"prompt_jinja": "{% if language == \"japanese\" %}\n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %}\n \u6b21\u306e\u6587\u7ae0\u306b\u3082\u3068\u3065\u304f\u3068\u3001 , {{question_text}} \n {{document_plaintext}}\n ||| \n {{{\"YES\":\"\u306f\u3044\", \"NO\":\"\u3044\u3044\u3048\", \"NONE\": \"\u3069\u3061\u3089\u3067\u3082\u306a\u3044\"}[annotations.yes_no_answer[0]]}}\n {% endif %}\n{% endif %}",
|
1490 |
+
"prompt_original_task": true,
|
1491 |
+
"comment": "",
|
1492 |
+
"acc_stderr": 0.03504716241250439
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"task_name": "tydiqa_primary",
|
1496 |
+
"prompt_name": "jp_based_on_the_text",
|
1497 |
+
"acc_norm": 0.2905405405405405,
|
1498 |
+
"fixed_answer_choice_list": [
|
1499 |
+
"\u306f\u3044",
|
1500 |
+
"\u3044\u3044\u3048"
|
1501 |
+
],
|
1502 |
+
"dataset_path": "tydiqa",
|
1503 |
+
"dataset_name": "primary_task",
|
1504 |
+
"subset": null,
|
1505 |
+
"prompt_id": "733a3ff3-6edd-4440-b038-bf9736ebaff7",
|
1506 |
+
"prompt_jinja": "{% if language == \"japanese\" %}\n {% if annotations.yes_no_answer[0] == \"YES\" or annotations.yes_no_answer[0] == \"NO\" %}\n \u6b21\u306e\u6587\u7ae0\u306b\u3082\u3068\u3065\u304f\u3068\u3001 , {{question_text}} \n {{document_plaintext}}\n ||| \n {{{\"YES\":\"\u306f\u3044\", \"NO\":\"\u3044\u3044\u3048\", \"NONE\": \"\u3069\u3061\u3089\u3067\u3082\u306a\u3044\"}[annotations.yes_no_answer[0]]}}\n {% endif %}\n{% endif %}",
|
1507 |
+
"prompt_original_task": true,
|
1508 |
+
"comment": "",
|
1509 |
+
"acc_norm_stderr": 0.03744626397928733
|
1510 |
+
}
|
1511 |
+
],
|
1512 |
+
"versions": {
|
1513 |
+
"multirc+I was going to say\u2026": 0,
|
1514 |
+
"multirc+Would it be good to answer\u2026": 0,
|
1515 |
+
"multirc+confirm": 0,
|
1516 |
+
"multirc+correct": 0,
|
1517 |
+
"multirc+decide_valid": 0,
|
1518 |
+
"multirc+found_this_answer": 0,
|
1519 |
+
"multirc+grading": 0,
|
1520 |
+
"multirc+is the correct answer\u2026": 0,
|
1521 |
+
"multirc+is\u2026 a correct answer?": 0,
|
1522 |
+
"multirc+paragraph\u2026 question\u2026 is it\u2026 ?": 0,
|
1523 |
+
"qqp+answer": 0,
|
1524 |
+
"qqp+duplicate": 0,
|
1525 |
+
"qqp+duplicate or not": 0,
|
1526 |
+
"qqp+meaning": 0,
|
1527 |
+
"qqp+quora": 0,
|
1528 |
+
"qqp+same thing": 0,
|
1529 |
+
"rte+does the claim\u2026 follow the fact\u2026": 0,
|
1530 |
+
"rte+entailment explained": 0,
|
1531 |
+
"rte+imply": 0,
|
1532 |
+
"rte+imply separated": 0,
|
1533 |
+
"rte+mean": 0,
|
1534 |
+
"sst+following positive negative": 0,
|
1535 |
+
"sst+happy or mad": 0,
|
1536 |
+
"sst+positive negative after": 0,
|
1537 |
+
"sst+review": 0,
|
1538 |
+
"sst+said": 0,
|
1539 |
+
"tydiqa_primary+en_after_reading_the_text": 0,
|
1540 |
+
"tydiqa_primary+en_based_on_the_text": 0,
|
1541 |
+
"tydiqa_primary+en_heres_what_I_found": 0,
|
1542 |
+
"tydiqa_primary+en_open_domain_qa": 0,
|
1543 |
+
"tydiqa_primary+en_open_domain_qa_without_choices": 0,
|
1544 |
+
"tydiqa_primary+en_read_and_answer": 0,
|
1545 |
+
"tydiqa_primary+en_yes_no_none": 0,
|
1546 |
+
"tydiqa_primary+en_yes_no_question": 0,
|
1547 |
+
"tydiqa_primary+id_after_reading_the_text": 0,
|
1548 |
+
"tydiqa_primary+id_based_on_the_text": 0,
|
1549 |
+
"tydiqa_primary+id_heres_what_I_found": 0,
|
1550 |
+
"tydiqa_primary+id_open_domain_qa": 0,
|
1551 |
+
"tydiqa_primary+id_open_domain_qa_without_choices": 0,
|
1552 |
+
"tydiqa_primary+id_read_and_answer": 0,
|
1553 |
+
"tydiqa_primary+id_yes_no_none": 0,
|
1554 |
+
"tydiqa_primary+id_yes_no_question": 0,
|
1555 |
+
"tydiqa_primary+jp_after_reading_the_text": 0,
|
1556 |
+
"tydiqa_primary+jp_based_on_the_text": 0
|
1557 |
+
},
|
1558 |
+
"table_results": {
|
1559 |
+
"multirc+I was going to say\u2026": {
|
1560 |
+
"task_name": "multirc",
|
1561 |
+
"prompt_name": "I was going to say\u2026",
|
1562 |
+
"acc": 0.5724009900990099,
|
1563 |
+
"acc_stderr": 0.007106111600745623,
|
1564 |
+
"acc_norm": 0.42883663366336633,
|
1565 |
+
"acc_norm_stderr": 0.00710869042313772
|
1566 |
+
},
|
1567 |
+
"multirc+Would it be good to answer\u2026": {
|
1568 |
+
"task_name": "multirc",
|
1569 |
+
"prompt_name": "Would it be good to answer\u2026",
|
1570 |
+
"acc": 0.5204207920792079,
|
1571 |
+
"acc_stderr": 0.0071758108566598,
|
1572 |
+
"acc_norm": 0.43337458745874585,
|
1573 |
+
"acc_norm_stderr": 0.00711775827463544
|
1574 |
+
},
|
1575 |
+
"multirc+confirm": {
|
1576 |
+
"task_name": "multirc",
|
1577 |
+
"prompt_name": "confirm",
|
1578 |
+
"acc": 0.4329620462046205,
|
1579 |
+
"acc_stderr": 0.007116959070151668,
|
1580 |
+
"acc_norm": 0.4280115511551155,
|
1581 |
+
"acc_norm_stderr": 0.007106976252751536
|
1582 |
+
},
|
1583 |
+
"multirc+correct": {
|
1584 |
+
"task_name": "multirc",
|
1585 |
+
"prompt_name": "correct",
|
1586 |
+
"acc": 0.5721947194719472,
|
1587 |
+
"acc_stderr": 0.007106544557507229,
|
1588 |
+
"acc_norm": 0.4709158415841584,
|
1589 |
+
"acc_norm_stderr": 0.00716964280499065
|
1590 |
+
},
|
1591 |
+
"multirc+decide_valid": {
|
1592 |
+
"task_name": "multirc",
|
1593 |
+
"prompt_name": "decide_valid",
|
1594 |
+
"acc": 0.5375412541254125,
|
1595 |
+
"acc_stderr": 0.007161531207958062,
|
1596 |
+
"acc_norm": 0.4280115511551155,
|
1597 |
+
"acc_norm_stderr": 0.007106976252751536
|
1598 |
+
},
|
1599 |
+
"multirc+found_this_answer": {
|
1600 |
+
"task_name": "multirc",
|
1601 |
+
"prompt_name": "found_this_answer",
|
1602 |
+
"acc": 0.4773102310231023,
|
1603 |
+
"acc_stderr": 0.007174404542630741,
|
1604 |
+
"acc_norm": 0.4280115511551155,
|
1605 |
+
"acc_norm_stderr": 0.007106976252751536
|
1606 |
+
},
|
1607 |
+
"multirc+grading": {
|
1608 |
+
"task_name": "multirc",
|
1609 |
+
"prompt_name": "grading",
|
1610 |
+
"acc": 0.5874587458745875,
|
1611 |
+
"acc_stderr": 0.007071081930208332,
|
1612 |
+
"acc_norm": 0.4280115511551155,
|
1613 |
+
"acc_norm_stderr": 0.007106976252751536
|
1614 |
+
},
|
1615 |
+
"multirc+is the correct answer\u2026": {
|
1616 |
+
"task_name": "multirc",
|
1617 |
+
"prompt_name": "is the correct answer\u2026",
|
1618 |
+
"acc": 0.5478547854785478,
|
1619 |
+
"acc_stderr": 0.007148833615093023,
|
1620 |
+
"acc_norm": 0.4278052805280528,
|
1621 |
+
"acc_norm_stderr": 0.007106544557507229
|
1622 |
+
},
|
1623 |
+
"multirc+is\u2026 a correct answer?": {
|
1624 |
+
"task_name": "multirc",
|
1625 |
+
"prompt_name": "is\u2026 a correct answer?",
|
1626 |
+
"acc": 0.45028877887788776,
|
1627 |
+
"acc_stderr": 0.007146219530521704,
|
1628 |
+
"acc_norm": 0.4280115511551155,
|
1629 |
+
"acc_norm_stderr": 0.007106976252751536
|
1630 |
+
},
|
1631 |
+
"multirc+paragraph\u2026 question\u2026 is it\u2026 ?": {
|
1632 |
+
"task_name": "multirc",
|
1633 |
+
"prompt_name": "paragraph\u2026 question\u2026 is it\u2026 ?",
|
1634 |
+
"acc": 0.5581683168316832,
|
1635 |
+
"acc_stderr": 0.007133037518848498,
|
1636 |
+
"acc_norm": 0.429042904290429,
|
1637 |
+
"acc_norm_stderr": 0.007109115814226985
|
1638 |
+
},
|
1639 |
+
"qqp+answer": {
|
1640 |
+
"task_name": "qqp",
|
1641 |
+
"prompt_name": "answer",
|
1642 |
+
"acc": 0.4095720999257977,
|
1643 |
+
"acc_stderr": 0.0024456940020775335,
|
1644 |
+
"acc_norm": 0.36816720257234725,
|
1645 |
+
"acc_norm_stderr": 0.002398706610614492
|
1646 |
+
},
|
1647 |
+
"qqp+duplicate": {
|
1648 |
+
"task_name": "qqp",
|
1649 |
+
"prompt_name": "duplicate",
|
1650 |
+
"acc": 0.5389809547365817,
|
1651 |
+
"acc_stderr": 0.0024791319564636633,
|
1652 |
+
"acc_norm": 0.36816720257234725,
|
1653 |
+
"acc_norm_stderr": 0.002398706610614492
|
1654 |
+
},
|
1655 |
+
"qqp+duplicate or not": {
|
1656 |
+
"task_name": "qqp",
|
1657 |
+
"prompt_name": "duplicate or not",
|
1658 |
+
"acc": 0.3811526094484294,
|
1659 |
+
"acc_stderr": 0.0024154315297388092,
|
1660 |
+
"acc_norm": 0.6317585951026465,
|
1661 |
+
"acc_norm_stderr": 0.00239880745215712
|
1662 |
+
},
|
1663 |
+
"qqp+meaning": {
|
1664 |
+
"task_name": "qqp",
|
1665 |
+
"prompt_name": "meaning",
|
1666 |
+
"acc": 0.3842443729903537,
|
1667 |
+
"acc_stderr": 0.0024191425100536248,
|
1668 |
+
"acc_norm": 0.36816720257234725,
|
1669 |
+
"acc_norm_stderr": 0.002398706610614492
|
1670 |
+
},
|
1671 |
+
"qqp+quora": {
|
1672 |
+
"task_name": "qqp",
|
1673 |
+
"prompt_name": "quora",
|
1674 |
+
"acc": 0.36826613900568883,
|
1675 |
+
"acc_stderr": 0.002398841052447127,
|
1676 |
+
"acc_norm": 0.36816720257234725,
|
1677 |
+
"acc_norm_stderr": 0.002398706610614492
|
1678 |
+
},
|
1679 |
+
"qqp+same thing": {
|
1680 |
+
"task_name": "qqp",
|
1681 |
+
"prompt_name": "same thing",
|
1682 |
+
"acc": 0.5813999505317833,
|
1683 |
+
"acc_stderr": 0.0024535258231136925,
|
1684 |
+
"acc_norm": 0.36816720257234725,
|
1685 |
+
"acc_norm_stderr": 0.002398706610614492
|
1686 |
+
},
|
1687 |
+
"rte+does the claim\u2026 follow the fact\u2026": {
|
1688 |
+
"task_name": "rte",
|
1689 |
+
"prompt_name": "does the claim\u2026 follow the fact\u2026",
|
1690 |
+
"acc": 0.4729241877256318,
|
1691 |
+
"acc_stderr": 0.0300523034631437,
|
1692 |
+
"acc_norm": 0.5270758122743683,
|
1693 |
+
"acc_norm_stderr": 0.0300523034631437
|
1694 |
+
},
|
1695 |
+
"rte+entailment explained": {
|
1696 |
+
"task_name": "rte",
|
1697 |
+
"prompt_name": "entailment explained",
|
1698 |
+
"acc": 0.516245487364621,
|
1699 |
+
"acc_stderr": 0.030080573208738064,
|
1700 |
+
"acc_norm": 0.4729241877256318,
|
1701 |
+
"acc_norm_stderr": 0.0300523034631437
|
1702 |
+
},
|
1703 |
+
"rte+imply": {
|
1704 |
+
"task_name": "rte",
|
1705 |
+
"prompt_name": "imply",
|
1706 |
+
"acc": 0.47653429602888087,
|
1707 |
+
"acc_stderr": 0.030063300411902652,
|
1708 |
+
"acc_norm": 0.5270758122743683,
|
1709 |
+
"acc_norm_stderr": 0.0300523034631437
|
1710 |
+
},
|
1711 |
+
"rte+imply separated": {
|
1712 |
+
"task_name": "rte",
|
1713 |
+
"prompt_name": "imply separated",
|
1714 |
+
"acc": 0.4620938628158845,
|
1715 |
+
"acc_stderr": 0.03000984891252911,
|
1716 |
+
"acc_norm": 0.5270758122743683,
|
1717 |
+
"acc_norm_stderr": 0.0300523034631437
|
1718 |
+
},
|
1719 |
+
"rte+mean": {
|
1720 |
+
"task_name": "rte",
|
1721 |
+
"prompt_name": "mean",
|
1722 |
+
"acc": 0.47653429602888087,
|
1723 |
+
"acc_stderr": 0.030063300411902652,
|
1724 |
+
"acc_norm": 0.5270758122743683,
|
1725 |
+
"acc_norm_stderr": 0.0300523034631437
|
1726 |
+
},
|
1727 |
+
"sst+following positive negative": {
|
1728 |
+
"task_name": "sst",
|
1729 |
+
"prompt_name": "following positive negative",
|
1730 |
+
"acc": 0.7603211009174312,
|
1731 |
+
"acc_stderr": 0.014464530608155847,
|
1732 |
+
"acc_norm": 0.7603211009174312,
|
1733 |
+
"acc_norm_stderr": 0.014464530608155847
|
1734 |
+
},
|
1735 |
+
"sst+happy or mad": {
|
1736 |
+
"task_name": "sst",
|
1737 |
+
"prompt_name": "happy or mad",
|
1738 |
+
"acc": 0.5091743119266054,
|
1739 |
+
"acc_stderr": 0.01693900152535154,
|
1740 |
+
"acc_norm": 0.5091743119266054,
|
1741 |
+
"acc_norm_stderr": 0.01693900152535154
|
1742 |
+
},
|
1743 |
+
"sst+positive negative after": {
|
1744 |
+
"task_name": "sst",
|
1745 |
+
"prompt_name": "positive negative after",
|
1746 |
+
"acc": 0.5263761467889908,
|
1747 |
+
"acc_stderr": 0.016918264333564144,
|
1748 |
+
"acc_norm": 0.5263761467889908,
|
1749 |
+
"acc_norm_stderr": 0.016918264333564144
|
1750 |
+
},
|
1751 |
+
"sst+review": {
|
1752 |
+
"task_name": "sst",
|
1753 |
+
"prompt_name": "review",
|
1754 |
+
"acc": 0.5722477064220184,
|
1755 |
+
"acc_stderr": 0.016764056901835654,
|
1756 |
+
"acc_norm": 0.5722477064220184,
|
1757 |
+
"acc_norm_stderr": 0.016764056901835654
|
1758 |
+
},
|
1759 |
+
"sst+said": {
|
1760 |
+
"task_name": "sst",
|
1761 |
+
"prompt_name": "said",
|
1762 |
+
"acc": 0.5022935779816514,
|
1763 |
+
"acc_stderr": 0.016941675443113525,
|
1764 |
+
"acc_norm": 0.5091743119266054,
|
1765 |
+
"acc_norm_stderr": 0.01693900152535154
|
1766 |
+
},
|
1767 |
+
"tydiqa_primary+en_after_reading_the_text": {
|
1768 |
+
"task_name": "tydiqa_primary",
|
1769 |
+
"prompt_name": "en_after_reading_the_text",
|
1770 |
+
"acc": 0.35064935064935066,
|
1771 |
+
"acc_stderr": 0.054735534443086,
|
1772 |
+
"acc_norm": 0.6493506493506493,
|
1773 |
+
"acc_norm_stderr": 0.054735534443086
|
1774 |
+
},
|
1775 |
+
"tydiqa_primary+en_based_on_the_text": {
|
1776 |
+
"task_name": "tydiqa_primary",
|
1777 |
+
"prompt_name": "en_based_on_the_text",
|
1778 |
+
"acc": 0.33766233766233766,
|
1779 |
+
"acc_stderr": 0.05424681453014242,
|
1780 |
+
"acc_norm": 0.6363636363636364,
|
1781 |
+
"acc_norm_stderr": 0.055179725333353066
|
1782 |
+
},
|
1783 |
+
"tydiqa_primary+en_heres_what_I_found": {
|
1784 |
+
"task_name": "tydiqa_primary",
|
1785 |
+
"prompt_name": "en_heres_what_I_found",
|
1786 |
+
"acc": 0.03685741998060136,
|
1787 |
+
"acc_stderr": 0.005870689955728106,
|
1788 |
+
"acc_norm": 0.8661493695441319,
|
1789 |
+
"acc_norm_stderr": 0.010609330898735572
|
1790 |
+
},
|
1791 |
+
"tydiqa_primary+en_open_domain_qa": {
|
1792 |
+
"task_name": "tydiqa_primary",
|
1793 |
+
"prompt_name": "en_open_domain_qa",
|
1794 |
+
"acc": 0.6753246753246753,
|
1795 |
+
"acc_stderr": 0.05371235012133188,
|
1796 |
+
"acc_norm": 0.6753246753246753,
|
1797 |
+
"acc_norm_stderr": 0.05371235012133188
|
1798 |
+
},
|
1799 |
+
"tydiqa_primary+en_open_domain_qa_without_choices": {
|
1800 |
+
"task_name": "tydiqa_primary",
|
1801 |
+
"prompt_name": "en_open_domain_qa_without_choices",
|
1802 |
+
"acc": 0.6753246753246753,
|
1803 |
+
"acc_stderr": 0.05371235012133188,
|
1804 |
+
"acc_norm": 0.6753246753246753,
|
1805 |
+
"acc_norm_stderr": 0.05371235012133188
|
1806 |
+
},
|
1807 |
+
"tydiqa_primary+en_read_and_answer": {
|
1808 |
+
"task_name": "tydiqa_primary",
|
1809 |
+
"prompt_name": "en_read_and_answer",
|
1810 |
+
"acc": 0.03685741998060136,
|
1811 |
+
"acc_stderr": 0.005870689955728103,
|
1812 |
+
"acc_norm": 0.8845780795344326,
|
1813 |
+
"acc_norm_stderr": 0.009956200231519313
|
1814 |
+
},
|
1815 |
+
"tydiqa_primary+en_yes_no_none": {
|
1816 |
+
"task_name": "tydiqa_primary",
|
1817 |
+
"prompt_name": "en_yes_no_none",
|
1818 |
+
"acc": 0.037827352085354024,
|
1819 |
+
"acc_stderr": 0.005944438823944305,
|
1820 |
+
"acc_norm": 0.871968962172648,
|
1821 |
+
"acc_norm_stderr": 0.01041093017771443
|
1822 |
+
},
|
1823 |
+
"tydiqa_primary+en_yes_no_question": {
|
1824 |
+
"task_name": "tydiqa_primary",
|
1825 |
+
"prompt_name": "en_yes_no_question",
|
1826 |
+
"acc": 0.7652764306498545,
|
1827 |
+
"acc_stderr": 0.013205927447521368,
|
1828 |
+
"acc_norm": 0.07565470417070805,
|
1829 |
+
"acc_norm_stderr": 0.008239796273494257
|
1830 |
+
},
|
1831 |
+
"tydiqa_primary+id_after_reading_the_text": {
|
1832 |
+
"task_name": "tydiqa_primary",
|
1833 |
+
"prompt_name": "id_after_reading_the_text",
|
1834 |
+
"acc": 0.2711864406779661,
|
1835 |
+
"acc_stderr": 0.058375177038848765,
|
1836 |
+
"acc_norm": 0.2033898305084746,
|
1837 |
+
"acc_norm_stderr": 0.052853474644238056
|
1838 |
+
},
|
1839 |
+
"tydiqa_primary+id_based_on_the_text": {
|
1840 |
+
"task_name": "tydiqa_primary",
|
1841 |
+
"prompt_name": "id_based_on_the_text",
|
1842 |
+
"acc": 0.23728813559322035,
|
1843 |
+
"acc_stderr": 0.05586042894941199,
|
1844 |
+
"acc_norm": 0.2033898305084746,
|
1845 |
+
"acc_norm_stderr": 0.052853474644238056
|
1846 |
+
},
|
1847 |
+
"tydiqa_primary+id_heres_what_I_found": {
|
1848 |
+
"task_name": "tydiqa_primary",
|
1849 |
+
"prompt_name": "id_heres_what_I_found",
|
1850 |
+
"acc": 0.007202216066481994,
|
1851 |
+
"acc_stderr": 0.001990880560147875,
|
1852 |
+
"acc_norm": 0.9662049861495845,
|
1853 |
+
"acc_norm_stderr": 0.0042544427599910594
|
1854 |
+
},
|
1855 |
+
"tydiqa_primary+id_open_domain_qa": {
|
1856 |
+
"task_name": "tydiqa_primary",
|
1857 |
+
"prompt_name": "id_open_domain_qa",
|
1858 |
+
"acc": 0.4576271186440678,
|
1859 |
+
"acc_stderr": 0.06541703602400106,
|
1860 |
+
"acc_norm": 0.2033898305084746,
|
1861 |
+
"acc_norm_stderr": 0.052853474644238056
|
1862 |
+
},
|
1863 |
+
"tydiqa_primary+id_open_domain_qa_without_choices": {
|
1864 |
+
"task_name": "tydiqa_primary",
|
1865 |
+
"prompt_name": "id_open_domain_qa_without_choices",
|
1866 |
+
"acc": 0.2711864406779661,
|
1867 |
+
"acc_stderr": 0.05837517703884878,
|
1868 |
+
"acc_norm": 0.2033898305084746,
|
1869 |
+
"acc_norm_stderr": 0.052853474644238056
|
1870 |
+
},
|
1871 |
+
"tydiqa_primary+id_read_and_answer": {
|
1872 |
+
"task_name": "tydiqa_primary",
|
1873 |
+
"prompt_name": "id_read_and_answer",
|
1874 |
+
"acc": 0.007202216066481994,
|
1875 |
+
"acc_stderr": 0.0019908805601478756,
|
1876 |
+
"acc_norm": 0.9662049861495845,
|
1877 |
+
"acc_norm_stderr": 0.0042544427599910594
|
1878 |
+
},
|
1879 |
+
"tydiqa_primary+id_yes_no_none": {
|
1880 |
+
"task_name": "tydiqa_primary",
|
1881 |
+
"prompt_name": "id_yes_no_none",
|
1882 |
+
"acc": 0.008310249307479225,
|
1883 |
+
"acc_stderr": 0.002137355052582956,
|
1884 |
+
"acc_norm": 0.9662049861495845,
|
1885 |
+
"acc_norm_stderr": 0.0042544427599910594
|
1886 |
+
},
|
1887 |
+
"tydiqa_primary+id_yes_no_question": {
|
1888 |
+
"task_name": "tydiqa_primary",
|
1889 |
+
"prompt_name": "id_yes_no_question",
|
1890 |
+
"acc": 0.8138504155124654,
|
1891 |
+
"acc_stderr": 0.009163999646097152,
|
1892 |
+
"acc_norm": 0.9673130193905817,
|
1893 |
+
"acc_norm_stderr": 0.0041865150102794995
|
1894 |
+
},
|
1895 |
+
"tydiqa_primary+jp_after_reading_the_text": {
|
1896 |
+
"task_name": "tydiqa_primary",
|
1897 |
+
"prompt_name": "jp_after_reading_the_text",
|
1898 |
+
"acc": 0.7635135135135135,
|
1899 |
+
"acc_stderr": 0.03504716241250439,
|
1900 |
+
"acc_norm": 0.2972972972972973,
|
1901 |
+
"acc_norm_stderr": 0.037698374558241474
|
1902 |
+
},
|
1903 |
+
"tydiqa_primary+jp_based_on_the_text": {
|
1904 |
+
"task_name": "tydiqa_primary",
|
1905 |
+
"prompt_name": "jp_based_on_the_text",
|
1906 |
+
"acc": 0.7635135135135135,
|
1907 |
+
"acc_stderr": 0.03504716241250439,
|
1908 |
+
"acc_norm": 0.2905405405405405,
|
1909 |
+
"acc_norm_stderr": 0.03744626397928733
|
1910 |
+
}
|
1911 |
+
},
|
1912 |
+
"config": {
|
1913 |
+
"adaptive_seq_len": true,
|
1914 |
+
"num_fewshot": 0,
|
1915 |
+
"bootstrap_iters": 100000
|
1916 |
+
}
|
1917 |
+
}
|
evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-13-10-19.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
evaluation/results/tr11/bloom2b5/bslmevalfiles/tr11c-2b5-ml-bsevalharness-results_lm-eval_global_step337250_2022-07-14-20-09-16.json
ADDED
@@ -0,0 +1,1255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "gsarti/flores_101_kor",
|
5 |
+
"prompt_name": null,
|
6 |
+
"word_perplexity": 1199924.6918920355
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"task_name": "gsarti/flores_101_kor",
|
10 |
+
"prompt_name": null,
|
11 |
+
"byte_perplexity": 3.932884847226212
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"task_name": "gsarti/flores_101_kor",
|
15 |
+
"prompt_name": null,
|
16 |
+
"bits_per_byte": 1.9755879455567535
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"task_name": "gsarti/flores_101_kir",
|
20 |
+
"prompt_name": null,
|
21 |
+
"word_perplexity": 140474672.36703426
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"task_name": "gsarti/flores_101_kir",
|
25 |
+
"prompt_name": null,
|
26 |
+
"byte_perplexity": 3.729278369847201
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"task_name": "gsarti/flores_101_kir",
|
30 |
+
"prompt_name": null,
|
31 |
+
"bits_per_byte": 1.8988964902756764
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"task_name": "gsarti/flores_101_lao",
|
35 |
+
"prompt_name": null,
|
36 |
+
"word_perplexity": 6.1350041352351446e+26
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"task_name": "gsarti/flores_101_lao",
|
40 |
+
"prompt_name": null,
|
41 |
+
"byte_perplexity": 2.9077314760849924
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"task_name": "gsarti/flores_101_lao",
|
45 |
+
"prompt_name": null,
|
46 |
+
"bits_per_byte": 1.5398940450457603
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "gsarti/flores_101_lav",
|
50 |
+
"prompt_name": null,
|
51 |
+
"word_perplexity": 10925745.685132286
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"task_name": "gsarti/flores_101_lav",
|
55 |
+
"prompt_name": null,
|
56 |
+
"byte_perplexity": 7.777221919194806
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"task_name": "gsarti/flores_101_lav",
|
60 |
+
"prompt_name": null,
|
61 |
+
"bits_per_byte": 2.959254905963978
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"task_name": "gsarti/flores_101_lin",
|
65 |
+
"prompt_name": null,
|
66 |
+
"word_perplexity": 166841.83897098716
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"task_name": "gsarti/flores_101_lin",
|
70 |
+
"prompt_name": null,
|
71 |
+
"byte_perplexity": 7.524842908050988
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"task_name": "gsarti/flores_101_lin",
|
75 |
+
"prompt_name": null,
|
76 |
+
"bits_per_byte": 2.9116614638468965
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"task_name": "gsarti/flores_101_lit",
|
80 |
+
"prompt_name": null,
|
81 |
+
"word_perplexity": 8532364.031813102
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"task_name": "gsarti/flores_101_lit",
|
85 |
+
"prompt_name": null,
|
86 |
+
"byte_perplexity": 7.369179434621725
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"task_name": "gsarti/flores_101_lit",
|
90 |
+
"prompt_name": null,
|
91 |
+
"bits_per_byte": 2.88150398275188
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "gsarti/flores_101_luo",
|
95 |
+
"prompt_name": null,
|
96 |
+
"word_perplexity": 1335199.656768974
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"task_name": "gsarti/flores_101_luo",
|
100 |
+
"prompt_name": null,
|
101 |
+
"byte_perplexity": 11.975963093623681
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"task_name": "gsarti/flores_101_luo",
|
105 |
+
"prompt_name": null,
|
106 |
+
"bits_per_byte": 3.5820697754437467
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"task_name": "gsarti/flores_101_ltz",
|
110 |
+
"prompt_name": null,
|
111 |
+
"word_perplexity": 4081613.1281958995
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"task_name": "gsarti/flores_101_ltz",
|
115 |
+
"prompt_name": null,
|
116 |
+
"byte_perplexity": 8.801059747949214
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"task_name": "gsarti/flores_101_ltz",
|
120 |
+
"prompt_name": null,
|
121 |
+
"bits_per_byte": 3.1376772511430198
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"task_name": "gsarti/flores_101_mkd",
|
125 |
+
"prompt_name": null,
|
126 |
+
"word_perplexity": 291548.6603872499
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"task_name": "gsarti/flores_101_mkd",
|
130 |
+
"prompt_name": null,
|
131 |
+
"byte_perplexity": 2.9656732291754087
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"task_name": "gsarti/flores_101_mkd",
|
135 |
+
"prompt_name": null,
|
136 |
+
"bits_per_byte": 1.5683596441110415
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"task_name": "gsarti/flores_101_msa",
|
140 |
+
"prompt_name": null,
|
141 |
+
"word_perplexity": 931.4191160965655
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"task_name": "gsarti/flores_101_msa",
|
145 |
+
"prompt_name": null,
|
146 |
+
"byte_perplexity": 2.5710001772665634
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"task_name": "gsarti/flores_101_msa",
|
150 |
+
"prompt_name": null,
|
151 |
+
"bits_per_byte": 1.3623297096432079
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"task_name": "gsarti/flores_101_mal",
|
155 |
+
"prompt_name": null,
|
156 |
+
"word_perplexity": 1.207348615509252e+18
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"task_name": "gsarti/flores_101_mal",
|
160 |
+
"prompt_name": null,
|
161 |
+
"byte_perplexity": 4.615948455160037
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"task_name": "gsarti/flores_101_mal",
|
165 |
+
"prompt_name": null,
|
166 |
+
"bits_per_byte": 2.2066271139530245
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"task_name": "gsarti/flores_101_mlt",
|
170 |
+
"prompt_name": null,
|
171 |
+
"word_perplexity": 1820552051.5260184
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"task_name": "gsarti/flores_101_mlt",
|
175 |
+
"prompt_name": null,
|
176 |
+
"byte_perplexity": 15.004773437665275
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"task_name": "gsarti/flores_101_mlt",
|
180 |
+
"prompt_name": null,
|
181 |
+
"bits_per_byte": 3.9073496302297994
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"task_name": "gsarti/flores_101_mri",
|
185 |
+
"prompt_name": null,
|
186 |
+
"word_perplexity": 26466.98082941409
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"task_name": "gsarti/flores_101_mri",
|
190 |
+
"prompt_name": null,
|
191 |
+
"byte_perplexity": 7.474035895661322
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"task_name": "gsarti/flores_101_mri",
|
195 |
+
"prompt_name": null,
|
196 |
+
"bits_per_byte": 2.9018874925878335
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"task_name": "gsarti/flores_101_mar",
|
200 |
+
"prompt_name": null,
|
201 |
+
"word_perplexity": 54017030487867.64
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"task_name": "gsarti/flores_101_mar",
|
205 |
+
"prompt_name": null,
|
206 |
+
"byte_perplexity": 5.483253482821379
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"task_name": "gsarti/flores_101_mar",
|
210 |
+
"prompt_name": null,
|
211 |
+
"bits_per_byte": 2.4550321688665875
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"task_name": "gsarti/flores_101_mon",
|
215 |
+
"prompt_name": null,
|
216 |
+
"word_perplexity": 6612951.176601774
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"task_name": "gsarti/flores_101_mon",
|
220 |
+
"prompt_name": null,
|
221 |
+
"byte_perplexity": 3.410598542315402
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"task_name": "gsarti/flores_101_mon",
|
225 |
+
"prompt_name": null,
|
226 |
+
"bits_per_byte": 1.7700249469487581
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"task_name": "gsarti/flores_101_npi",
|
230 |
+
"prompt_name": null,
|
231 |
+
"word_perplexity": 9218412485042.457
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"task_name": "gsarti/flores_101_npi",
|
235 |
+
"prompt_name": null,
|
236 |
+
"byte_perplexity": 5.199342701937889
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"task_name": "gsarti/flores_101_npi",
|
240 |
+
"prompt_name": null,
|
241 |
+
"bits_per_byte": 2.3783292500628397
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"task_name": "gsarti/flores_101_nso",
|
245 |
+
"prompt_name": null,
|
246 |
+
"word_perplexity": 84236.45826211123
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"task_name": "gsarti/flores_101_nso",
|
250 |
+
"prompt_name": null,
|
251 |
+
"byte_perplexity": 8.154626800955667
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"task_name": "gsarti/flores_101_nso",
|
255 |
+
"prompt_name": null,
|
256 |
+
"bits_per_byte": 3.027618853058479
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"task_name": "gsarti/flores_101_nob",
|
260 |
+
"prompt_name": null,
|
261 |
+
"word_perplexity": 36969.51682419191
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"task_name": "gsarti/flores_101_nob",
|
265 |
+
"prompt_name": null,
|
266 |
+
"byte_perplexity": 5.402763169129877
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"task_name": "gsarti/flores_101_nob",
|
270 |
+
"prompt_name": null,
|
271 |
+
"bits_per_byte": 2.4336974426149056
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"task_name": "gsarti/flores_101_nya",
|
275 |
+
"prompt_name": null,
|
276 |
+
"word_perplexity": 6609896.030066139
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"task_name": "gsarti/flores_101_nya",
|
280 |
+
"prompt_name": null,
|
281 |
+
"byte_perplexity": 8.179860208369393
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"task_name": "gsarti/flores_101_nya",
|
285 |
+
"prompt_name": null,
|
286 |
+
"bits_per_byte": 3.0320761881040017
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"task_name": "gsarti/flores_101_oci",
|
290 |
+
"prompt_name": null,
|
291 |
+
"word_perplexity": 21641.316763505896
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"task_name": "gsarti/flores_101_oci",
|
295 |
+
"prompt_name": null,
|
296 |
+
"byte_perplexity": 4.8617357393685845
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"task_name": "gsarti/flores_101_oci",
|
300 |
+
"prompt_name": null,
|
301 |
+
"bits_per_byte": 2.2814714775164466
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"task_name": "gsarti/flores_101_ory",
|
305 |
+
"prompt_name": null,
|
306 |
+
"word_perplexity": 11873283711992.748
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"task_name": "gsarti/flores_101_ory",
|
310 |
+
"prompt_name": null,
|
311 |
+
"byte_perplexity": 5.189421861225964
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"task_name": "gsarti/flores_101_ory",
|
315 |
+
"prompt_name": null,
|
316 |
+
"bits_per_byte": 2.375573820972048
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"task_name": "gsarti/flores_101_orm",
|
320 |
+
"prompt_name": null,
|
321 |
+
"word_perplexity": 944722910.1683049
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"task_name": "gsarti/flores_101_orm",
|
325 |
+
"prompt_name": null,
|
326 |
+
"byte_perplexity": 12.911595421079408
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"task_name": "gsarti/flores_101_orm",
|
330 |
+
"prompt_name": null,
|
331 |
+
"bits_per_byte": 3.690595373136525
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"task_name": "gsarti/flores_101_pus",
|
335 |
+
"prompt_name": null,
|
336 |
+
"word_perplexity": 153261.38659736273
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"task_name": "gsarti/flores_101_pus",
|
340 |
+
"prompt_name": null,
|
341 |
+
"byte_perplexity": 4.4963371422771585
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"task_name": "gsarti/flores_101_pus",
|
345 |
+
"prompt_name": null,
|
346 |
+
"bits_per_byte": 2.1687502151085742
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"task_name": "gsarti/flores_101_fas",
|
350 |
+
"prompt_name": null,
|
351 |
+
"word_perplexity": 44174.10652942002
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"task_name": "gsarti/flores_101_fas",
|
355 |
+
"prompt_name": null,
|
356 |
+
"byte_perplexity": 3.058009097116482
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"task_name": "gsarti/flores_101_fas",
|
360 |
+
"prompt_name": null,
|
361 |
+
"bits_per_byte": 1.6125926985055565
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"task_name": "gsarti/flores_101_pol",
|
365 |
+
"prompt_name": null,
|
366 |
+
"word_perplexity": 104253.80848720921
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"task_name": "gsarti/flores_101_pol",
|
370 |
+
"prompt_name": null,
|
371 |
+
"byte_perplexity": 4.625550458479643
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"task_name": "gsarti/flores_101_pol",
|
375 |
+
"prompt_name": null,
|
376 |
+
"bits_per_byte": 2.2096250621616695
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"task_name": "gsarti/flores_101_por",
|
380 |
+
"prompt_name": null,
|
381 |
+
"word_perplexity": 70.12185258792593
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"task_name": "gsarti/flores_101_por",
|
385 |
+
"prompt_name": null,
|
386 |
+
"byte_perplexity": 1.9754515986213523
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"task_name": "gsarti/flores_101_por",
|
390 |
+
"prompt_name": null,
|
391 |
+
"bits_per_byte": 0.9821824986646657
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"task_name": "gsarti/flores_101_pan",
|
395 |
+
"prompt_name": null,
|
396 |
+
"word_perplexity": 847925284.3968099
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"task_name": "gsarti/flores_101_pan",
|
400 |
+
"prompt_name": null,
|
401 |
+
"byte_perplexity": 4.698477289331806
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"task_name": "gsarti/flores_101_pan",
|
405 |
+
"prompt_name": null,
|
406 |
+
"bits_per_byte": 2.2321932752863454
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"task_name": "gsarti/flores_101_ron",
|
410 |
+
"prompt_name": null,
|
411 |
+
"word_perplexity": 36440.61611845943
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"task_name": "gsarti/flores_101_ron",
|
415 |
+
"prompt_name": null,
|
416 |
+
"byte_perplexity": 4.965456830031304
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"task_name": "gsarti/flores_101_ron",
|
420 |
+
"prompt_name": null,
|
421 |
+
"bits_per_byte": 2.31192645412871
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"task_name": "gsarti/flores_101_rus",
|
425 |
+
"prompt_name": null,
|
426 |
+
"word_perplexity": 12717.27557342625
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"task_name": "gsarti/flores_101_rus",
|
430 |
+
"prompt_name": null,
|
431 |
+
"byte_perplexity": 2.0498020542445303
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"task_name": "gsarti/flores_101_rus",
|
435 |
+
"prompt_name": null,
|
436 |
+
"bits_per_byte": 1.0354845979511649
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"task_name": "gsarti/flores_101_srp",
|
440 |
+
"prompt_name": null,
|
441 |
+
"word_perplexity": 179094.36755355867
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"task_name": "gsarti/flores_101_srp",
|
445 |
+
"prompt_name": null,
|
446 |
+
"byte_perplexity": 2.871214785885079
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"task_name": "gsarti/flores_101_srp",
|
450 |
+
"prompt_name": null,
|
451 |
+
"bits_per_byte": 1.5216612577275341
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"task_name": "gsarti/flores_101_sna",
|
455 |
+
"prompt_name": null,
|
456 |
+
"word_perplexity": 64794029.630749054
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"task_name": "gsarti/flores_101_sna",
|
460 |
+
"prompt_name": null,
|
461 |
+
"byte_perplexity": 8.462166771382726
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"task_name": "gsarti/flores_101_sna",
|
465 |
+
"prompt_name": null,
|
466 |
+
"bits_per_byte": 3.0810271184378166
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"task_name": "gsarti/flores_101_snd",
|
470 |
+
"prompt_name": null,
|
471 |
+
"word_perplexity": 1593844.7987764536
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"task_name": "gsarti/flores_101_snd",
|
475 |
+
"prompt_name": null,
|
476 |
+
"byte_perplexity": 5.466066951221973
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"task_name": "gsarti/flores_101_snd",
|
480 |
+
"prompt_name": null,
|
481 |
+
"bits_per_byte": 2.450503130846187
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"task_name": "gsarti/flores_101_slk",
|
485 |
+
"prompt_name": null,
|
486 |
+
"word_perplexity": 766753.5771631876
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"task_name": "gsarti/flores_101_slk",
|
490 |
+
"prompt_name": null,
|
491 |
+
"byte_perplexity": 6.450822127057479
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"task_name": "gsarti/flores_101_slk",
|
495 |
+
"prompt_name": null,
|
496 |
+
"bits_per_byte": 2.6894830369770566
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"task_name": "gsarti/flores_101_slv",
|
500 |
+
"prompt_name": null,
|
501 |
+
"word_perplexity": 281495.6973621906
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"task_name": "gsarti/flores_101_slv",
|
505 |
+
"prompt_name": null,
|
506 |
+
"byte_perplexity": 6.620252120186232
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"task_name": "gsarti/flores_101_slv",
|
510 |
+
"prompt_name": null,
|
511 |
+
"bits_per_byte": 2.726886160479057
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"task_name": "gsarti/flores_101_som",
|
515 |
+
"prompt_name": null,
|
516 |
+
"word_perplexity": 9117591.536991648
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"task_name": "gsarti/flores_101_som",
|
520 |
+
"prompt_name": null,
|
521 |
+
"byte_perplexity": 11.95918054093392
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"task_name": "gsarti/flores_101_som",
|
525 |
+
"prompt_name": null,
|
526 |
+
"bits_per_byte": 3.5800466324138576
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"task_name": "gsarti/flores_101_ckb",
|
530 |
+
"prompt_name": null,
|
531 |
+
"word_perplexity": 7641937.513844287
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"task_name": "gsarti/flores_101_ckb",
|
535 |
+
"prompt_name": null,
|
536 |
+
"byte_perplexity": 3.7255124939234765
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"task_name": "gsarti/flores_101_ckb",
|
540 |
+
"prompt_name": null,
|
541 |
+
"bits_per_byte": 1.8974389011678956
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"task_name": "gsarti/flores_101_spa",
|
545 |
+
"prompt_name": null,
|
546 |
+
"word_perplexity": 50.48600403475257
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"task_name": "gsarti/flores_101_spa",
|
550 |
+
"prompt_name": null,
|
551 |
+
"byte_perplexity": 1.8965140104323535
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"task_name": "gsarti/flores_101_spa",
|
555 |
+
"prompt_name": null,
|
556 |
+
"bits_per_byte": 0.9233500295317635
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"task_name": "gsarti/flores_101_swh",
|
560 |
+
"prompt_name": null,
|
561 |
+
"word_perplexity": 4756.310957867697
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"task_name": "gsarti/flores_101_swh",
|
565 |
+
"prompt_name": null,
|
566 |
+
"byte_perplexity": 3.6973091886730676
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"task_name": "gsarti/flores_101_swh",
|
570 |
+
"prompt_name": null,
|
571 |
+
"bits_per_byte": 1.8864756944079395
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"task_name": "gsarti/flores_101_swe",
|
575 |
+
"prompt_name": null,
|
576 |
+
"word_perplexity": 50609.194691403645
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"task_name": "gsarti/flores_101_swe",
|
580 |
+
"prompt_name": null,
|
581 |
+
"byte_perplexity": 5.054972008155866
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"task_name": "gsarti/flores_101_swe",
|
585 |
+
"prompt_name": null,
|
586 |
+
"bits_per_byte": 2.3377031032447033
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"task_name": "gsarti/flores_101_tgk",
|
590 |
+
"prompt_name": null,
|
591 |
+
"word_perplexity": 4653242.643384356
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"task_name": "gsarti/flores_101_tgk",
|
595 |
+
"prompt_name": null,
|
596 |
+
"byte_perplexity": 3.5994818827380426
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"task_name": "gsarti/flores_101_tgk",
|
600 |
+
"prompt_name": null,
|
601 |
+
"bits_per_byte": 1.847789256832959
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"task_name": "gsarti/flores_101_tam",
|
605 |
+
"prompt_name": null,
|
606 |
+
"word_perplexity": 1.7375636861561886e+16
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"task_name": "gsarti/flores_101_tam",
|
610 |
+
"prompt_name": null,
|
611 |
+
"byte_perplexity": 4.539493400469833
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"task_name": "gsarti/flores_101_tam",
|
615 |
+
"prompt_name": null,
|
616 |
+
"bits_per_byte": 2.182531304254031
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"task_name": "gsarti/flores_101_tel",
|
620 |
+
"prompt_name": null,
|
621 |
+
"word_perplexity": 6240250468604343.0
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"task_name": "gsarti/flores_101_tel",
|
625 |
+
"prompt_name": null,
|
626 |
+
"byte_perplexity": 5.807499987508966
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"task_name": "gsarti/flores_101_tel",
|
630 |
+
"prompt_name": null,
|
631 |
+
"bits_per_byte": 2.537917245931069
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"task_name": "gsarti/flores_101_tha",
|
635 |
+
"prompt_name": null,
|
636 |
+
"word_perplexity": 2.7023221906004898e+31
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"task_name": "gsarti/flores_101_tha",
|
640 |
+
"prompt_name": null,
|
641 |
+
"byte_perplexity": 2.365940201944242
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"task_name": "gsarti/flores_101_tha",
|
645 |
+
"prompt_name": null,
|
646 |
+
"bits_per_byte": 1.242413610681628
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"task_name": "gsarti/flores_101_tur",
|
650 |
+
"prompt_name": null,
|
651 |
+
"word_perplexity": 598170.0194818947
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"task_name": "gsarti/flores_101_tur",
|
655 |
+
"prompt_name": null,
|
656 |
+
"byte_perplexity": 4.885014749844601
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"task_name": "gsarti/flores_101_tur",
|
660 |
+
"prompt_name": null,
|
661 |
+
"bits_per_byte": 2.288362918282818
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"task_name": "gsarti/flores_101_ukr",
|
665 |
+
"prompt_name": null,
|
666 |
+
"word_perplexity": 375312.1511987307
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"task_name": "gsarti/flores_101_ukr",
|
670 |
+
"prompt_name": null,
|
671 |
+
"byte_perplexity": 2.7240934990288483
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"task_name": "gsarti/flores_101_ukr",
|
675 |
+
"prompt_name": null,
|
676 |
+
"bits_per_byte": 1.445776221804572
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"task_name": "gsarti/flores_101_umb",
|
680 |
+
"prompt_name": null,
|
681 |
+
"word_perplexity": 286182026.84727985
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"task_name": "gsarti/flores_101_umb",
|
685 |
+
"prompt_name": null,
|
686 |
+
"byte_perplexity": 12.766915508610673
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"task_name": "gsarti/flores_101_umb",
|
690 |
+
"prompt_name": null,
|
691 |
+
"bits_per_byte": 3.6743381063848357
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"task_name": "gsarti/flores_101_urd",
|
695 |
+
"prompt_name": null,
|
696 |
+
"word_perplexity": 294.7473718166965
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"task_name": "gsarti/flores_101_urd",
|
700 |
+
"prompt_name": null,
|
701 |
+
"byte_perplexity": 1.9797467071381232
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"task_name": "gsarti/flores_101_urd",
|
705 |
+
"prompt_name": null,
|
706 |
+
"bits_per_byte": 0.9853158607436239
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"task_name": "gsarti/flores_101_uzb",
|
710 |
+
"prompt_name": null,
|
711 |
+
"word_perplexity": 657971096.5030558
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"task_name": "gsarti/flores_101_uzb",
|
715 |
+
"prompt_name": null,
|
716 |
+
"byte_perplexity": 12.002337637722146
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"task_name": "gsarti/flores_101_uzb",
|
720 |
+
"prompt_name": null,
|
721 |
+
"bits_per_byte": 3.5852435148799184
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"task_name": "gsarti/flores_101_vie",
|
725 |
+
"prompt_name": null,
|
726 |
+
"word_perplexity": 30.113286809710246
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"task_name": "gsarti/flores_101_vie",
|
730 |
+
"prompt_name": null,
|
731 |
+
"byte_perplexity": 1.76578415476397
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"task_name": "gsarti/flores_101_vie",
|
735 |
+
"prompt_name": null,
|
736 |
+
"bits_per_byte": 0.8203090021691818
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"task_name": "gsarti/flores_101_cym",
|
740 |
+
"prompt_name": null,
|
741 |
+
"word_perplexity": 2638019.4579179045
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"task_name": "gsarti/flores_101_cym",
|
745 |
+
"prompt_name": null,
|
746 |
+
"byte_perplexity": 12.539424151448149
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"task_name": "gsarti/flores_101_cym",
|
750 |
+
"prompt_name": null,
|
751 |
+
"bits_per_byte": 3.6483991915978407
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"task_name": "gsarti/flores_101_wol",
|
755 |
+
"prompt_name": null,
|
756 |
+
"word_perplexity": 119795.78671768666
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"task_name": "gsarti/flores_101_wol",
|
760 |
+
"prompt_name": null,
|
761 |
+
"byte_perplexity": 9.144285650306488
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"task_name": "gsarti/flores_101_wol",
|
765 |
+
"prompt_name": null,
|
766 |
+
"bits_per_byte": 3.1928704713393357
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"task_name": "gsarti/flores_101_xho",
|
770 |
+
"prompt_name": null,
|
771 |
+
"word_perplexity": 54307092.21333007
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"task_name": "gsarti/flores_101_xho",
|
775 |
+
"prompt_name": null,
|
776 |
+
"byte_perplexity": 7.403240538286952
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"task_name": "gsarti/flores_101_xho",
|
780 |
+
"prompt_name": null,
|
781 |
+
"bits_per_byte": 2.8881569038733983
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"task_name": "gsarti/flores_101_yor",
|
785 |
+
"prompt_name": null,
|
786 |
+
"word_perplexity": 130267.12232132205
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"task_name": "gsarti/flores_101_yor",
|
790 |
+
"prompt_name": null,
|
791 |
+
"byte_perplexity": 5.91272037551173
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"task_name": "gsarti/flores_101_yor",
|
795 |
+
"prompt_name": null,
|
796 |
+
"bits_per_byte": 2.5638220507535796
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"task_name": "gsarti/flores_101_zul",
|
800 |
+
"prompt_name": null,
|
801 |
+
"word_perplexity": 493606524.8156374
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"task_name": "gsarti/flores_101_zul",
|
805 |
+
"prompt_name": null,
|
806 |
+
"byte_perplexity": 8.53353320693145
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"task_name": "gsarti/flores_101_zul",
|
810 |
+
"prompt_name": null,
|
811 |
+
"bits_per_byte": 3.0931431957905224
|
812 |
+
}
|
813 |
+
],
|
814 |
+
"versions": {
|
815 |
+
"gsarti/flores_101_kor+null": 0,
|
816 |
+
"gsarti/flores_101_kir+null": 0,
|
817 |
+
"gsarti/flores_101_lao+null": 0,
|
818 |
+
"gsarti/flores_101_lav+null": 0,
|
819 |
+
"gsarti/flores_101_lin+null": 0,
|
820 |
+
"gsarti/flores_101_lit+null": 0,
|
821 |
+
"gsarti/flores_101_luo+null": 0,
|
822 |
+
"gsarti/flores_101_ltz+null": 0,
|
823 |
+
"gsarti/flores_101_mkd+null": 0,
|
824 |
+
"gsarti/flores_101_msa+null": 0,
|
825 |
+
"gsarti/flores_101_mal+null": 0,
|
826 |
+
"gsarti/flores_101_mlt+null": 0,
|
827 |
+
"gsarti/flores_101_mri+null": 0,
|
828 |
+
"gsarti/flores_101_mar+null": 0,
|
829 |
+
"gsarti/flores_101_mon+null": 0,
|
830 |
+
"gsarti/flores_101_npi+null": 0,
|
831 |
+
"gsarti/flores_101_nso+null": 0,
|
832 |
+
"gsarti/flores_101_nob+null": 0,
|
833 |
+
"gsarti/flores_101_nya+null": 0,
|
834 |
+
"gsarti/flores_101_oci+null": 0,
|
835 |
+
"gsarti/flores_101_ory+null": 0,
|
836 |
+
"gsarti/flores_101_orm+null": 0,
|
837 |
+
"gsarti/flores_101_pus+null": 0,
|
838 |
+
"gsarti/flores_101_fas+null": 0,
|
839 |
+
"gsarti/flores_101_pol+null": 0,
|
840 |
+
"gsarti/flores_101_por+null": 0,
|
841 |
+
"gsarti/flores_101_pan+null": 0,
|
842 |
+
"gsarti/flores_101_ron+null": 0,
|
843 |
+
"gsarti/flores_101_rus+null": 0,
|
844 |
+
"gsarti/flores_101_srp+null": 0,
|
845 |
+
"gsarti/flores_101_sna+null": 0,
|
846 |
+
"gsarti/flores_101_snd+null": 0,
|
847 |
+
"gsarti/flores_101_slk+null": 0,
|
848 |
+
"gsarti/flores_101_slv+null": 0,
|
849 |
+
"gsarti/flores_101_som+null": 0,
|
850 |
+
"gsarti/flores_101_ckb+null": 0,
|
851 |
+
"gsarti/flores_101_spa+null": 0,
|
852 |
+
"gsarti/flores_101_swh+null": 0,
|
853 |
+
"gsarti/flores_101_swe+null": 0,
|
854 |
+
"gsarti/flores_101_tgk+null": 0,
|
855 |
+
"gsarti/flores_101_tam+null": 0,
|
856 |
+
"gsarti/flores_101_tel+null": 0,
|
857 |
+
"gsarti/flores_101_tha+null": 0,
|
858 |
+
"gsarti/flores_101_tur+null": 0,
|
859 |
+
"gsarti/flores_101_ukr+null": 0,
|
860 |
+
"gsarti/flores_101_umb+null": 0,
|
861 |
+
"gsarti/flores_101_urd+null": 0,
|
862 |
+
"gsarti/flores_101_uzb+null": 0,
|
863 |
+
"gsarti/flores_101_vie+null": 0,
|
864 |
+
"gsarti/flores_101_cym+null": 0,
|
865 |
+
"gsarti/flores_101_wol+null": 0,
|
866 |
+
"gsarti/flores_101_xho+null": 0,
|
867 |
+
"gsarti/flores_101_yor+null": 0,
|
868 |
+
"gsarti/flores_101_zul+null": 0
|
869 |
+
},
|
870 |
+
"table_results": {
|
871 |
+
"gsarti/flores_101_kor+null": {
|
872 |
+
"task_name": "gsarti/flores_101_kor",
|
873 |
+
"prompt_name": "null",
|
874 |
+
"word_perplexity": 1199924.6918920355,
|
875 |
+
"byte_perplexity": 3.932884847226212,
|
876 |
+
"bits_per_byte": 1.9755879455567535
|
877 |
+
},
|
878 |
+
"gsarti/flores_101_kir+null": {
|
879 |
+
"task_name": "gsarti/flores_101_kir",
|
880 |
+
"prompt_name": "null",
|
881 |
+
"word_perplexity": 140474672.36703426,
|
882 |
+
"byte_perplexity": 3.729278369847201,
|
883 |
+
"bits_per_byte": 1.8988964902756764
|
884 |
+
},
|
885 |
+
"gsarti/flores_101_lao+null": {
|
886 |
+
"task_name": "gsarti/flores_101_lao",
|
887 |
+
"prompt_name": "null",
|
888 |
+
"word_perplexity": 6.1350041352351446e+26,
|
889 |
+
"byte_perplexity": 2.9077314760849924,
|
890 |
+
"bits_per_byte": 1.5398940450457603
|
891 |
+
},
|
892 |
+
"gsarti/flores_101_lav+null": {
|
893 |
+
"task_name": "gsarti/flores_101_lav",
|
894 |
+
"prompt_name": "null",
|
895 |
+
"word_perplexity": 10925745.685132286,
|
896 |
+
"byte_perplexity": 7.777221919194806,
|
897 |
+
"bits_per_byte": 2.959254905963978
|
898 |
+
},
|
899 |
+
"gsarti/flores_101_lin+null": {
|
900 |
+
"task_name": "gsarti/flores_101_lin",
|
901 |
+
"prompt_name": "null",
|
902 |
+
"word_perplexity": 166841.83897098716,
|
903 |
+
"byte_perplexity": 7.524842908050988,
|
904 |
+
"bits_per_byte": 2.9116614638468965
|
905 |
+
},
|
906 |
+
"gsarti/flores_101_lit+null": {
|
907 |
+
"task_name": "gsarti/flores_101_lit",
|
908 |
+
"prompt_name": "null",
|
909 |
+
"word_perplexity": 8532364.031813102,
|
910 |
+
"byte_perplexity": 7.369179434621725,
|
911 |
+
"bits_per_byte": 2.88150398275188
|
912 |
+
},
|
913 |
+
"gsarti/flores_101_luo+null": {
|
914 |
+
"task_name": "gsarti/flores_101_luo",
|
915 |
+
"prompt_name": "null",
|
916 |
+
"word_perplexity": 1335199.656768974,
|
917 |
+
"byte_perplexity": 11.975963093623681,
|
918 |
+
"bits_per_byte": 3.5820697754437467
|
919 |
+
},
|
920 |
+
"gsarti/flores_101_ltz+null": {
|
921 |
+
"task_name": "gsarti/flores_101_ltz",
|
922 |
+
"prompt_name": "null",
|
923 |
+
"word_perplexity": 4081613.1281958995,
|
924 |
+
"byte_perplexity": 8.801059747949214,
|
925 |
+
"bits_per_byte": 3.1376772511430198
|
926 |
+
},
|
927 |
+
"gsarti/flores_101_mkd+null": {
|
928 |
+
"task_name": "gsarti/flores_101_mkd",
|
929 |
+
"prompt_name": "null",
|
930 |
+
"word_perplexity": 291548.6603872499,
|
931 |
+
"byte_perplexity": 2.9656732291754087,
|
932 |
+
"bits_per_byte": 1.5683596441110415
|
933 |
+
},
|
934 |
+
"gsarti/flores_101_msa+null": {
|
935 |
+
"task_name": "gsarti/flores_101_msa",
|
936 |
+
"prompt_name": "null",
|
937 |
+
"word_perplexity": 931.4191160965655,
|
938 |
+
"byte_perplexity": 2.5710001772665634,
|
939 |
+
"bits_per_byte": 1.3623297096432079
|
940 |
+
},
|
941 |
+
"gsarti/flores_101_mal+null": {
|
942 |
+
"task_name": "gsarti/flores_101_mal",
|
943 |
+
"prompt_name": "null",
|
944 |
+
"word_perplexity": 1.207348615509252e+18,
|
945 |
+
"byte_perplexity": 4.615948455160037,
|
946 |
+
"bits_per_byte": 2.2066271139530245
|
947 |
+
},
|
948 |
+
"gsarti/flores_101_mlt+null": {
|
949 |
+
"task_name": "gsarti/flores_101_mlt",
|
950 |
+
"prompt_name": "null",
|
951 |
+
"word_perplexity": 1820552051.5260184,
|
952 |
+
"byte_perplexity": 15.004773437665275,
|
953 |
+
"bits_per_byte": 3.9073496302297994
|
954 |
+
},
|
955 |
+
"gsarti/flores_101_mri+null": {
|
956 |
+
"task_name": "gsarti/flores_101_mri",
|
957 |
+
"prompt_name": "null",
|
958 |
+
"word_perplexity": 26466.98082941409,
|
959 |
+
"byte_perplexity": 7.474035895661322,
|
960 |
+
"bits_per_byte": 2.9018874925878335
|
961 |
+
},
|
962 |
+
"gsarti/flores_101_mar+null": {
|
963 |
+
"task_name": "gsarti/flores_101_mar",
|
964 |
+
"prompt_name": "null",
|
965 |
+
"word_perplexity": 54017030487867.64,
|
966 |
+
"byte_perplexity": 5.483253482821379,
|
967 |
+
"bits_per_byte": 2.4550321688665875
|
968 |
+
},
|
969 |
+
"gsarti/flores_101_mon+null": {
|
970 |
+
"task_name": "gsarti/flores_101_mon",
|
971 |
+
"prompt_name": "null",
|
972 |
+
"word_perplexity": 6612951.176601774,
|
973 |
+
"byte_perplexity": 3.410598542315402,
|
974 |
+
"bits_per_byte": 1.7700249469487581
|
975 |
+
},
|
976 |
+
"gsarti/flores_101_npi+null": {
|
977 |
+
"task_name": "gsarti/flores_101_npi",
|
978 |
+
"prompt_name": "null",
|
979 |
+
"word_perplexity": 9218412485042.457,
|
980 |
+
"byte_perplexity": 5.199342701937889,
|
981 |
+
"bits_per_byte": 2.3783292500628397
|
982 |
+
},
|
983 |
+
"gsarti/flores_101_nso+null": {
|
984 |
+
"task_name": "gsarti/flores_101_nso",
|
985 |
+
"prompt_name": "null",
|
986 |
+
"word_perplexity": 84236.45826211123,
|
987 |
+
"byte_perplexity": 8.154626800955667,
|
988 |
+
"bits_per_byte": 3.027618853058479
|
989 |
+
},
|
990 |
+
"gsarti/flores_101_nob+null": {
|
991 |
+
"task_name": "gsarti/flores_101_nob",
|
992 |
+
"prompt_name": "null",
|
993 |
+
"word_perplexity": 36969.51682419191,
|
994 |
+
"byte_perplexity": 5.402763169129877,
|
995 |
+
"bits_per_byte": 2.4336974426149056
|
996 |
+
},
|
997 |
+
"gsarti/flores_101_nya+null": {
|
998 |
+
"task_name": "gsarti/flores_101_nya",
|
999 |
+
"prompt_name": "null",
|
1000 |
+
"word_perplexity": 6609896.030066139,
|
1001 |
+
"byte_perplexity": 8.179860208369393,
|
1002 |
+
"bits_per_byte": 3.0320761881040017
|
1003 |
+
},
|
1004 |
+
"gsarti/flores_101_oci+null": {
|
1005 |
+
"task_name": "gsarti/flores_101_oci",
|
1006 |
+
"prompt_name": "null",
|
1007 |
+
"word_perplexity": 21641.316763505896,
|
1008 |
+
"byte_perplexity": 4.8617357393685845,
|
1009 |
+
"bits_per_byte": 2.2814714775164466
|
1010 |
+
},
|
1011 |
+
"gsarti/flores_101_ory+null": {
|
1012 |
+
"task_name": "gsarti/flores_101_ory",
|
1013 |
+
"prompt_name": "null",
|
1014 |
+
"word_perplexity": 11873283711992.748,
|
1015 |
+
"byte_perplexity": 5.189421861225964,
|
1016 |
+
"bits_per_byte": 2.375573820972048
|
1017 |
+
},
|
1018 |
+
"gsarti/flores_101_orm+null": {
|
1019 |
+
"task_name": "gsarti/flores_101_orm",
|
1020 |
+
"prompt_name": "null",
|
1021 |
+
"word_perplexity": 944722910.1683049,
|
1022 |
+
"byte_perplexity": 12.911595421079408,
|
1023 |
+
"bits_per_byte": 3.690595373136525
|
1024 |
+
},
|
1025 |
+
"gsarti/flores_101_pus+null": {
|
1026 |
+
"task_name": "gsarti/flores_101_pus",
|
1027 |
+
"prompt_name": "null",
|
1028 |
+
"word_perplexity": 153261.38659736273,
|
1029 |
+
"byte_perplexity": 4.4963371422771585,
|
1030 |
+
"bits_per_byte": 2.1687502151085742
|
1031 |
+
},
|
1032 |
+
"gsarti/flores_101_fas+null": {
|
1033 |
+
"task_name": "gsarti/flores_101_fas",
|
1034 |
+
"prompt_name": "null",
|
1035 |
+
"word_perplexity": 44174.10652942002,
|
1036 |
+
"byte_perplexity": 3.058009097116482,
|
1037 |
+
"bits_per_byte": 1.6125926985055565
|
1038 |
+
},
|
1039 |
+
"gsarti/flores_101_pol+null": {
|
1040 |
+
"task_name": "gsarti/flores_101_pol",
|
1041 |
+
"prompt_name": "null",
|
1042 |
+
"word_perplexity": 104253.80848720921,
|
1043 |
+
"byte_perplexity": 4.625550458479643,
|
1044 |
+
"bits_per_byte": 2.2096250621616695
|
1045 |
+
},
|
1046 |
+
"gsarti/flores_101_por+null": {
|
1047 |
+
"task_name": "gsarti/flores_101_por",
|
1048 |
+
"prompt_name": "null",
|
1049 |
+
"word_perplexity": 70.12185258792593,
|
1050 |
+
"byte_perplexity": 1.9754515986213523,
|
1051 |
+
"bits_per_byte": 0.9821824986646657
|
1052 |
+
},
|
1053 |
+
"gsarti/flores_101_pan+null": {
|
1054 |
+
"task_name": "gsarti/flores_101_pan",
|
1055 |
+
"prompt_name": "null",
|
1056 |
+
"word_perplexity": 847925284.3968099,
|
1057 |
+
"byte_perplexity": 4.698477289331806,
|
1058 |
+
"bits_per_byte": 2.2321932752863454
|
1059 |
+
},
|
1060 |
+
"gsarti/flores_101_ron+null": {
|
1061 |
+
"task_name": "gsarti/flores_101_ron",
|
1062 |
+
"prompt_name": "null",
|
1063 |
+
"word_perplexity": 36440.61611845943,
|
1064 |
+
"byte_perplexity": 4.965456830031304,
|
1065 |
+
"bits_per_byte": 2.31192645412871
|
1066 |
+
},
|
1067 |
+
"gsarti/flores_101_rus+null": {
|
1068 |
+
"task_name": "gsarti/flores_101_rus",
|
1069 |
+
"prompt_name": "null",
|
1070 |
+
"word_perplexity": 12717.27557342625,
|
1071 |
+
"byte_perplexity": 2.0498020542445303,
|
1072 |
+
"bits_per_byte": 1.0354845979511649
|
1073 |
+
},
|
1074 |
+
"gsarti/flores_101_srp+null": {
|
1075 |
+
"task_name": "gsarti/flores_101_srp",
|
1076 |
+
"prompt_name": "null",
|
1077 |
+
"word_perplexity": 179094.36755355867,
|
1078 |
+
"byte_perplexity": 2.871214785885079,
|
1079 |
+
"bits_per_byte": 1.5216612577275341
|
1080 |
+
},
|
1081 |
+
"gsarti/flores_101_sna+null": {
|
1082 |
+
"task_name": "gsarti/flores_101_sna",
|
1083 |
+
"prompt_name": "null",
|
1084 |
+
"word_perplexity": 64794029.630749054,
|
1085 |
+
"byte_perplexity": 8.462166771382726,
|
1086 |
+
"bits_per_byte": 3.0810271184378166
|
1087 |
+
},
|
1088 |
+
"gsarti/flores_101_snd+null": {
|
1089 |
+
"task_name": "gsarti/flores_101_snd",
|
1090 |
+
"prompt_name": "null",
|
1091 |
+
"word_perplexity": 1593844.7987764536,
|
1092 |
+
"byte_perplexity": 5.466066951221973,
|
1093 |
+
"bits_per_byte": 2.450503130846187
|
1094 |
+
},
|
1095 |
+
"gsarti/flores_101_slk+null": {
|
1096 |
+
"task_name": "gsarti/flores_101_slk",
|
1097 |
+
"prompt_name": "null",
|
1098 |
+
"word_perplexity": 766753.5771631876,
|
1099 |
+
"byte_perplexity": 6.450822127057479,
|
1100 |
+
"bits_per_byte": 2.6894830369770566
|
1101 |
+
},
|
1102 |
+
"gsarti/flores_101_slv+null": {
|
1103 |
+
"task_name": "gsarti/flores_101_slv",
|
1104 |
+
"prompt_name": "null",
|
1105 |
+
"word_perplexity": 281495.6973621906,
|
1106 |
+
"byte_perplexity": 6.620252120186232,
|
1107 |
+
"bits_per_byte": 2.726886160479057
|
1108 |
+
},
|
1109 |
+
"gsarti/flores_101_som+null": {
|
1110 |
+
"task_name": "gsarti/flores_101_som",
|
1111 |
+
"prompt_name": "null",
|
1112 |
+
"word_perplexity": 9117591.536991648,
|
1113 |
+
"byte_perplexity": 11.95918054093392,
|
1114 |
+
"bits_per_byte": 3.5800466324138576
|
1115 |
+
},
|
1116 |
+
"gsarti/flores_101_ckb+null": {
|
1117 |
+
"task_name": "gsarti/flores_101_ckb",
|
1118 |
+
"prompt_name": "null",
|
1119 |
+
"word_perplexity": 7641937.513844287,
|
1120 |
+
"byte_perplexity": 3.7255124939234765,
|
1121 |
+
"bits_per_byte": 1.8974389011678956
|
1122 |
+
},
|
1123 |
+
"gsarti/flores_101_spa+null": {
|
1124 |
+
"task_name": "gsarti/flores_101_spa",
|
1125 |
+
"prompt_name": "null",
|
1126 |
+
"word_perplexity": 50.48600403475257,
|
1127 |
+
"byte_perplexity": 1.8965140104323535,
|
1128 |
+
"bits_per_byte": 0.9233500295317635
|
1129 |
+
},
|
1130 |
+
"gsarti/flores_101_swh+null": {
|
1131 |
+
"task_name": "gsarti/flores_101_swh",
|
1132 |
+
"prompt_name": "null",
|
1133 |
+
"word_perplexity": 4756.310957867697,
|
1134 |
+
"byte_perplexity": 3.6973091886730676,
|
1135 |
+
"bits_per_byte": 1.8864756944079395
|
1136 |
+
},
|
1137 |
+
"gsarti/flores_101_swe+null": {
|
1138 |
+
"task_name": "gsarti/flores_101_swe",
|
1139 |
+
"prompt_name": "null",
|
1140 |
+
"word_perplexity": 50609.194691403645,
|
1141 |
+
"byte_perplexity": 5.054972008155866,
|
1142 |
+
"bits_per_byte": 2.3377031032447033
|
1143 |
+
},
|
1144 |
+
"gsarti/flores_101_tgk+null": {
|
1145 |
+
"task_name": "gsarti/flores_101_tgk",
|
1146 |
+
"prompt_name": "null",
|
1147 |
+
"word_perplexity": 4653242.643384356,
|
1148 |
+
"byte_perplexity": 3.5994818827380426,
|
1149 |
+
"bits_per_byte": 1.847789256832959
|
1150 |
+
},
|
1151 |
+
"gsarti/flores_101_tam+null": {
|
1152 |
+
"task_name": "gsarti/flores_101_tam",
|
1153 |
+
"prompt_name": "null",
|
1154 |
+
"word_perplexity": 1.7375636861561886e+16,
|
1155 |
+
"byte_perplexity": 4.539493400469833,
|
1156 |
+
"bits_per_byte": 2.182531304254031
|
1157 |
+
},
|
1158 |
+
"gsarti/flores_101_tel+null": {
|
1159 |
+
"task_name": "gsarti/flores_101_tel",
|
1160 |
+
"prompt_name": "null",
|
1161 |
+
"word_perplexity": 6240250468604343.0,
|
1162 |
+
"byte_perplexity": 5.807499987508966,
|
1163 |
+
"bits_per_byte": 2.537917245931069
|
1164 |
+
},
|
1165 |
+
"gsarti/flores_101_tha+null": {
|
1166 |
+
"task_name": "gsarti/flores_101_tha",
|
1167 |
+
"prompt_name": "null",
|
1168 |
+
"word_perplexity": 2.7023221906004898e+31,
|
1169 |
+
"byte_perplexity": 2.365940201944242,
|
1170 |
+
"bits_per_byte": 1.242413610681628
|
1171 |
+
},
|
1172 |
+
"gsarti/flores_101_tur+null": {
|
1173 |
+
"task_name": "gsarti/flores_101_tur",
|
1174 |
+
"prompt_name": "null",
|
1175 |
+
"word_perplexity": 598170.0194818947,
|
1176 |
+
"byte_perplexity": 4.885014749844601,
|
1177 |
+
"bits_per_byte": 2.288362918282818
|
1178 |
+
},
|
1179 |
+
"gsarti/flores_101_ukr+null": {
|
1180 |
+
"task_name": "gsarti/flores_101_ukr",
|
1181 |
+
"prompt_name": "null",
|
1182 |
+
"word_perplexity": 375312.1511987307,
|
1183 |
+
"byte_perplexity": 2.7240934990288483,
|
1184 |
+
"bits_per_byte": 1.445776221804572
|
1185 |
+
},
|
1186 |
+
"gsarti/flores_101_umb+null": {
|
1187 |
+
"task_name": "gsarti/flores_101_umb",
|
1188 |
+
"prompt_name": "null",
|
1189 |
+
"word_perplexity": 286182026.84727985,
|
1190 |
+
"byte_perplexity": 12.766915508610673,
|
1191 |
+
"bits_per_byte": 3.6743381063848357
|
1192 |
+
},
|
1193 |
+
"gsarti/flores_101_urd+null": {
|
1194 |
+
"task_name": "gsarti/flores_101_urd",
|
1195 |
+
"prompt_name": "null",
|
1196 |
+
"word_perplexity": 294.7473718166965,
|
1197 |
+
"byte_perplexity": 1.9797467071381232,
|
1198 |
+
"bits_per_byte": 0.9853158607436239
|
1199 |
+
},
|
1200 |
+
"gsarti/flores_101_uzb+null": {
|
1201 |
+
"task_name": "gsarti/flores_101_uzb",
|
1202 |
+
"prompt_name": "null",
|
1203 |
+
"word_perplexity": 657971096.5030558,
|
1204 |
+
"byte_perplexity": 12.002337637722146,
|
1205 |
+
"bits_per_byte": 3.5852435148799184
|
1206 |
+
},
|
1207 |
+
"gsarti/flores_101_vie+null": {
|
1208 |
+
"task_name": "gsarti/flores_101_vie",
|
1209 |
+
"prompt_name": "null",
|
1210 |
+
"word_perplexity": 30.113286809710246,
|
1211 |
+
"byte_perplexity": 1.76578415476397,
|
1212 |
+
"bits_per_byte": 0.8203090021691818
|
1213 |
+
},
|
1214 |
+
"gsarti/flores_101_cym+null": {
|
1215 |
+
"task_name": "gsarti/flores_101_cym",
|
1216 |
+
"prompt_name": "null",
|
1217 |
+
"word_perplexity": 2638019.4579179045,
|
1218 |
+
"byte_perplexity": 12.539424151448149,
|
1219 |
+
"bits_per_byte": 3.6483991915978407
|
1220 |
+
},
|
1221 |
+
"gsarti/flores_101_wol+null": {
|
1222 |
+
"task_name": "gsarti/flores_101_wol",
|
1223 |
+
"prompt_name": "null",
|
1224 |
+
"word_perplexity": 119795.78671768666,
|
1225 |
+
"byte_perplexity": 9.144285650306488,
|
1226 |
+
"bits_per_byte": 3.1928704713393357
|
1227 |
+
},
|
1228 |
+
"gsarti/flores_101_xho+null": {
|
1229 |
+
"task_name": "gsarti/flores_101_xho",
|
1230 |
+
"prompt_name": "null",
|
1231 |
+
"word_perplexity": 54307092.21333007,
|
1232 |
+
"byte_perplexity": 7.403240538286952,
|
1233 |
+
"bits_per_byte": 2.8881569038733983
|
1234 |
+
},
|
1235 |
+
"gsarti/flores_101_yor+null": {
|
1236 |
+
"task_name": "gsarti/flores_101_yor",
|
1237 |
+
"prompt_name": "null",
|
1238 |
+
"word_perplexity": 130267.12232132205,
|
1239 |
+
"byte_perplexity": 5.91272037551173,
|
1240 |
+
"bits_per_byte": 2.5638220507535796
|
1241 |
+
},
|
1242 |
+
"gsarti/flores_101_zul+null": {
|
1243 |
+
"task_name": "gsarti/flores_101_zul",
|
1244 |
+
"prompt_name": "null",
|
1245 |
+
"word_perplexity": 493606524.8156374,
|
1246 |
+
"byte_perplexity": 8.53353320693145,
|
1247 |
+
"bits_per_byte": 3.0931431957905224
|
1248 |
+
}
|
1249 |
+
},
|
1250 |
+
"config": {
|
1251 |
+
"adaptive_seq_len": true,
|
1252 |
+
"num_fewshot": 0,
|
1253 |
+
"bootstrap_iters": 100000
|
1254 |
+
}
|
1255 |
+
}
|
evaluation/results/tr11/bloom350m/humaneval_temp02.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.00817073170731707, "pass@10": 0.020465171677199096, "pass@100": 0.024390015529347924}
|
evaluation/results/tr11/bloom350m/humaneval_temp06.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.0064939024390243925, "pass@10": 0.030182658898012457, "pass@100": 0.06233670887015886}
|
evaluation/results/tr11/get_templates.sh
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATASETS_AND_CONFIGS=(
|
2 |
+
piaf,None,None
|
3 |
+
GEM/wiki_lingua,ar,ar
|
4 |
+
GEM/wiki_lingua,en,en
|
5 |
+
GEM/wiki_lingua,es,es
|
6 |
+
GEM/wiki_lingua,fr,fr
|
7 |
+
GEM/wiki_lingua,hi,hi
|
8 |
+
GEM/wiki_lingua,id,id
|
9 |
+
GEM/wiki_lingua,pt,pt
|
10 |
+
GEM/wiki_lingua,vi,vi
|
11 |
+
GEM/wiki_lingua,zh,zh
|
12 |
+
GEM/web_nlg,en,en
|
13 |
+
GEM/web_nlg,ru,ru
|
14 |
+
wmt14,fr-en,fr-en
|
15 |
+
)
|
16 |
+
|
17 |
+
# Unique ones: 0 1 2 5 6 7 8 9 10 11
|
18 |
+
for val in {0..12}; do
|
19 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$val]}
|
20 |
+
IFS=',' read dataset_name dataset_config_name template_config_name <<< "${DATASET_AND_CONFIG}"
|
21 |
+
echo $dataset_config_name
|
22 |
+
python evaluation/results/tr13/tzeroeval/get_templates.py \
|
23 |
+
--dataset_name $dataset_name \
|
24 |
+
--dataset_config_name $dataset_config_name \
|
25 |
+
--template_config_name $template_config_name
|
26 |
+
done
|
27 |
+
|
evaluation/results/tr11/opt/humaneval_temp02.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.0, "pass@10": 0.0, "pass@100": 0.0}
|
evaluation/results/tr11/opt/humaneval_temp08.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pass@1": 0.0, "pass@10": 0.0, "pass@100": 0.0}
|
evaluation/results/tr11/scripts/download.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Downloads the specified taks in the evaluation harness
|
2 |
+
# This is particularly useful when running in environments where the GPU nodes
|
3 |
+
# do not have internet access. This way we can pre-download them and use the cached data-set during evaluation.
|
4 |
+
|
5 |
+
from lm_eval import tasks
|
6 |
+
from lm_eval.tasks import ALL_TASKS
|
7 |
+
import argparse
|
8 |
+
import os
|
9 |
+
|
10 |
+
|
11 |
+
parser = argparse.ArgumentParser(description='Download evaluation harness', allow_abbrev=False)
|
12 |
+
parser.add_argument('--task_list', type=str, default = "all", help='Either "all" or comma separated list of tasks to download.')
|
13 |
+
args = parser.parse_args()
|
14 |
+
|
15 |
+
def main():
|
16 |
+
task_list = ALL_TASKS if args.task_list == 'all' else args.task_list.split(',')
|
17 |
+
tasks.get_task_dict(task_list)
|
18 |
+
|
19 |
+
if __name__ == '__main__':
|
20 |
+
main()
|
21 |
+
|
evaluation/results/tr11/scripts/multi_eurlex_tmp.slurm
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=multieurlex
|
3 |
+
#SBATCH --nodes=1
|
4 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
5 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
6 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
7 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
8 |
+
#SBATCH --constraint=a100
|
9 |
+
#SBATCH --reservation=hug
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
|
16 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
17 |
+
conda activate muennighofflmevalgen
|
18 |
+
|
19 |
+
echo "START TIME: $(date)"
|
20 |
+
|
21 |
+
# defining the right environment variables
|
22 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
23 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
24 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
25 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
26 |
+
export HF_DATASETS_OFFLINE=1
|
27 |
+
export TRANSFORMERS_OFFLINE=1
|
28 |
+
export TOKENIZERS_PARALLELISM=false
|
29 |
+
|
30 |
+
# Converted transformer checkpoint
|
31 |
+
#MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3/bloom-7b1
|
32 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3t0/tr13f-6b3-ml-t0-lmtoks341b-t0toks13b-xp3capmixv2lossseq
|
33 |
+
|
34 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bslmevalgeneration/lm-evaluation-harness
|
35 |
+
|
36 |
+
DATASETS_AND_CONFIGS=(
|
37 |
+
multi_eurlex_mt,multi,"version-fr-en-source+target"
|
38 |
+
multi_eurlex_mt,multi,"version-en-fr-source+target"
|
39 |
+
multi_eurlex_mt,multi,"a_good_translation-fr-en-source+target"
|
40 |
+
multi_eurlex_mt,multi,"a_good_translation-en-fr-source+target"
|
41 |
+
multi_eurlex_mt,multi,"prev_doc-en-fr"
|
42 |
+
multi_eurlex_mt,multi,"prev_doc-fr-en"
|
43 |
+
)
|
44 |
+
|
45 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
46 |
+
echo $ARGUMENT
|
47 |
+
|
48 |
+
IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
|
49 |
+
|
50 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
51 |
+
python main.py \
|
52 |
+
--model_api_name 'hf-causal' \
|
53 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=float16 \
|
54 |
+
--device cuda \
|
55 |
+
--batch_size 16 \
|
56 |
+
--no_tracking \
|
57 |
+
--task_name $dataset_name \
|
58 |
+
--template_names $template_name \
|
59 |
+
--bootstrap_iters 10 \
|
60 |
+
--num_fewshot 0 \
|
61 |
+
--limit 500
|
62 |
+
|
63 |
+
echo "END TIME: $(date)"
|
evaluation/results/tr11/scripts/report-to-csv.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# this script converts results.json:
|
4 |
+
#
|
5 |
+
# "results": {
|
6 |
+
# "arc_challenge": {
|
7 |
+
# "acc": 0.24232081911262798,
|
8 |
+
# "acc_stderr": 0.01252159329580012,
|
9 |
+
# "acc_norm": 0.2764505119453925,
|
10 |
+
# "acc_norm_stderr": 0.013069662474252425
|
11 |
+
# },
|
12 |
+
#
|
13 |
+
# into a format expected by a spreadsheet, which is:
|
14 |
+
#
|
15 |
+
# task metric value err
|
16 |
+
# arc_challenge acc xxx yyy
|
17 |
+
# arc_challenge acc_norm xxx yyy
|
18 |
+
# arc_challenge f1 xxx yyy
|
19 |
+
#
|
20 |
+
# usage:
|
21 |
+
# report-to-csv.py results.json
|
22 |
+
|
23 |
+
|
24 |
+
import sys
|
25 |
+
import json
|
26 |
+
import io
|
27 |
+
import csv
|
28 |
+
|
29 |
+
results_file = sys.argv[1]
|
30 |
+
|
31 |
+
csv_file = results_file.replace("json", "csv")
|
32 |
+
|
33 |
+
print(f"Converting {results_file} to {csv_file}")
|
34 |
+
|
35 |
+
with io.open(results_file, 'r', encoding='utf-8') as f:
|
36 |
+
results = json.load(f)
|
37 |
+
|
38 |
+
with io.open(csv_file, 'w', encoding='utf-8') as f:
|
39 |
+
|
40 |
+
writer = csv.writer(f)
|
41 |
+
writer.writerow(["task", "metric", "value", "err", "version"])
|
42 |
+
|
43 |
+
versions = results["versions"]
|
44 |
+
|
45 |
+
for k,v in sorted(results["results"].items()):
|
46 |
+
if k not in versions:
|
47 |
+
versions[k] = -1
|
48 |
+
|
49 |
+
if "acc" in v:
|
50 |
+
writer.writerow([k, "acc", v["acc"], v["acc_stderr"], versions[k]])
|
51 |
+
if "acc_norm" in v:
|
52 |
+
writer.writerow([k, "acc_norm", v["acc_norm"], v["acc_norm_stderr"], versions[k]])
|
53 |
+
if "f1" in v:
|
54 |
+
writer.writerow([k, "f1", v["f1"], v["f1_stderr"] if "f1_stderr" in v else "", versions[k]])
|
55 |
+
# if "ppl" in v:
|
56 |
+
# writer.writerow([k, "ppl", v["ppl"], v["ppl_stderr"], versions[k]])
|
57 |
+
# if "em" in v:
|
58 |
+
# writer.writerow([k, "em", v["em"], v["em_stderr"] if "em_stderr" in v else "", versions[k]])
|
evaluation/results/tr11/scripts/run_bsevalharness_generation_176b.slurm
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=genbseval
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --reservation=hug
|
6 |
+
#SBATCH --qos=qos_gpu-gc # up to 100h
|
7 |
+
#SBATCH --nodes=1
|
8 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
9 |
+
#SBATCH --cpus-per-task=64 # number of cores per tasks
|
10 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
11 |
+
#SBATCH --gres=gpu:8 # number of gpus
|
12 |
+
#SBATCH --time 100:00:00 # maximum execution time (HH:MM:SS)
|
13 |
+
#SBATCH --output=%x-%j.out # output file name
|
14 |
+
#SBATCH --account=six@a100
|
15 |
+
|
16 |
+
set -x -e
|
17 |
+
|
18 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
19 |
+
conda activate muennighofflmevalgen
|
20 |
+
|
21 |
+
echo "START TIME: $(date)"
|
22 |
+
|
23 |
+
# defining the right environment variables
|
24 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
25 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
26 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
27 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
28 |
+
export HF_DATASETS_OFFLINE=1
|
29 |
+
export TRANSFORMERS_OFFLINE=1
|
30 |
+
export TOKENIZERS_PARALLELISM=false
|
31 |
+
|
32 |
+
# Converted transformer checkpoint
|
33 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/uan68tv-model-conversion/bloom
|
34 |
+
|
35 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bslmevalgeneration/lm-evaluation-harness
|
36 |
+
|
37 |
+
|
38 |
+
DATASETS_AND_CONFIGS=(
|
39 |
+
GEM/wiki_lingua_ar,ar,"article_summary_ar"
|
40 |
+
GEM/wiki_lingua_ar,ar,"write_abstract_ar"
|
41 |
+
GEM/wiki_lingua_ar,ar,"summarize_above_ar"
|
42 |
+
GEM/wiki_lingua_ar,ar,"rephrase_ar"
|
43 |
+
GEM/wiki_lingua_ar,ar,"tldr_ar"
|
44 |
+
GEM/wiki_lingua_en,en,"article_summary_en"
|
45 |
+
GEM/wiki_lingua_en,en,"write_abstract_en"
|
46 |
+
GEM/wiki_lingua_en,en,"summarize_above_en"
|
47 |
+
GEM/wiki_lingua_en,en,"rephrase_en"
|
48 |
+
GEM/wiki_lingua_en,en,"tldr_en"
|
49 |
+
GEM/wiki_lingua_es,es,"article_summary_es"
|
50 |
+
GEM/wiki_lingua_es,es,"write_abstract_es"
|
51 |
+
GEM/wiki_lingua_es,es,"summarize_above_es"
|
52 |
+
GEM/wiki_lingua_es,es,"rephrase_es"
|
53 |
+
GEM/wiki_lingua_es,es,"tldr_es"
|
54 |
+
GEM/wiki_lingua_fr,fr,"article_summary_fr"
|
55 |
+
GEM/wiki_lingua_fr,fr,"write_abstract_fr"
|
56 |
+
GEM/wiki_lingua_fr,fr,"summarize_above_fr"
|
57 |
+
GEM/wiki_lingua_fr,fr,"rephrase_fr"
|
58 |
+
GEM/wiki_lingua_fr,fr,"tldr_fr"
|
59 |
+
GEM/wiki_lingua_hi,hi,"article_summary_hi"
|
60 |
+
GEM/wiki_lingua_hi,hi,"write_abstract_hi"
|
61 |
+
GEM/wiki_lingua_hi,hi,"summarize_above_hi"
|
62 |
+
GEM/wiki_lingua_hi,hi,"rephrase_hi"
|
63 |
+
GEM/wiki_lingua_hi,hi,"tldr_hi"
|
64 |
+
GEM/wiki_lingua_id,id,"article_summary_id"
|
65 |
+
GEM/wiki_lingua_id,id,"write_abstract_id"
|
66 |
+
GEM/wiki_lingua_id,id,"summarize_above_id"
|
67 |
+
GEM/wiki_lingua_id,id,"rephrase_id"
|
68 |
+
GEM/wiki_lingua_id,id,"tldr_id"
|
69 |
+
GEM/wiki_lingua_pt,pt,"article_summary_pt"
|
70 |
+
GEM/wiki_lingua_pt,pt,"write_abstract_pt"
|
71 |
+
GEM/wiki_lingua_pt,pt,"summarize_above_pt"
|
72 |
+
GEM/wiki_lingua_pt,pt,"rephrase_pt"
|
73 |
+
GEM/wiki_lingua_pt,pt,"tldr_pt"
|
74 |
+
GEM/wiki_lingua_vi,vi,"article_summary_vi"
|
75 |
+
GEM/wiki_lingua_vi,vi,"write_abstract_vi"
|
76 |
+
GEM/wiki_lingua_vi,vi,"summarize_above_vi"
|
77 |
+
GEM/wiki_lingua_vi,vi,"rephrase_vi"
|
78 |
+
GEM/wiki_lingua_vi,vi,"tldr_vi"
|
79 |
+
GEM/wiki_lingua_zh,zh,"article_summary_zh"
|
80 |
+
GEM/wiki_lingua_zh,zh,"write_abstract_zh"
|
81 |
+
GEM/wiki_lingua_zh,zh,"summarize_above_zh"
|
82 |
+
GEM/wiki_lingua_zh,zh,"rephrase_zh"
|
83 |
+
GEM/wiki_lingua_zh,zh,"tldr_zh"
|
84 |
+
)
|
85 |
+
|
86 |
+
DATASETS_AND_CONFIGS=(
|
87 |
+
wmt14_fr_en,fr-en,"version-en-fr-target"
|
88 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-target"
|
89 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-source+target"
|
90 |
+
wmt14_fr_en,fr-en,"xglm-en-fr-target"
|
91 |
+
wmt14_fr_en,fr-en,"gpt3-en-fr"
|
92 |
+
wmt14_fr_en,fr-en,"version-fr-en-target"
|
93 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-target"
|
94 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-source+target"
|
95 |
+
wmt14_fr_en,fr-en,"xglm-fr-en-target"
|
96 |
+
wmt14_fr_en,fr-en,"gpt3-fr-en"
|
97 |
+
)
|
98 |
+
|
99 |
+
DATASETS_AND_CONFIGS=(
|
100 |
+
GEM/web_nlg_en,en,"PALM_prompt"
|
101 |
+
GEM/web_nlg_en,en,"explicit-graph-description-2"
|
102 |
+
GEM/web_nlg_en,en,"implicit-graph-description"
|
103 |
+
GEM/web_nlg_en,en,"non-explicit-description"
|
104 |
+
GEM/web_nlg_en,en,"use-category"
|
105 |
+
GEM/web_nlg_ru,ru,"PALM_prompt"
|
106 |
+
GEM/web_nlg_ru,ru,"explicit-graph-description-2-Russian"
|
107 |
+
GEM/web_nlg_ru,ru,"implicit-graph-description-Russian"
|
108 |
+
GEM/web_nlg_ru,ru,"non-explicit-description-Russian"
|
109 |
+
GEM/web_nlg_ru,ru,"use-category-Russian"
|
110 |
+
)
|
111 |
+
|
112 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
113 |
+
echo $ARGUMENT
|
114 |
+
|
115 |
+
IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
|
116 |
+
|
117 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
118 |
+
python main.py \
|
119 |
+
--model_api_name 'hf-causal' \
|
120 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=bfloat16 \
|
121 |
+
--device cuda \
|
122 |
+
--batch_size 8 \
|
123 |
+
--no_tracking \
|
124 |
+
--task_name $dataset_name \
|
125 |
+
--template_names $template_name \
|
126 |
+
--bootstrap_iters 10
|
127 |
+
|
128 |
+
echo "END TIME: $(date)"
|
evaluation/results/tr11/scripts/run_bsevalharness_generation_350m.slurm
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_bsevalharness-generation-350m
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=10 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
9 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --account=six@v100
|
12 |
+
|
13 |
+
set -x -e
|
14 |
+
|
15 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
16 |
+
conda activate muennighofflmevalgen
|
17 |
+
|
18 |
+
echo "START TIME: $(date)"
|
19 |
+
|
20 |
+
# defining the right environment variables
|
21 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
22 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
23 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
24 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
25 |
+
export HF_DATASETS_OFFLINE=1
|
26 |
+
export TRANSFORMERS_OFFLINE=1
|
27 |
+
export TOKENIZERS_PARALLELISM=false
|
28 |
+
|
29 |
+
# Converted transformer checkpoint
|
30 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/commun/experiments/muennighoff/bloomckpt/350m/bloom-350m
|
31 |
+
|
32 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bslmevalgeneration/lm-evaluation-harness
|
33 |
+
|
34 |
+
# WMT19 ZH-EN does not work
|
35 |
+
DATASETS_AND_CONFIGS=(
|
36 |
+
GEM/wiki_lingua_ar,ar,"article_summary_ar"
|
37 |
+
GEM/wiki_lingua_ar,ar,"write_abstract_ar"
|
38 |
+
GEM/wiki_lingua_ar,ar,"summarize_above_ar"
|
39 |
+
GEM/wiki_lingua_ar,ar,"rephrase_ar"
|
40 |
+
GEM/wiki_lingua_ar,ar,"tldr_ar"
|
41 |
+
GEM/wiki_lingua_en,en,"article_summary_en"
|
42 |
+
GEM/wiki_lingua_en,en,"write_abstract_en"
|
43 |
+
GEM/wiki_lingua_en,en,"summarize_above_en"
|
44 |
+
GEM/wiki_lingua_en,en,"rephrase_en"
|
45 |
+
GEM/wiki_lingua_en,en,"tldr_en"
|
46 |
+
GEM/wiki_lingua_es,es,"article_summary_es"
|
47 |
+
GEM/wiki_lingua_es,es,"write_abstract_es"
|
48 |
+
GEM/wiki_lingua_es,es,"summarize_above_es"
|
49 |
+
GEM/wiki_lingua_es,es,"rephrase_es"
|
50 |
+
GEM/wiki_lingua_es,es,"tldr_es"
|
51 |
+
GEM/wiki_lingua_fr,fr,"article_summary_fr"
|
52 |
+
GEM/wiki_lingua_fr,fr,"write_abstract_fr"
|
53 |
+
GEM/wiki_lingua_fr,fr,"summarize_above_fr"
|
54 |
+
GEM/wiki_lingua_fr,fr,"rephrase_fr"
|
55 |
+
GEM/wiki_lingua_fr,fr,"tldr_fr"
|
56 |
+
GEM/wiki_lingua_hi,hi,"article_summary_hi"
|
57 |
+
GEM/wiki_lingua_hi,hi,"write_abstract_hi"
|
58 |
+
GEM/wiki_lingua_hi,hi,"summarize_above_hi"
|
59 |
+
GEM/wiki_lingua_hi,hi,"rephrase_hi"
|
60 |
+
GEM/wiki_lingua_hi,hi,"tldr_hi"
|
61 |
+
GEM/wiki_lingua_id,id,"article_summary_id"
|
62 |
+
GEM/wiki_lingua_id,id,"write_abstract_id"
|
63 |
+
GEM/wiki_lingua_id,id,"summarize_above_id"
|
64 |
+
GEM/wiki_lingua_id,id,"rephrase_id"
|
65 |
+
GEM/wiki_lingua_id,id,"tldr_id"
|
66 |
+
GEM/wiki_lingua_pt,pt,"article_summary_pt"
|
67 |
+
GEM/wiki_lingua_pt,pt,"write_abstract_pt"
|
68 |
+
GEM/wiki_lingua_pt,pt,"summarize_above_pt"
|
69 |
+
GEM/wiki_lingua_pt,pt,"rephrase_pt"
|
70 |
+
GEM/wiki_lingua_pt,pt,"tldr_pt"
|
71 |
+
GEM/wiki_lingua_vi,vi,"article_summary_vi"
|
72 |
+
GEM/wiki_lingua_vi,vi,"write_abstract_vi"
|
73 |
+
GEM/wiki_lingua_vi,vi,"summarize_above_vi"
|
74 |
+
GEM/wiki_lingua_vi,vi,"rephrase_vi"
|
75 |
+
GEM/wiki_lingua_vi,vi,"tldr_vi"
|
76 |
+
GEM/wiki_lingua_zh,zh,"article_summary_zh"
|
77 |
+
GEM/wiki_lingua_zh,zh,"write_abstract_zh"
|
78 |
+
GEM/wiki_lingua_zh,zh,"summarize_above_zh"
|
79 |
+
GEM/wiki_lingua_zh,zh,"rephrase_zh"
|
80 |
+
GEM/wiki_lingua_zh,zh,"tldr_zh"
|
81 |
+
)
|
82 |
+
|
83 |
+
#GEM/wiki_lingua_ar,ar,"article_summary_ar"
|
84 |
+
#GEM/wiki_lingua_ar,ar,"write_abstract_ar"
|
85 |
+
#GEM/wiki_lingua_ar,ar,"summarize_above_ar"
|
86 |
+
#GEM/wiki_lingua_ar,ar,"rephrase_ar"
|
87 |
+
#GEM/wiki_lingua_ar,ar,"tldr_ar"
|
88 |
+
#GEM/wiki_lingua_zh,zh,"article_summary_zh"
|
89 |
+
#GEM/wiki_lingua_zh,zh,"write_abstract_zh"
|
90 |
+
#GEM/wiki_lingua_zh,zh,"summarize_above_zh"
|
91 |
+
#GEM/wiki_lingua_zh,zh,"rephrase_zh"
|
92 |
+
#GEM/wiki_lingua_zh,zh,"tldr_zh"
|
93 |
+
|
94 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
95 |
+
echo $ARGUMENT
|
96 |
+
|
97 |
+
IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
|
98 |
+
|
99 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
100 |
+
python main.py \
|
101 |
+
--model_api_name 'hf-causal' \
|
102 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=float16 \
|
103 |
+
--device cuda \
|
104 |
+
--batch_size 16 \
|
105 |
+
--no_tracking \
|
106 |
+
--task_name $dataset_name \
|
107 |
+
--template_names $template_name \
|
108 |
+
--bootstrap_iters 10
|
109 |
+
|
110 |
+
echo "END TIME: $(date)"
|
evaluation/results/tr11/scripts/run_bsevalharness_generation_760m.slurm
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_bsevalharness-generation-760m
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=10 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
9 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --account=six@v100
|
12 |
+
|
13 |
+
set -x -e
|
14 |
+
|
15 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
16 |
+
conda activate muennighofflmevalgen
|
17 |
+
|
18 |
+
echo "START TIME: $(date)"
|
19 |
+
|
20 |
+
# defining the right environment variables
|
21 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
22 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
23 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
24 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
25 |
+
export HF_DATASETS_OFFLINE=1
|
26 |
+
export TRANSFORMERS_OFFLINE=1
|
27 |
+
export TOKENIZERS_PARALLELISM=false
|
28 |
+
|
29 |
+
# Converted transformer checkpoint
|
30 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/760m/bloom-760m
|
31 |
+
|
32 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bslmevalgeneration/lm-evaluation-harness
|
33 |
+
|
34 |
+
# WMT19 ZH-EN does not work
|
35 |
+
DATASETS_AND_CONFIGS=(
|
36 |
+
GEM/wiki_lingua_ar,ar,"article_summary_ar"
|
37 |
+
GEM/wiki_lingua_ar,ar,"write_abstract_ar"
|
38 |
+
GEM/wiki_lingua_ar,ar,"summarize_above_ar"
|
39 |
+
GEM/wiki_lingua_ar,ar,"rephrase_ar"
|
40 |
+
GEM/wiki_lingua_ar,ar,"tldr_ar"
|
41 |
+
GEM/wiki_lingua_en,en,"article_summary_en"
|
42 |
+
GEM/wiki_lingua_en,en,"write_abstract_en"
|
43 |
+
GEM/wiki_lingua_en,en,"summarize_above_en"
|
44 |
+
GEM/wiki_lingua_en,en,"rephrase_en"
|
45 |
+
GEM/wiki_lingua_en,en,"tldr_en"
|
46 |
+
GEM/wiki_lingua_es,es,"article_summary_es"
|
47 |
+
GEM/wiki_lingua_es,es,"write_abstract_es"
|
48 |
+
GEM/wiki_lingua_es,es,"summarize_above_es"
|
49 |
+
GEM/wiki_lingua_es,es,"rephrase_es"
|
50 |
+
GEM/wiki_lingua_es,es,"tldr_es"
|
51 |
+
GEM/wiki_lingua_fr,fr,"article_summary_fr"
|
52 |
+
GEM/wiki_lingua_fr,fr,"write_abstract_fr"
|
53 |
+
GEM/wiki_lingua_fr,fr,"summarize_above_fr"
|
54 |
+
GEM/wiki_lingua_fr,fr,"rephrase_fr"
|
55 |
+
GEM/wiki_lingua_fr,fr,"tldr_fr"
|
56 |
+
GEM/wiki_lingua_hi,hi,"article_summary_hi"
|
57 |
+
GEM/wiki_lingua_hi,hi,"write_abstract_hi"
|
58 |
+
GEM/wiki_lingua_hi,hi,"summarize_above_hi"
|
59 |
+
GEM/wiki_lingua_hi,hi,"rephrase_hi"
|
60 |
+
GEM/wiki_lingua_hi,hi,"tldr_hi"
|
61 |
+
GEM/wiki_lingua_id,id,"article_summary_id"
|
62 |
+
GEM/wiki_lingua_id,id,"write_abstract_id"
|
63 |
+
GEM/wiki_lingua_id,id,"summarize_above_id"
|
64 |
+
GEM/wiki_lingua_id,id,"rephrase_id"
|
65 |
+
GEM/wiki_lingua_id,id,"tldr_id"
|
66 |
+
GEM/wiki_lingua_pt,pt,"article_summary_pt"
|
67 |
+
GEM/wiki_lingua_pt,pt,"write_abstract_pt"
|
68 |
+
GEM/wiki_lingua_pt,pt,"summarize_above_pt"
|
69 |
+
GEM/wiki_lingua_pt,pt,"rephrase_pt"
|
70 |
+
GEM/wiki_lingua_pt,pt,"tldr_pt"
|
71 |
+
GEM/wiki_lingua_vi,vi,"article_summary_vi"
|
72 |
+
GEM/wiki_lingua_vi,vi,"write_abstract_vi"
|
73 |
+
GEM/wiki_lingua_vi,vi,"summarize_above_vi"
|
74 |
+
GEM/wiki_lingua_vi,vi,"rephrase_vi"
|
75 |
+
GEM/wiki_lingua_vi,vi,"tldr_vi"
|
76 |
+
GEM/wiki_lingua_zh,zh,"article_summary_zh"
|
77 |
+
GEM/wiki_lingua_zh,zh,"write_abstract_zh"
|
78 |
+
GEM/wiki_lingua_zh,zh,"summarize_above_zh"
|
79 |
+
GEM/wiki_lingua_zh,zh,"rephrase_zh"
|
80 |
+
GEM/wiki_lingua_zh,zh,"tldr_zh"
|
81 |
+
)
|
82 |
+
|
83 |
+
#GEM/wiki_lingua_ar,ar,"article_summary_ar"
|
84 |
+
#GEM/wiki_lingua_ar,ar,"write_abstract_ar"
|
85 |
+
#GEM/wiki_lingua_ar,ar,"summarize_above_ar"
|
86 |
+
#GEM/wiki_lingua_ar,ar,"rephrase_ar"
|
87 |
+
#GEM/wiki_lingua_ar,ar,"tldr_ar"
|
88 |
+
#GEM/wiki_lingua_zh,zh,"article_summary_zh"
|
89 |
+
#GEM/wiki_lingua_zh,zh,"write_abstract_zh"
|
90 |
+
#GEM/wiki_lingua_zh,zh,"summarize_above_zh"
|
91 |
+
#GEM/wiki_lingua_zh,zh,"rephrase_zh"
|
92 |
+
#GEM/wiki_lingua_zh,zh,"tldr_zh"
|
93 |
+
|
94 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
95 |
+
echo $ARGUMENT
|
96 |
+
|
97 |
+
IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
|
98 |
+
|
99 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
100 |
+
python main.py \
|
101 |
+
--model_api_name 'hf-causal' \
|
102 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=float16 \
|
103 |
+
--device cuda \
|
104 |
+
--batch_size 16 \
|
105 |
+
--no_tracking \
|
106 |
+
--task_name $dataset_name \
|
107 |
+
--template_names $template_name \
|
108 |
+
--bootstrap_iters 10
|
109 |
+
|
110 |
+
echo "END TIME: $(date)"
|
evaluation/results/tr11/scripts/run_bsevalharness_tr11c-2b5-ml.slurm
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_bsevalharness-tr11c-2b5-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
|
16 |
+
set -x -e
|
17 |
+
|
18 |
+
source $six_ALL_CCFRWORK/start-muennighofflmeval
|
19 |
+
|
20 |
+
echo "START TIME: $(date)"
|
21 |
+
|
22 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
23 |
+
VARIANT="tr11c-2b5-ml-bsevalharness"
|
24 |
+
|
25 |
+
|
26 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11c-2B5-ml/checkpoints/main/global_step337250
|
27 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
|
28 |
+
export HF_DATASETS_OFFLINE=1
|
29 |
+
export TRANSFORMERS_OFFLINE=1
|
30 |
+
|
31 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
32 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasetseval
|
33 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
34 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
35 |
+
export TOKENIZERS_PARALLELISM=false
|
36 |
+
|
37 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
38 |
+
|
39 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
40 |
+
|
41 |
+
PP_SIZE=1
|
42 |
+
TP_SIZE=1
|
43 |
+
SEQ_LEN=2048
|
44 |
+
|
45 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
46 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
47 |
+
EVAL_MICRO_BATCH_SIZE=1
|
48 |
+
|
49 |
+
#dummy arguments to make megatron happy.
|
50 |
+
MEGATRON_REQUIRED_ARGS=" \
|
51 |
+
--num-layers -1 \
|
52 |
+
--hidden-size -1 \
|
53 |
+
--num-attention-heads -1 \
|
54 |
+
--seq-length -1 \
|
55 |
+
--max-position-embeddings -1 \
|
56 |
+
"
|
57 |
+
|
58 |
+
|
59 |
+
ZERO_STAGE=0
|
60 |
+
|
61 |
+
config_json="./ds_config.json"
|
62 |
+
|
63 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
64 |
+
cat <<EOT > $config_json
|
65 |
+
{
|
66 |
+
"train_micro_batch_size_per_gpu": 1,
|
67 |
+
"train_batch_size": 1,
|
68 |
+
"gradient_clipping": 1.0,
|
69 |
+
"zero_optimization": {
|
70 |
+
"stage": $ZERO_STAGE
|
71 |
+
},
|
72 |
+
"bf16": {
|
73 |
+
"enabled": false
|
74 |
+
},
|
75 |
+
"steps_per_print": 2000,
|
76 |
+
"wall_clock_breakdown": false
|
77 |
+
}
|
78 |
+
EOT
|
79 |
+
|
80 |
+
CMD="./tasks/eval_harness/evaluate_bsevalharness.py \
|
81 |
+
--load $CHECKPOINT_PATH \
|
82 |
+
--results_path $VARIANT-results.json \
|
83 |
+
--tensor-model-parallel-size $TP_SIZE \
|
84 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
85 |
+
--tokenizer-type PretrainedFromHF \
|
86 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
87 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
88 |
+
--no-load-optim \
|
89 |
+
--no-load-rng \
|
90 |
+
--inference \
|
91 |
+
--seq-length $SEQ_LEN \
|
92 |
+
--task_list axb,axg,boolq,cb,cola,copa,crows_pairs_english,crows_pairs_french,diabla,e2e_nlg_cleaned,mnli,mnli_mismatched,multirc,piaf,qqp,rte,sst,tydiqa_primary,tydiqa_secondary,wic,wsc,wnli,wino_bias_type1_anti,wino_bias_type1_pro,wino_bias_type2_anti,wino_bias_type2_pro,xquad_ar,xquad_en,gsarti/flores_101_afr,gsarti/flores_101_amh,gsarti/flores_101_ara,gsarti/flores_101_hye,gsarti/flores_101_asm,gsarti/flores_101_ast,gsarti/flores_101_azj,gsarti/flores_101_bel,gsarti/flores_101_ben,gsarti/flores_101_bos,gsarti/flores_101_bul,gsarti/flores_101_mya,gsarti/flores_101_cat,gsarti/flores_101_ceb,gsarti/flores_101_zho_simpl,gsarti/flores_101_zho_trad,gsarti/flores_101_hrv,gsarti/flores_101_ces,gsarti/flores_101_dan,gsarti/flores_101_nld,gsarti/flores_101_eng,gsarti/flores_101_est,gsarti/flores_101_tgl,gsarti/flores_101_fin,gsarti/flores_101_fra,gsarti/flores_101_ful,gsarti/flores_101_glg,gsarti/flores_101_lug,gsarti/flores_101_kat,gsarti/flores_101_deu,gsarti/flores_101_ell,gsarti/flores_101_guj,gsarti/flores_101_hau,gsarti/flores_101_heb,gsarti/flores_101_hin,gsarti/flores_101_hun,gsarti/flores_101_isl,gsarti/flores_101_ibo,gsarti/flores_101_ind,gsarti/flores_101_gle,gsarti/flores_101_ita,gsarti/flores_101_jpn,gsarti/flores_101_jav,gsarti/flores_101_kea,gsarti/flores_101_kam,gsarti/flores_101_kan,gsarti/flores_101_kaz,gsarti/flores_101_khm,gsarti/flores_101_kor,gsarti/flores_101_kir,gsarti/flores_101_lao,gsarti/flores_101_lav,gsarti/flores_101_lin,gsarti/flores_101_lit,gsarti/flores_101_luo,gsarti/flores_101_ltz,gsarti/flores_101_mkd,gsarti/flores_101_msa,gsarti/flores_101_mal,gsarti/flores_101_mlt,gsarti/flores_101_mri,gsarti/flores_101_mar,gsarti/flores_101_mon,gsarti/flores_101_npi,gsarti/flores_101_nso,gsarti/flores_101_nob,gsarti/flores_101_nya,gsarti/flores_101_oci,gsarti/flores_101_ory,gsarti/flores_101_orm,gsarti/flores_101_pus,gsarti/flores_101_fas,gsarti/flores_101_pol,gsarti/flores_101_por,gsarti/flores_101_pan,gsarti/flores_101_ron,gsarti/flores_101_rus,gsarti/flores_101_srp,gsarti/flores_101_sna,gsarti/flores_101_snd,gsarti/flores_101_slk,gsarti/flores_101_slv,gsarti/flores_101_som,gsarti/flores_101_ckb,gsarti/flores_101_spa,gsarti/flores_101_swh,gsarti/flores_101_swe,gsarti/flores_101_tgk,gsarti/flores_101_tam,gsarti/flores_101_tel,gsarti/flores_101_tha,gsarti/flores_101_tur,gsarti/flores_101_ukr,gsarti/flores_101_umb,gsarti/flores_101_urd,gsarti/flores_101_uzb,gsarti/flores_101_vie,gsarti/flores_101_cym,gsarti/flores_101_wol,gsarti/flores_101_xho,gsarti/flores_101_yor,gsarti/flores_101_zul \
|
93 |
+
--eval_fp32 \
|
94 |
+
--deepspeed \
|
95 |
+
--deepspeed_config ds_config.json \
|
96 |
+
--intermed_results \
|
97 |
+
--adaptive_seq_len \
|
98 |
+
--micro_bs_multiplier 8 \
|
99 |
+
$MEGATRON_REQUIRED_ARGS \
|
100 |
+
"
|
101 |
+
|
102 |
+
GPUS_PER_NODE=1
|
103 |
+
NNODES=$SLURM_NNODES
|
104 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
105 |
+
MASTER_PORT=6000
|
106 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
107 |
+
--nproc_per_node $GPUS_PER_NODE \
|
108 |
+
--nnodes $NNODES \
|
109 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
110 |
+
--rdzv_backend c10d \
|
111 |
+
--max_restarts 0 \
|
112 |
+
--tee 3 \
|
113 |
+
"
|
114 |
+
|
115 |
+
export CUDA_LAUNCH_BLOCKING=1
|
116 |
+
|
117 |
+
echo $LAUNCHER $CMD
|
118 |
+
|
119 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
120 |
+
|
121 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
evaluation/results/tr11/scripts/run_bsevalharness_tr11e-350m-ml.slurm
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_bsevalharness-tr11e-350m-ml
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=10 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
9 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --account=six@v100
|
12 |
+
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
|
16 |
+
source $six_ALL_CCFRWORK/start-muennighofflmeval
|
17 |
+
|
18 |
+
echo "START TIME: $(date)"
|
19 |
+
|
20 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
21 |
+
VARIANT="tr11e-350m-ml-bsevalharness"
|
22 |
+
|
23 |
+
|
24 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11e-350M-ml/checkpoints/main/global_step659500
|
25 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bslmeval/Megatron-DeepSpeed
|
26 |
+
export HF_DATASETS_OFFLINE=1
|
27 |
+
export TRANSFORMERS_OFFLINE=1
|
28 |
+
|
29 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
30 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasetseval
|
31 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
32 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
33 |
+
export TOKENIZERS_PARALLELISM=false
|
34 |
+
|
35 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
36 |
+
|
37 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
38 |
+
|
39 |
+
PP_SIZE=1
|
40 |
+
TP_SIZE=1
|
41 |
+
SEQ_LEN=2048
|
42 |
+
|
43 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
44 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
45 |
+
EVAL_MICRO_BATCH_SIZE=1
|
46 |
+
|
47 |
+
#dummy arguments to make megatron happy.
|
48 |
+
MEGATRON_REQUIRED_ARGS=" \
|
49 |
+
--num-layers -1 \
|
50 |
+
--hidden-size -1 \
|
51 |
+
--num-attention-heads -1 \
|
52 |
+
--seq-length -1 \
|
53 |
+
--max-position-embeddings -1 \
|
54 |
+
"
|
55 |
+
|
56 |
+
|
57 |
+
ZERO_STAGE=0
|
58 |
+
|
59 |
+
config_json="./ds_config.json"
|
60 |
+
|
61 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
62 |
+
cat <<EOT > $config_json
|
63 |
+
{
|
64 |
+
"train_micro_batch_size_per_gpu": 1,
|
65 |
+
"train_batch_size": 1,
|
66 |
+
"gradient_clipping": 1.0,
|
67 |
+
"zero_optimization": {
|
68 |
+
"stage": $ZERO_STAGE
|
69 |
+
},
|
70 |
+
"bf16": {
|
71 |
+
"enabled": false
|
72 |
+
},
|
73 |
+
"steps_per_print": 2000,
|
74 |
+
"wall_clock_breakdown": false
|
75 |
+
}
|
76 |
+
EOT
|
77 |
+
|
78 |
+
|
79 |
+
CMD="./tasks/eval_harness/evaluate_bsevalharness.py \
|
80 |
+
--load $CHECKPOINT_PATH \
|
81 |
+
--results_path $VARIANT-results.json \
|
82 |
+
--tensor-model-parallel-size $TP_SIZE \
|
83 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
84 |
+
--tokenizer-type PretrainedFromHF \
|
85 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
86 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
87 |
+
--no-load-optim \
|
88 |
+
--no-load-rng \
|
89 |
+
--inference \
|
90 |
+
--seq-length $SEQ_LEN \
|
91 |
+
--task_list piaf,qqp,rte,sst,tydiqa_primary,tydiqa_secondary,wic,wsc,wnli,wino_bias_type1_anti,wino_bias_type1_pro,wino_bias_type2_anti,wino_bias_type2_pro,xquad_ar,xquad_en,gsarti/flores_101_afr,gsarti/flores_101_amh,gsarti/flores_101_ara,gsarti/flores_101_hye,gsarti/flores_101_asm,gsarti/flores_101_ast,gsarti/flores_101_azj,gsarti/flores_101_bel,gsarti/flores_101_ben,gsarti/flores_101_bos,gsarti/flores_101_bul,gsarti/flores_101_mya,gsarti/flores_101_cat,gsarti/flores_101_ceb,gsarti/flores_101_zho_simpl,gsarti/flores_101_zho_trad,gsarti/flores_101_hrv,gsarti/flores_101_ces,gsarti/flores_101_dan,gsarti/flores_101_nld,gsarti/flores_101_eng,gsarti/flores_101_est,gsarti/flores_101_tgl,gsarti/flores_101_fin,gsarti/flores_101_fra,gsarti/flores_101_ful,gsarti/flores_101_glg,gsarti/flores_101_lug,gsarti/flores_101_kat,gsarti/flores_101_deu,gsarti/flores_101_ell,gsarti/flores_101_guj,gsarti/flores_101_hau,gsarti/flores_101_heb,gsarti/flores_101_hin,gsarti/flores_101_hun,gsarti/flores_101_isl,gsarti/flores_101_ibo,gsarti/flores_101_ind,gsarti/flores_101_gle,gsarti/flores_101_ita,gsarti/flores_101_jpn,gsarti/flores_101_jav,gsarti/flores_101_kea,gsarti/flores_101_kam,gsarti/flores_101_kan,gsarti/flores_101_kaz,gsarti/flores_101_khm,gsarti/flores_101_kor,gsarti/flores_101_kir,gsarti/flores_101_lao,gsarti/flores_101_lav,gsarti/flores_101_lin,gsarti/flores_101_lit,gsarti/flores_101_luo,gsarti/flores_101_ltz,gsarti/flores_101_mkd,gsarti/flores_101_msa,gsarti/flores_101_mal,gsarti/flores_101_mlt,gsarti/flores_101_mri,gsarti/flores_101_mar,gsarti/flores_101_mon,gsarti/flores_101_npi,gsarti/flores_101_nso,gsarti/flores_101_nob,gsarti/flores_101_nya,gsarti/flores_101_oci,gsarti/flores_101_ory,gsarti/flores_101_orm,gsarti/flores_101_pus,gsarti/flores_101_fas,gsarti/flores_101_pol,gsarti/flores_101_por,gsarti/flores_101_pan,gsarti/flores_101_ron,gsarti/flores_101_rus,gsarti/flores_101_srp,gsarti/flores_101_sna,gsarti/flores_101_snd,gsarti/flores_101_slk,gsarti/flores_101_slv,gsarti/flores_101_som,gsarti/flores_101_ckb,gsarti/flores_101_spa,gsarti/flores_101_swh,gsarti/flores_101_swe,gsarti/flores_101_tgk,gsarti/flores_101_tam,gsarti/flores_101_tel,gsarti/flores_101_tha,gsarti/flores_101_tur,gsarti/flores_101_ukr,gsarti/flores_101_umb,gsarti/flores_101_urd,gsarti/flores_101_uzb,gsarti/flores_101_vie,gsarti/flores_101_cym,gsarti/flores_101_wol,gsarti/flores_101_xho,gsarti/flores_101_yor,gsarti/flores_101_zul \
|
92 |
+
--eval_fp32 \
|
93 |
+
--deepspeed \
|
94 |
+
--deepspeed_config ds_config.json \
|
95 |
+
--intermed_results \
|
96 |
+
--adaptive_seq_len \
|
97 |
+
--micro_bs_multiplier 4 \
|
98 |
+
$MEGATRON_REQUIRED_ARGS \
|
99 |
+
"
|
100 |
+
|
101 |
+
GPUS_PER_NODE=1
|
102 |
+
NNODES=$SLURM_NNODES
|
103 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
104 |
+
MASTER_PORT=6002
|
105 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
106 |
+
--nproc_per_node $GPUS_PER_NODE \
|
107 |
+
--nnodes $NNODES \
|
108 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
109 |
+
--rdzv_backend c10d \
|
110 |
+
--max_restarts 0 \
|
111 |
+
--tee 3 \
|
112 |
+
"
|
113 |
+
|
114 |
+
export CUDA_LAUNCH_BLOCKING=1
|
115 |
+
|
116 |
+
echo $LAUNCHER $CMD
|
117 |
+
|
118 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
119 |
+
|
120 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
evaluation/results/tr11/scripts/run_bsevalharness_tr11f-6b3-ml.slurm
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_bsevalharness-tr11f-6b3-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
|
16 |
+
set -x -e
|
17 |
+
|
18 |
+
source $six_ALL_CCFRWORK/start-muennighofflmeval
|
19 |
+
|
20 |
+
echo "START TIME: $(date)"
|
21 |
+
|
22 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
23 |
+
VARIANT="tr11f-6b3-ml-bsevalharness"
|
24 |
+
|
25 |
+
|
26 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11f-6B3-ml/checkpoints/main/global_step337500
|
27 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bslmeval/Megatron-DeepSpeed
|
28 |
+
export HF_DATASETS_OFFLINE=1
|
29 |
+
export TRANSFORMERS_OFFLINE=1
|
30 |
+
|
31 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
32 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasetseval
|
33 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
34 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
35 |
+
export TOKENIZERS_PARALLELISM=false
|
36 |
+
|
37 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
38 |
+
|
39 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
40 |
+
|
41 |
+
PP_SIZE=1
|
42 |
+
TP_SIZE=1
|
43 |
+
SEQ_LEN=2048
|
44 |
+
|
45 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
46 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
47 |
+
EVAL_MICRO_BATCH_SIZE=1
|
48 |
+
|
49 |
+
#dummy arguments to make megatron happy.
|
50 |
+
MEGATRON_REQUIRED_ARGS=" \
|
51 |
+
--num-layers -1 \
|
52 |
+
--hidden-size -1 \
|
53 |
+
--num-attention-heads -1 \
|
54 |
+
--seq-length -1 \
|
55 |
+
--max-position-embeddings -1 \
|
56 |
+
"
|
57 |
+
|
58 |
+
|
59 |
+
ZERO_STAGE=0
|
60 |
+
|
61 |
+
config_json="./ds_config.json"
|
62 |
+
|
63 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
64 |
+
cat <<EOT > $config_json
|
65 |
+
{
|
66 |
+
"train_micro_batch_size_per_gpu": 1,
|
67 |
+
"train_batch_size": 1,
|
68 |
+
"gradient_clipping": 1.0,
|
69 |
+
"zero_optimization": {
|
70 |
+
"stage": $ZERO_STAGE
|
71 |
+
},
|
72 |
+
"bf16": {
|
73 |
+
"enabled": false
|
74 |
+
},
|
75 |
+
"steps_per_print": 2000,
|
76 |
+
"wall_clock_breakdown": false
|
77 |
+
}
|
78 |
+
EOT
|
79 |
+
|
80 |
+
CMD="./tasks/eval_harness/evaluate_bsevalharness.py \
|
81 |
+
--load $CHECKPOINT_PATH \
|
82 |
+
--results_path $VARIANT-results.json \
|
83 |
+
--tensor-model-parallel-size $TP_SIZE \
|
84 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
85 |
+
--tokenizer-type PretrainedFromHF \
|
86 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
87 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
88 |
+
--no-load-optim \
|
89 |
+
--no-load-rng \
|
90 |
+
--inference \
|
91 |
+
--seq-length $SEQ_LEN \
|
92 |
+
--task_list axb,axg,boolq,cb,cola,copa,crows_pairs_english,crows_pairs_french,diabla,e2e_nlg_cleaned,mnli,mnli_mismatched,multirc,piaf,qqp,rte,sst,tydiqa_primary,tydiqa_secondary,wic,wsc,wnli,wino_bias_type1_anti,wino_bias_type1_pro,wino_bias_type2_anti,wino_bias_type2_pro,xquad_ar,xquad_en,gsarti/flores_101_afr,gsarti/flores_101_amh,gsarti/flores_101_ara,gsarti/flores_101_hye,gsarti/flores_101_asm,gsarti/flores_101_ast,gsarti/flores_101_azj,gsarti/flores_101_bel,gsarti/flores_101_ben,gsarti/flores_101_bos,gsarti/flores_101_bul,gsarti/flores_101_mya,gsarti/flores_101_cat,gsarti/flores_101_ceb,gsarti/flores_101_zho_simpl,gsarti/flores_101_zho_trad,gsarti/flores_101_hrv,gsarti/flores_101_ces,gsarti/flores_101_dan,gsarti/flores_101_nld,gsarti/flores_101_eng,gsarti/flores_101_est,gsarti/flores_101_tgl,gsarti/flores_101_fin,gsarti/flores_101_fra,gsarti/flores_101_ful,gsarti/flores_101_glg,gsarti/flores_101_lug,gsarti/flores_101_kat,gsarti/flores_101_deu,gsarti/flores_101_ell,gsarti/flores_101_guj,gsarti/flores_101_hau,gsarti/flores_101_heb,gsarti/flores_101_hin,gsarti/flores_101_hun,gsarti/flores_101_isl,gsarti/flores_101_ibo,gsarti/flores_101_ind,gsarti/flores_101_gle,gsarti/flores_101_ita,gsarti/flores_101_jpn,gsarti/flores_101_jav,gsarti/flores_101_kea,gsarti/flores_101_kam,gsarti/flores_101_kan,gsarti/flores_101_kaz,gsarti/flores_101_khm,gsarti/flores_101_kor,gsarti/flores_101_kir,gsarti/flores_101_lao,gsarti/flores_101_lav,gsarti/flores_101_lin,gsarti/flores_101_lit,gsarti/flores_101_luo,gsarti/flores_101_ltz,gsarti/flores_101_mkd,gsarti/flores_101_msa,gsarti/flores_101_mal,gsarti/flores_101_mlt,gsarti/flores_101_mri,gsarti/flores_101_mar,gsarti/flores_101_mon,gsarti/flores_101_npi,gsarti/flores_101_nso,gsarti/flores_101_nob,gsarti/flores_101_nya,gsarti/flores_101_oci,gsarti/flores_101_ory,gsarti/flores_101_orm,gsarti/flores_101_pus,gsarti/flores_101_fas,gsarti/flores_101_pol,gsarti/flores_101_por,gsarti/flores_101_pan,gsarti/flores_101_ron,gsarti/flores_101_rus,gsarti/flores_101_srp,gsarti/flores_101_sna,gsarti/flores_101_snd,gsarti/flores_101_slk,gsarti/flores_101_slv,gsarti/flores_101_som,gsarti/flores_101_ckb,gsarti/flores_101_spa,gsarti/flores_101_swh,gsarti/flores_101_swe,gsarti/flores_101_tgk,gsarti/flores_101_tam,gsarti/flores_101_tel,gsarti/flores_101_tha,gsarti/flores_101_tur,gsarti/flores_101_ukr,gsarti/flores_101_umb,gsarti/flores_101_urd,gsarti/flores_101_uzb,gsarti/flores_101_vie,gsarti/flores_101_cym,gsarti/flores_101_wol,gsarti/flores_101_xho,gsarti/flores_101_yor,gsarti/flores_101_zul \
|
93 |
+
--eval_fp32 \
|
94 |
+
--deepspeed \
|
95 |
+
--deepspeed_config ds_config.json \
|
96 |
+
--intermed_results \
|
97 |
+
--adaptive_seq_len \
|
98 |
+
--micro_bs_multiplier 8 \
|
99 |
+
$MEGATRON_REQUIRED_ARGS \
|
100 |
+
"
|
101 |
+
|
102 |
+
GPUS_PER_NODE=1
|
103 |
+
NNODES=$SLURM_NNODES
|
104 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
105 |
+
MASTER_PORT=6000
|
106 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
107 |
+
--nproc_per_node $GPUS_PER_NODE \
|
108 |
+
--nnodes $NNODES \
|
109 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
110 |
+
--rdzv_backend c10d \
|
111 |
+
--max_restarts 0 \
|
112 |
+
--tee 3 \
|
113 |
+
"
|
114 |
+
|
115 |
+
export CUDA_LAUNCH_BLOCKING=1
|
116 |
+
|
117 |
+
echo $LAUNCHER $CMD
|
118 |
+
|
119 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
120 |
+
|
121 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
evaluation/results/tr11/scripts/run_evalharness_deepspeed.md
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# How to run lm-eval on Megatron-DeepSpeed checkpoint using the original setup
|
2 |
+
|
3 |
+
This particular setup uses the normal deepspeed checkpoint and requires no conversion to Megatron-LM.
|
4 |
+
|
5 |
+
This doc assumes usage on JZ, so some peculiar requirements in places. Ignore these if you're not running this on JZ.
|
6 |
+
|
7 |
+
## Prerequisites
|
8 |
+
|
9 |
+
1. Install software
|
10 |
+
|
11 |
+
On login console with external network
|
12 |
+
|
13 |
+
Get lm-eval harness (https://github.com/EleutherAI/lm-evaluation-harness) and `best-download==0.0.7` needed to download some tasks.
|
14 |
+
```
|
15 |
+
start-prod
|
16 |
+
pip install best-download==0.0.7
|
17 |
+
pip install git+https://github.com/EleutherAI/lm-evaluation-harness
|
18 |
+
```
|
19 |
+
|
20 |
+
2. Pre-download needed datasets
|
21 |
+
|
22 |
+
some symlinks due to lm-harness' issues with relative position of data
|
23 |
+
```
|
24 |
+
mkdir data
|
25 |
+
ln -s `pwd`/data tasks/eval_harness/data
|
26 |
+
```
|
27 |
+
Also make sure `data` is not on one of the limited paritions like WORKSF.
|
28 |
+
|
29 |
+
Then install datasets for the tasks:
|
30 |
+
```
|
31 |
+
python ./tasks/eval_harness/download.py --task_list
|
32 |
+
arc_challenge,arc_easy,boolq,copa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc
|
33 |
+
```
|
34 |
+
and make sure that `export HF_DATASETS_OFFLINE=1`
|
35 |
+
|
36 |
+
If there are things like custom tokenizers, pre-download those too, e.g.:
|
37 |
+
|
38 |
+
```
|
39 |
+
python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('bigscience/oscar_13_languages_alpha_weight')"
|
40 |
+
```
|
41 |
+
and make sure that `export TRANSFORMERS_OFFLINE=1` is in the script.
|
42 |
+
You know there is a custom tokenizer if the training script had something like:
|
43 |
+
|
44 |
+
```
|
45 |
+
--tokenizer-type PretrainedFromHF \
|
46 |
+
--tokenizer-name-or-path bigscience/oscar_13_languages_alpha_weight \
|
47 |
+
```
|
48 |
+
|
49 |
+
3. Prepare the slurm script
|
50 |
+
|
51 |
+
Prepare the run script, replace `variant` with a unique identifier for the current eval so that multiple evals could run in parallel and not all log into the same `results.json` file. so, e.g., `tr9c-1B3-swiglu`
|
52 |
+
|
53 |
+
```
|
54 |
+
cp examples/run_evalharness_deepspeed.slurm run_evalharness-variant.slurm
|
55 |
+
```
|
56 |
+
|
57 |
+
now edit `run_evalharness-variant.slurm`
|
58 |
+
|
59 |
+
|
60 |
+
Note that the eval code knows to pull the original training args from the checkpoint, so we don't need to pass any of those. And we just need to setup the evaluation args.
|
61 |
+
|
62 |
+
Note that for the bigscience lm-eval-harness fork (https://github.com/bigscience-workshop/lm-evaluation-harness), the corresponding scripts are `evaluate_bsevalharness.py` & `run_bsevalharness_tr11-176b-ml.slurm`.
|
63 |
+
|
64 |
+
1. Edit:
|
65 |
+
|
66 |
+
```
|
67 |
+
PP_SIZE=1
|
68 |
+
TP_SIZE=1
|
69 |
+
```
|
70 |
+
to match the eval topology. If the model fits into 1 gpu, then there is nothing to change.
|
71 |
+
|
72 |
+
The eval script will automatically reshape the model if it was of a different topology.
|
73 |
+
|
74 |
+
|
75 |
+
2. Adjust the following to fit the chosen GPU. As of last check for 1.3B model the settings are one of:
|
76 |
+
```
|
77 |
+
EVAL_MICRO_BATCH_SIZE=6 # 16GB GPU 1.3B model
|
78 |
+
EVAL_MICRO_BATCH_SIZE=12 # 32GB GPU 1.3B model
|
79 |
+
```
|
80 |
+
|
81 |
+
If you get OOM lower it further.
|
82 |
+
|
83 |
+
3. If not using the Deepspeed path, disable it by removing:
|
84 |
+
|
85 |
+
```
|
86 |
+
--deepspeed \
|
87 |
+
--deepspeed_config ds_config.json \
|
88 |
+
```
|
89 |
+
|
90 |
+
If you didn't disable it and the program crashed on checkpoint loading unable to find some key, disable deepspeed as explained above.
|
91 |
+
|
92 |
+
4. Additional flags
|
93 |
+
|
94 |
+
- To reduce the amount of iterations for stderr estimation, use e.g. `--bootstrap_iters 2`. This saves 1-2 minutes per dataset.
|
95 |
+
- To print intermediate results when running multiple tasks use `--intermed_results`.
|
96 |
+
- To reduce the bubble when setting PP use the flag `--micro_bs_multiplier`. Reducing `--micro-batch-size` may be needed when increasing the multiplier.
|
97 |
+
- Running the 176B model with PP=8, `--micro_bs_multiplier 8` & `--micro-batch-size 4` produced the fastest results for PiQA on 1 node in 2min18s.
|
98 |
+
|
99 |
+
## Eval
|
100 |
+
|
101 |
+
Currently it takes 2-3 hours to run on 32GB for 1.3B model, 6-7h for 16GB GPU, so a 20h slurm job should be enough.
|
102 |
+
|
103 |
+
When ready, launch:
|
104 |
+
```
|
105 |
+
sbatch ./run_evalharness-variant.slurm
|
106 |
+
```
|
107 |
+
|
108 |
+
To monitor progress:
|
109 |
+
```
|
110 |
+
tail -f tail -f $VARIANT-eval-harness.log
|
111 |
+
```
|
112 |
+
where the variant is what you set `$VARIANT` to in the slurm script.
|
113 |
+
|
114 |
+
The template is set up for 16GB gpu since they are easier to get by. If you change to 32GB, adjust:
|
115 |
+
```
|
116 |
+
#SBATCH --constraint=v100-32g
|
117 |
+
...
|
118 |
+
EVAL_MICRO_BATCH_SIZE=12 # 32GB GPU 1.3B model
|
119 |
+
```
|
120 |
+
|
121 |
+
|
122 |
+
Note that the original ETA at the start of the run can be 10x too longer than the actual outcome. For example it may suggest 18 hours but will complete in 2 hours.
|
123 |
+
|
124 |
+
|
125 |
+
## Short eval
|
126 |
+
|
127 |
+
if you just want to quickly test that everything can run to the end, edit `tasks/eval_harness/evaluate.py`, e.g. to run only 10 batches:
|
128 |
+
```
|
129 |
+
- results = evaluator.evaluate(adaptor, task_dict, False, 0, None)
|
130 |
+
+ results = evaluator.evaluate(adaptor, task_dict, False, 0, 10)
|
131 |
+
```
|
132 |
+
|
133 |
+
(XXX: could be a cmd line option so that code won't need to be modified)
|
134 |
+
|
135 |
+
|
136 |
+
## Import into spreadsheet
|
137 |
+
|
138 |
+
https://docs.google.com/spreadsheets/d/1CI8Q9RCblLRzUOPJ6ViqBmo284-8ojluQ-CmaEuhuv0/edit?usp=sharing
|
139 |
+
|
140 |
+
Note that the spreadsheet format is quite different, so use this script:
|
141 |
+
```
|
142 |
+
./tasks/eval_harness/report-to-csv.py results.json
|
143 |
+
```
|
144 |
+
to reformat the json results into csv while changing its shape to match the spreadsheet format
|
145 |
+
|
146 |
+
Since some records might be missing or extraneous here is the best way to do it:
|
147 |
+
|
148 |
+
1. copy the data from first 2 columns to some place under the main spreadsheet
|
149 |
+
|
150 |
+
2. put the pointer to the 3rd column next to where the 2 first columns were copied.
|
151 |
+
|
152 |
+
3. import `results.csv` using file-> import -> file ->
|
153 |
+
|
154 |
+
Import location: Replace data at selected cell
|
155 |
+
|
156 |
+
4. Now it should be easy to align the new records with the old ones - delete irrelevant records and Insert->Cells where data is missing until the first 2 columns match
|
157 |
+
|
158 |
+
5. now create 2 cols in the main table on top and now it should be safe to Copy-n-Paste the 2-col data range, without the task/metrics columns into the newly created space.
|
evaluation/results/tr11/scripts/run_evalharness_deepspeed.slurm
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=eval-harness-deepspeed
|
3 |
+
#SBATCH --constraint=v100-16g
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
9 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --account=six@gpu
|
12 |
+
|
13 |
+
|
14 |
+
set -x -e
|
15 |
+
|
16 |
+
source $six_ALL_CCFRWORK/start-prod
|
17 |
+
|
18 |
+
echo "START TIME: $(date)"
|
19 |
+
|
20 |
+
# a unique identifier for the current eval so that multiple evals could run in parallel and not all log into the same "results.json" file.
|
21 |
+
VARIANT="tr9c-1B3-swiglu"
|
22 |
+
|
23 |
+
CHECKPOINT_PATH=/gpfsdsstore/projects/rech/six/commun/checkpoints/tr3m-1B3-emb-norm-pile/global_step296023
|
24 |
+
MEGATRON_DEEPSPEED_REPO=/gpfsssd/worksf/projects/rech/six/commun/code/eval/Megatron-DeepSpeed
|
25 |
+
|
26 |
+
# you want these 2 on JZ, and pre-download/cache any datasets/tokenizers/models
|
27 |
+
# but comment these out if you're running on a node with Internet access
|
28 |
+
export HF_DATASETS_OFFLINE=1
|
29 |
+
export TRANSFORMERS_OFFLINE=1
|
30 |
+
|
31 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
32 |
+
|
33 |
+
# eval topology
|
34 |
+
PP_SIZE=1
|
35 |
+
TP_SIZE=1
|
36 |
+
|
37 |
+
VOCAB_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-vocab.json
|
38 |
+
MERGE_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-merges.txt
|
39 |
+
SEQ_LEN=2048
|
40 |
+
|
41 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
42 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
43 |
+
|
44 |
+
EVAL_MICRO_BATCH_SIZE=6 # 16GB GPU 1.3B model
|
45 |
+
#EVAL_MICRO_BATCH_SIZE=12 # 32GB GPU 1.3B model
|
46 |
+
|
47 |
+
|
48 |
+
#dummy arguments to make megatron happy.
|
49 |
+
MEGATRON_REQUIRED_ARGS=" \
|
50 |
+
--num-layers -1 \
|
51 |
+
--hidden-size -1 \
|
52 |
+
--num-attention-heads -1 \
|
53 |
+
--seq-length -1 \
|
54 |
+
--max-position-embeddings -1
|
55 |
+
"
|
56 |
+
|
57 |
+
|
58 |
+
ZERO_STAGE=0
|
59 |
+
|
60 |
+
config_json="./ds_config.json"
|
61 |
+
cat <<EOT > $config_json
|
62 |
+
{
|
63 |
+
"train_micro_batch_size_per_gpu": 1,
|
64 |
+
"train_batch_size": 1,
|
65 |
+
"zero_optimization": { "stage": $ZERO_STAGE },
|
66 |
+
"fp16": { "enabled": true },
|
67 |
+
"steps_per_print": 2000,
|
68 |
+
"wall_clock_breakdown": false
|
69 |
+
}
|
70 |
+
EOT
|
71 |
+
|
72 |
+
CMD="./tasks/eval_harness/evaluate.py \
|
73 |
+
--load $CHECKPOINT_PATH \
|
74 |
+
--results_path $VARIANT-results.json \
|
75 |
+
--tensor-model-parallel-size $TP_SIZE \
|
76 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
77 |
+
--vocab-file $VOCAB_FILE \
|
78 |
+
--merge-file $MERGE_FILE \
|
79 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
80 |
+
--no-load-optim \
|
81 |
+
--no-load-rng \
|
82 |
+
--inference \
|
83 |
+
--deepspeed \
|
84 |
+
--deepspeed_config ds_config.json \
|
85 |
+
--seq-length $SEQ_LEN \
|
86 |
+
--adaptive_seq_len \
|
87 |
+
--eval_fp32 \
|
88 |
+
--task_list arc_challenge,arc_easy,boolq,copa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sst,webqs,wic,winogrande,wnli,wsc,triviaqa,sciq \
|
89 |
+
$MEGATRON_REQUIRED_ARGS \
|
90 |
+
"
|
91 |
+
|
92 |
+
N_GPUS=1
|
93 |
+
LAUNCHER="deepspeed --num_gpus $N_GPUS"
|
94 |
+
echo $LAUNCHER $CMD
|
95 |
+
|
96 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
97 |
+
|
98 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
evaluation/results/tr11/scripts/run_evalharness_tr11-176b-ml.slurm
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_evalharness-tr11-176b-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=64 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:8 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
|
14 |
+
|
15 |
+
set -x -e
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
18 |
+
|
19 |
+
echo "START TIME: $(date)"
|
20 |
+
|
21 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
22 |
+
VARIANT="tr11-176b-ml"
|
23 |
+
|
24 |
+
|
25 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11-176B-ml/checkpoints/main/global_step50000
|
26 |
+
MEGATRON_DEEPSPEED_REPO=/gpfsssd/worksf/projects/rech/six/commun/code/eval/Megatron-DeepSpeed
|
27 |
+
export HF_DATASETS_OFFLINE=1
|
28 |
+
export TRANSFORMERS_OFFLINE=1
|
29 |
+
|
30 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
31 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
32 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
33 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
34 |
+
|
35 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
36 |
+
|
37 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
38 |
+
|
39 |
+
PP_SIZE=8
|
40 |
+
TP_SIZE=1
|
41 |
+
SEQ_LEN=2048
|
42 |
+
|
43 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
44 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
45 |
+
EVAL_MICRO_BATCH_SIZE=1
|
46 |
+
|
47 |
+
#dummy arguments to make megatron happy.
|
48 |
+
MEGATRON_REQUIRED_ARGS=" \
|
49 |
+
--num-layers -1 \
|
50 |
+
--hidden-size -1 \
|
51 |
+
--num-attention-heads -1 \
|
52 |
+
--seq-length -1 \
|
53 |
+
--max-position-embeddings -1 \
|
54 |
+
"
|
55 |
+
|
56 |
+
|
57 |
+
ZERO_STAGE=0
|
58 |
+
|
59 |
+
config_json="./ds_config.json"
|
60 |
+
|
61 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
62 |
+
cat <<EOT > $config_json
|
63 |
+
{
|
64 |
+
"train_micro_batch_size_per_gpu": 1,
|
65 |
+
"train_batch_size": 1,
|
66 |
+
"gradient_clipping": 1.0,
|
67 |
+
"zero_optimization": {
|
68 |
+
"stage": $ZERO_STAGE
|
69 |
+
},
|
70 |
+
"bf16": {
|
71 |
+
"enabled": true
|
72 |
+
},
|
73 |
+
"steps_per_print": 2000,
|
74 |
+
"wall_clock_breakdown": false
|
75 |
+
}
|
76 |
+
EOT
|
77 |
+
|
78 |
+
|
79 |
+
CMD="./tasks/eval_harness/evaluate.py \
|
80 |
+
--load $CHECKPOINT_PATH \
|
81 |
+
--results_path $VARIANT-results.json \
|
82 |
+
--tensor-model-parallel-size $TP_SIZE \
|
83 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
84 |
+
--tokenizer-type PretrainedFromHF \
|
85 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
86 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
87 |
+
--no-load-optim \
|
88 |
+
--no-load-rng \
|
89 |
+
--bf16 \
|
90 |
+
--inference \
|
91 |
+
--seq-length $SEQ_LEN \
|
92 |
+
--task_list arc_challenge,arc_easy,boolq,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc \
|
93 |
+
--deepspeed \
|
94 |
+
--deepspeed_config ds_config.json \
|
95 |
+
--intermed_results \
|
96 |
+
--adaptive_seq_len \
|
97 |
+
--micro_bs_multiplier 16 \
|
98 |
+
--offloadearly \
|
99 |
+
$MEGATRON_REQUIRED_ARGS \
|
100 |
+
"
|
101 |
+
|
102 |
+
GPUS_PER_NODE=8
|
103 |
+
NNODES=$SLURM_NNODES
|
104 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
105 |
+
MASTER_PORT=6000
|
106 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
107 |
+
--nproc_per_node $GPUS_PER_NODE \
|
108 |
+
--nnodes $NNODES \
|
109 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
110 |
+
--rdzv_backend c10d \
|
111 |
+
--max_restarts 0 \
|
112 |
+
--tee 3 \
|
113 |
+
"
|
114 |
+
|
115 |
+
export CUDA_LAUNCH_BLOCKING=1
|
116 |
+
|
117 |
+
echo $LAUNCHER $CMD
|
118 |
+
|
119 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
120 |
+
|
121 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
evaluation/results/tr11/scripts/run_evalharness_tr11b-1b3-ml.slurm
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_evalharness-tr11b-2b5-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
set -x -e
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
18 |
+
|
19 |
+
echo "START TIME: $(date)"
|
20 |
+
|
21 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
22 |
+
VARIANT="tr11b-1b3-ml-evalharness"
|
23 |
+
|
24 |
+
|
25 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11b-1B3-ml/checkpoints/main/global_step340500
|
26 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
|
27 |
+
export HF_DATASETS_OFFLINE=1
|
28 |
+
export TRANSFORMERS_OFFLINE=1
|
29 |
+
|
30 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
31 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
32 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
33 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
34 |
+
|
35 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
36 |
+
|
37 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
38 |
+
|
39 |
+
PP_SIZE=1
|
40 |
+
TP_SIZE=1
|
41 |
+
SEQ_LEN=2048
|
42 |
+
|
43 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
44 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
45 |
+
EVAL_MICRO_BATCH_SIZE=1
|
46 |
+
|
47 |
+
#dummy arguments to make megatron happy.
|
48 |
+
MEGATRON_REQUIRED_ARGS=" \
|
49 |
+
--num-layers -1 \
|
50 |
+
--hidden-size -1 \
|
51 |
+
--num-attention-heads -1 \
|
52 |
+
--seq-length -1 \
|
53 |
+
--max-position-embeddings -1 \
|
54 |
+
"
|
55 |
+
|
56 |
+
|
57 |
+
ZERO_STAGE=0
|
58 |
+
|
59 |
+
config_json="./ds_config.json"
|
60 |
+
|
61 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
62 |
+
cat <<EOT > $config_json
|
63 |
+
{
|
64 |
+
"train_micro_batch_size_per_gpu": 1,
|
65 |
+
"train_batch_size": 1,
|
66 |
+
"gradient_clipping": 1.0,
|
67 |
+
"zero_optimization": {
|
68 |
+
"stage": $ZERO_STAGE
|
69 |
+
},
|
70 |
+
"bf16": {
|
71 |
+
"enabled": false
|
72 |
+
},
|
73 |
+
"steps_per_print": 2000,
|
74 |
+
"wall_clock_breakdown": false
|
75 |
+
}
|
76 |
+
EOT
|
77 |
+
|
78 |
+
|
79 |
+
CMD="./tasks/eval_harness/evaluate.py \
|
80 |
+
--load $CHECKPOINT_PATH \
|
81 |
+
--results_path $VARIANT-results.json \
|
82 |
+
--tensor-model-parallel-size $TP_SIZE \
|
83 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
84 |
+
--tokenizer-type PretrainedFromHF \
|
85 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
86 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
87 |
+
--no-load-optim \
|
88 |
+
--no-load-rng \
|
89 |
+
--eval_fp32 \
|
90 |
+
--inference \
|
91 |
+
--seq-length $SEQ_LEN \
|
92 |
+
--task_list arc_challenge,arc_easy,boolq,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc \
|
93 |
+
--deepspeed \
|
94 |
+
--deepspeed_config ds_config.json \
|
95 |
+
--intermed_results \
|
96 |
+
--adaptive_seq_len \
|
97 |
+
--micro_bs_multiplier 8 \
|
98 |
+
$MEGATRON_REQUIRED_ARGS \
|
99 |
+
"
|
100 |
+
|
101 |
+
GPUS_PER_NODE=1
|
102 |
+
NNODES=$SLURM_NNODES
|
103 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
104 |
+
MASTER_PORT=6000
|
105 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
106 |
+
--nproc_per_node $GPUS_PER_NODE \
|
107 |
+
--nnodes $NNODES \
|
108 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
109 |
+
--rdzv_backend c10d \
|
110 |
+
--max_restarts 0 \
|
111 |
+
--tee 3 \
|
112 |
+
"
|
113 |
+
|
114 |
+
export CUDA_LAUNCH_BLOCKING=1
|
115 |
+
|
116 |
+
echo $LAUNCHER $CMD
|
117 |
+
|
118 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
119 |
+
|
120 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
evaluation/results/tr11/scripts/run_evalharness_tr11c-2b5-ml.slurm
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_evalharness-tr11b-2b5-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
set -x -e
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
18 |
+
|
19 |
+
echo "START TIME: $(date)"
|
20 |
+
|
21 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
22 |
+
VARIANT="tr11b-2b5-ml-evalharness"
|
23 |
+
|
24 |
+
|
25 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11c-2B5-ml/checkpoints/main/global_step337250
|
26 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
|
27 |
+
export HF_DATASETS_OFFLINE=1
|
28 |
+
export TRANSFORMERS_OFFLINE=1
|
29 |
+
|
30 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
31 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
32 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
33 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
34 |
+
|
35 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
36 |
+
|
37 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
38 |
+
|
39 |
+
PP_SIZE=1
|
40 |
+
TP_SIZE=1
|
41 |
+
SEQ_LEN=2048
|
42 |
+
|
43 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
44 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
45 |
+
EVAL_MICRO_BATCH_SIZE=1
|
46 |
+
|
47 |
+
#dummy arguments to make megatron happy.
|
48 |
+
MEGATRON_REQUIRED_ARGS=" \
|
49 |
+
--num-layers -1 \
|
50 |
+
--hidden-size -1 \
|
51 |
+
--num-attention-heads -1 \
|
52 |
+
--seq-length -1 \
|
53 |
+
--max-position-embeddings -1 \
|
54 |
+
"
|
55 |
+
|
56 |
+
|
57 |
+
ZERO_STAGE=0
|
58 |
+
|
59 |
+
config_json="./ds_config.json"
|
60 |
+
|
61 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
62 |
+
cat <<EOT > $config_json
|
63 |
+
{
|
64 |
+
"train_micro_batch_size_per_gpu": 1,
|
65 |
+
"train_batch_size": 1,
|
66 |
+
"gradient_clipping": 1.0,
|
67 |
+
"zero_optimization": {
|
68 |
+
"stage": $ZERO_STAGE
|
69 |
+
},
|
70 |
+
"bf16": {
|
71 |
+
"enabled": false
|
72 |
+
},
|
73 |
+
"steps_per_print": 2000,
|
74 |
+
"wall_clock_breakdown": false
|
75 |
+
}
|
76 |
+
EOT
|
77 |
+
|
78 |
+
|
79 |
+
CMD="./tasks/eval_harness/evaluate.py \
|
80 |
+
--load $CHECKPOINT_PATH \
|
81 |
+
--results_path $VARIANT-results.json \
|
82 |
+
--tensor-model-parallel-size $TP_SIZE \
|
83 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
84 |
+
--tokenizer-type PretrainedFromHF \
|
85 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
86 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
87 |
+
--no-load-optim \
|
88 |
+
--no-load-rng \
|
89 |
+
--eval_fp32 \
|
90 |
+
--inference \
|
91 |
+
--seq-length $SEQ_LEN \
|
92 |
+
--task_list arc_challenge,arc_easy,boolq,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc \
|
93 |
+
--deepspeed \
|
94 |
+
--deepspeed_config ds_config.json \
|
95 |
+
--intermed_results \
|
96 |
+
--adaptive_seq_len \
|
97 |
+
--micro_bs_multiplier 8 \
|
98 |
+
$MEGATRON_REQUIRED_ARGS \
|
99 |
+
"
|
100 |
+
|
101 |
+
GPUS_PER_NODE=1
|
102 |
+
NNODES=$SLURM_NNODES
|
103 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
104 |
+
MASTER_PORT=6000
|
105 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
106 |
+
--nproc_per_node $GPUS_PER_NODE \
|
107 |
+
--nnodes $NNODES \
|
108 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
109 |
+
--rdzv_backend c10d \
|
110 |
+
--max_restarts 0 \
|
111 |
+
--tee 3 \
|
112 |
+
"
|
113 |
+
|
114 |
+
export CUDA_LAUNCH_BLOCKING=1
|
115 |
+
|
116 |
+
echo $LAUNCHER $CMD
|
117 |
+
|
118 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
119 |
+
|
120 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
evaluation/results/tr11/scripts/run_evalharness_tr11d-760m-ml.slurm
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_evalharness-tr11d-760m-ml
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=10 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
9 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --account=six@v100
|
12 |
+
|
13 |
+
set -x -e
|
14 |
+
|
15 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
16 |
+
|
17 |
+
echo "START TIME: $(date)"
|
18 |
+
|
19 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
20 |
+
VARIANT="tr11d-760m-ml-evalharness"
|
21 |
+
|
22 |
+
#/gpfsscratch/rech/six/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
|
23 |
+
CHECKPOINT_PATH=/gpfsscratch/rech/six/commun/checkpoints/tr11d-760M-ml/checkpoints/main/global_step660750
|
24 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
|
25 |
+
export HF_DATASETS_OFFLINE=1
|
26 |
+
export TRANSFORMERS_OFFLINE=1
|
27 |
+
|
28 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
29 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
30 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
31 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
32 |
+
|
33 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
34 |
+
|
35 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
36 |
+
|
37 |
+
PP_SIZE=1
|
38 |
+
TP_SIZE=1
|
39 |
+
SEQ_LEN=2048
|
40 |
+
|
41 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
42 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
43 |
+
EVAL_MICRO_BATCH_SIZE=1
|
44 |
+
|
45 |
+
#dummy arguments to make megatron happy.
|
46 |
+
MEGATRON_REQUIRED_ARGS=" \
|
47 |
+
--num-layers -1 \
|
48 |
+
--hidden-size -1 \
|
49 |
+
--num-attention-heads -1 \
|
50 |
+
--seq-length -1 \
|
51 |
+
--max-position-embeddings -1 \
|
52 |
+
"
|
53 |
+
|
54 |
+
|
55 |
+
ZERO_STAGE=0
|
56 |
+
|
57 |
+
config_json="./ds_config.json"
|
58 |
+
|
59 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
60 |
+
cat <<EOT > $config_json
|
61 |
+
{
|
62 |
+
"train_micro_batch_size_per_gpu": 1,
|
63 |
+
"train_batch_size": 1,
|
64 |
+
"gradient_clipping": 1.0,
|
65 |
+
"zero_optimization": {
|
66 |
+
"stage": $ZERO_STAGE
|
67 |
+
},
|
68 |
+
"bf16": {
|
69 |
+
"enabled": false
|
70 |
+
},
|
71 |
+
"steps_per_print": 2000,
|
72 |
+
"wall_clock_breakdown": false
|
73 |
+
}
|
74 |
+
EOT
|
75 |
+
|
76 |
+
|
77 |
+
CMD="./tasks/eval_harness/evaluate.py \
|
78 |
+
--load $CHECKPOINT_PATH \
|
79 |
+
--results_path $VARIANT-results.json \
|
80 |
+
--tensor-model-parallel-size $TP_SIZE \
|
81 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
82 |
+
--tokenizer-type PretrainedFromHF \
|
83 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
84 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
85 |
+
--no-load-optim \
|
86 |
+
--no-load-rng \
|
87 |
+
--eval_fp32 \
|
88 |
+
--inference \
|
89 |
+
--seq-length $SEQ_LEN \
|
90 |
+
--task_list arc_challenge,arc_easy,boolq,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc \
|
91 |
+
--deepspeed \
|
92 |
+
--deepspeed_config ds_config.json \
|
93 |
+
--intermed_results \
|
94 |
+
--adaptive_seq_len \
|
95 |
+
--micro_bs_multiplier 8 \
|
96 |
+
$MEGATRON_REQUIRED_ARGS \
|
97 |
+
"
|
98 |
+
|
99 |
+
GPUS_PER_NODE=1
|
100 |
+
NNODES=$SLURM_NNODES
|
101 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
102 |
+
MASTER_PORT=6000
|
103 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
104 |
+
--nproc_per_node $GPUS_PER_NODE \
|
105 |
+
--nnodes $NNODES \
|
106 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
107 |
+
--rdzv_backend c10d \
|
108 |
+
--max_restarts 0 \
|
109 |
+
--tee 3 \
|
110 |
+
"
|
111 |
+
|
112 |
+
export CUDA_LAUNCH_BLOCKING=1
|
113 |
+
|
114 |
+
echo $LAUNCHER $CMD
|
115 |
+
|
116 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
117 |
+
|
118 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
evaluation/results/tr11/scripts/run_evalharness_tr11e-350m-ml.slurm
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_evalharness-tr11e-350m-ml
|
3 |
+
#SBATCH --constraint=v100-32g
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=10 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
9 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
10 |
+
#SBATCH --output=%x-%j.out # output file name
|
11 |
+
#SBATCH --account=six@v100
|
12 |
+
|
13 |
+
set -x -e
|
14 |
+
|
15 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
16 |
+
|
17 |
+
echo "START TIME: $(date)"
|
18 |
+
|
19 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
20 |
+
VARIANT="tr11e-350m-ml-evalharness"
|
21 |
+
|
22 |
+
|
23 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11e-350M-ml/checkpoints/main/global_step659500
|
24 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
|
25 |
+
export HF_DATASETS_OFFLINE=1
|
26 |
+
export TRANSFORMERS_OFFLINE=1
|
27 |
+
|
28 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
29 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
30 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
31 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
32 |
+
|
33 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
34 |
+
|
35 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
36 |
+
|
37 |
+
PP_SIZE=1
|
38 |
+
TP_SIZE=1
|
39 |
+
SEQ_LEN=2048
|
40 |
+
|
41 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
42 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
43 |
+
EVAL_MICRO_BATCH_SIZE=1
|
44 |
+
|
45 |
+
#dummy arguments to make megatron happy.
|
46 |
+
MEGATRON_REQUIRED_ARGS=" \
|
47 |
+
--num-layers -1 \
|
48 |
+
--hidden-size -1 \
|
49 |
+
--num-attention-heads -1 \
|
50 |
+
--seq-length -1 \
|
51 |
+
--max-position-embeddings -1 \
|
52 |
+
"
|
53 |
+
|
54 |
+
|
55 |
+
ZERO_STAGE=0
|
56 |
+
|
57 |
+
config_json="./ds_config.json"
|
58 |
+
|
59 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
60 |
+
cat <<EOT > $config_json
|
61 |
+
{
|
62 |
+
"train_micro_batch_size_per_gpu": 1,
|
63 |
+
"train_batch_size": 1,
|
64 |
+
"gradient_clipping": 1.0,
|
65 |
+
"zero_optimization": {
|
66 |
+
"stage": $ZERO_STAGE
|
67 |
+
},
|
68 |
+
"bf16": {
|
69 |
+
"enabled": false
|
70 |
+
},
|
71 |
+
"steps_per_print": 2000,
|
72 |
+
"wall_clock_breakdown": false
|
73 |
+
}
|
74 |
+
EOT
|
75 |
+
|
76 |
+
|
77 |
+
CMD="./tasks/eval_harness/evaluate.py \
|
78 |
+
--load $CHECKPOINT_PATH \
|
79 |
+
--results_path $VARIANT-results.json \
|
80 |
+
--tensor-model-parallel-size $TP_SIZE \
|
81 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
82 |
+
--tokenizer-type PretrainedFromHF \
|
83 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
84 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
85 |
+
--no-load-optim \
|
86 |
+
--no-load-rng \
|
87 |
+
--eval_fp32 \
|
88 |
+
--inference \
|
89 |
+
--seq-length $SEQ_LEN \
|
90 |
+
--task_list arc_challenge,arc_easy,boolq,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc \
|
91 |
+
--deepspeed \
|
92 |
+
--deepspeed_config ds_config.json \
|
93 |
+
--intermed_results \
|
94 |
+
--adaptive_seq_len \
|
95 |
+
--micro_bs_multiplier 8 \
|
96 |
+
$MEGATRON_REQUIRED_ARGS \
|
97 |
+
"
|
98 |
+
|
99 |
+
GPUS_PER_NODE=1
|
100 |
+
NNODES=$SLURM_NNODES
|
101 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
102 |
+
MASTER_PORT=6000
|
103 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
104 |
+
--nproc_per_node $GPUS_PER_NODE \
|
105 |
+
--nnodes $NNODES \
|
106 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
107 |
+
--rdzv_backend c10d \
|
108 |
+
--max_restarts 0 \
|
109 |
+
--tee 3 \
|
110 |
+
"
|
111 |
+
|
112 |
+
export CUDA_LAUNCH_BLOCKING=1
|
113 |
+
|
114 |
+
echo $LAUNCHER $CMD
|
115 |
+
|
116 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
117 |
+
|
118 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
evaluation/results/tr11/scripts/run_evalharness_tr11f-6b3-ml.slurm
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_evalharness-tr11f-6b3-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
set -x -e
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
18 |
+
|
19 |
+
echo "START TIME: $(date)"
|
20 |
+
|
21 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
22 |
+
VARIANT="tr11f-6b3-ml-evalharness"
|
23 |
+
|
24 |
+
|
25 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11f-6B3-ml/checkpoints/main/global_step337500
|
26 |
+
MEGATRON_DEEPSPEED_REPO=/gpfsssd/worksf/projects/rech/six/commun/code/eval/Megatron-DeepSpeed
|
27 |
+
export HF_DATASETS_OFFLINE=1
|
28 |
+
export TRANSFORMERS_OFFLINE=1
|
29 |
+
|
30 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
31 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
32 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
33 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
34 |
+
|
35 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
36 |
+
|
37 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
38 |
+
|
39 |
+
PP_SIZE=1
|
40 |
+
TP_SIZE=1
|
41 |
+
SEQ_LEN=2048
|
42 |
+
|
43 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
44 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
45 |
+
EVAL_MICRO_BATCH_SIZE=1
|
46 |
+
|
47 |
+
#dummy arguments to make megatron happy.
|
48 |
+
MEGATRON_REQUIRED_ARGS=" \
|
49 |
+
--num-layers -1 \
|
50 |
+
--hidden-size -1 \
|
51 |
+
--num-attention-heads -1 \
|
52 |
+
--seq-length -1 \
|
53 |
+
--max-position-embeddings -1 \
|
54 |
+
"
|
55 |
+
|
56 |
+
|
57 |
+
ZERO_STAGE=0
|
58 |
+
|
59 |
+
config_json="./ds_config.json"
|
60 |
+
|
61 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
62 |
+
cat <<EOT > $config_json
|
63 |
+
{
|
64 |
+
"train_micro_batch_size_per_gpu": 1,
|
65 |
+
"train_batch_size": 1,
|
66 |
+
"gradient_clipping": 1.0,
|
67 |
+
"zero_optimization": {
|
68 |
+
"stage": $ZERO_STAGE
|
69 |
+
},
|
70 |
+
"bf16": {
|
71 |
+
"enabled": false
|
72 |
+
},
|
73 |
+
"steps_per_print": 2000,
|
74 |
+
"wall_clock_breakdown": false
|
75 |
+
}
|
76 |
+
EOT
|
77 |
+
|
78 |
+
|
79 |
+
CMD="./tasks/eval_harness/evaluate.py \
|
80 |
+
--load $CHECKPOINT_PATH \
|
81 |
+
--results_path $VARIANT-results.json \
|
82 |
+
--tensor-model-parallel-size $TP_SIZE \
|
83 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
84 |
+
--tokenizer-type PretrainedFromHF \
|
85 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
86 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
87 |
+
--no-load-optim \
|
88 |
+
--no-load-rng \
|
89 |
+
--eval_fp32 \
|
90 |
+
--inference \
|
91 |
+
--seq-length $SEQ_LEN \
|
92 |
+
--task_list arc_challenge,arc_easy,boolq,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc \
|
93 |
+
--deepspeed \
|
94 |
+
--deepspeed_config ds_config.json \
|
95 |
+
--intermed_results \
|
96 |
+
--adaptive_seq_len \
|
97 |
+
--micro_bs_multiplier 4 \
|
98 |
+
$MEGATRON_REQUIRED_ARGS \
|
99 |
+
"
|
100 |
+
|
101 |
+
GPUS_PER_NODE=1
|
102 |
+
NNODES=$SLURM_NNODES
|
103 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
104 |
+
MASTER_PORT=6000
|
105 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
106 |
+
--nproc_per_node $GPUS_PER_NODE \
|
107 |
+
--nnodes $NNODES \
|
108 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
109 |
+
--rdzv_backend c10d \
|
110 |
+
--max_restarts 0 \
|
111 |
+
--tee 3 \
|
112 |
+
"
|
113 |
+
|
114 |
+
export CUDA_LAUNCH_BLOCKING=1
|
115 |
+
|
116 |
+
echo $LAUNCHER $CMD
|
117 |
+
|
118 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
119 |
+
|
120 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
evaluation/results/tr11/scripts/run_trevalharness_7b1.slurm
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=run_trevalharness-tr11f-6b3-ml
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
set -x -e
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
18 |
+
#conda activate muennighofflmevalgen
|
19 |
+
conda activate thomas_t_zero_evaluation
|
20 |
+
|
21 |
+
echo "START TIME: $(date)"
|
22 |
+
|
23 |
+
# defining the right environment variables
|
24 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
25 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
26 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
27 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
28 |
+
export HF_DATASETS_OFFLINE=1
|
29 |
+
export TRANSFORMERS_OFFLINE=1
|
30 |
+
export TOKENIZERS_PARALLELISM=false
|
31 |
+
|
32 |
+
# Converted transformer checkpoint
|
33 |
+
#MODEL_CKPT=/gpfsscratch/rech/six/commun/uan68tv-model-conversion/bloom
|
34 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3/bloom-7b1
|
35 |
+
|
36 |
+
cd /gpfsscratch/rech/six/commun/commun/experiments/muennighoff/bslmevaltransformers/lm-evaluation-harness
|
37 |
+
|
38 |
+
|
39 |
+
DATASETS_AND_CONFIGS=(
|
40 |
+
arc_challenge
|
41 |
+
arc_easy
|
42 |
+
)
|
43 |
+
#,arc_easy,boolq,copa,headqa,hellaswag,lambada,logiqa,mathqa,mc_taco,mrpc,multirc,openbookqa,piqa,prost,pubmedqa,qnli,qqp,race,rte,sciq,sst,triviaqa,webqs,wic,winogrande,wnli,wsc
|
44 |
+
|
45 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
46 |
+
echo $ARGUMENT
|
47 |
+
IFS=',' read dataset_name <<< "${DATASET_AND_CONFIG}"
|
48 |
+
|
49 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
50 |
+
python main.py \
|
51 |
+
--model gpt2 \
|
52 |
+
--model_args pretrained=$MODEL_CKPT \
|
53 |
+
--batch_size 16 \
|
54 |
+
--tasks $dataset_name \
|
55 |
+
--output_path "${MODEL_CKPT}_{$dataset_name}.json" \
|
56 |
+
--skip_tokenizer \
|
57 |
+
--no_cache \
|
58 |
+
--dtype=float16
|
59 |
+
|
60 |
+
echo "END TIME: $(date)"
|
evaluation/results/tr13/download_bslmeval.slurm
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=download-bslmeval
|
3 |
+
#SBATCH --partition=prepost
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
6 |
+
#SBATCH --cpus-per-task=10 # number of cores per tasks
|
7 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
8 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
9 |
+
#SBATCH --output=%x-%j.out # output file name
|
10 |
+
#SBATCH --account=six@cpu
|
11 |
+
|
12 |
+
set -x -e
|
13 |
+
|
14 |
+
echo "START TIME: $(date)"
|
15 |
+
|
16 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
17 |
+
conda activate muennighofflmeval
|
18 |
+
|
19 |
+
#export HF_DATASETS_OFFLINE=1
|
20 |
+
#export TRANSFORMERS_OFFLINE=1
|
21 |
+
|
22 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
23 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasetseval
|
24 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
25 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
26 |
+
export TOKENIZERS_PARALLELISM=false
|
27 |
+
|
28 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/lm-evaluation-harness
|
29 |
+
|
30 |
+
# GEM/web_nlg_en,GEM/web_nlg_en_challenge_test_numbers,GEM/web_nlg_en_challenge_test_scramble,GEM/web_nlg_en_challenge_validation_sample,GEM/web_nlg_ru,GEM/web_nlg_ru_challenge_test_scramble,GEM/web_nlg_ru_challenge_validation_sample,GEM/wiki_auto_asset_turk_challenge_test_asset_backtranslation,GEM/wiki_auto_asset_turk_challenge_test_asset_bfp02,GEM/wiki_auto_asset_turk_challenge_test_asset_bfp05,GEM/wiki_auto_asset_turk_challenge_test_asset_nopunc,GEM/wiki_auto_asset_turk_challenge_test_turk_backtranslation,GEM/wiki_auto_asset_turk_challenge_test_turk_bfp02,GEM/wiki_auto_asset_turk_challenge_test_turk_bfp05,GEM/wiki_auto_asset_turk_challenge_test_turk_nopunc,GEM/wiki_auto_asset_turk_test_asset,GEM/wiki_auto_asset_turk_test_turk,GEM/wiki_lingua_ar,GEM/wiki_lingua_cs,GEM/wiki_lingua_de,GEM/wiki_lingua_en,GEM/wiki_lingua_es,GEM/wiki_lingua_fr,GEM/wiki_lingua_hi,GEM/wiki_lingua_id,GEM/wiki_lingua_it,GEM/wiki_lingua_ja,GEM/wiki_lingua_ko,GEM/wiki_lingua_nl,GEM/wiki_lingua_pt,GEM/wiki_lingua_ru,GEM/wiki_lingua_th,GEM/wiki_lingua_tr,GEM/wiki_lingua_vi,GEM/wiki_lingua_zh,gem_xsum,gem_xsum_challenge_sample,gem_xsum_challenge_test_backtranslation,gem_xsum_challenge_test_bfp_02,gem_xsum_challenge_test_bfp_05,gem_xsum_challenge_test_covid,gem_xsum_challenge_test_nopunc \
|
31 |
+
python3 main.py --model hf-causal \
|
32 |
+
--model_args pretrained=hf-internal-testing/tiny-random-gpt2,use_accelerate=True,tokenizer=hf-internal-testing/tiny-random-gpt2,dtype=float16 \
|
33 |
+
--tasks wmt14_fr_en,wmt19_ru_en,wmt19_zh_en \
|
34 |
+
--device cuda \
|
35 |
+
--limit 1 \
|
36 |
+
--no_cache \
|
37 |
+
--num_fewshot 0
|
evaluation/results/tr13/lmeval/megdsbslmeval.slurm
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=tr13-base-eval
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
7 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
8 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
9 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --reservation=hug
|
14 |
+
|
15 |
+
set -x -e
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-muennighofflmeval
|
18 |
+
|
19 |
+
echo "START TIME: $(date)"
|
20 |
+
|
21 |
+
# a unique identifier for the current eval ideally correspnding to the modelname
|
22 |
+
VARIANT="tr13-base"
|
23 |
+
|
24 |
+
CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11f-6B3-ml/checkpoints/main/global_step163750
|
25 |
+
#CHECKPOINT_PATH=/gpfsscratch/rech/six/commun/checkpoints/tr13f-6B3-ml-t0/checkpoints/loss/global_step3100
|
26 |
+
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/megdsbslmeval/Megatron-DeepSpeed
|
27 |
+
export HF_DATASETS_OFFLINE=1
|
28 |
+
export TRANSFORMERS_OFFLINE=1
|
29 |
+
|
30 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
31 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasetseval
|
32 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
33 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
34 |
+
export TOKENIZERS_PARALLELISM=false
|
35 |
+
|
36 |
+
cd $MEGATRON_DEEPSPEED_REPO
|
37 |
+
|
38 |
+
TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles
|
39 |
+
|
40 |
+
PP_SIZE=1
|
41 |
+
TP_SIZE=1
|
42 |
+
SEQ_LEN=2048
|
43 |
+
|
44 |
+
# different from the training MICRO_BATCH_SIZE - no optim memory, so can do bigger BS
|
45 |
+
# make as big as it can fit into gpu w/o OOM, but not too close to 100%
|
46 |
+
EVAL_MICRO_BATCH_SIZE=1
|
47 |
+
|
48 |
+
#dummy arguments to make megatron happy.
|
49 |
+
MEGATRON_REQUIRED_ARGS=" \
|
50 |
+
--num-layers -1 \
|
51 |
+
--hidden-size -1 \
|
52 |
+
--num-attention-heads -1 \
|
53 |
+
--seq-length -1 \
|
54 |
+
--max-position-embeddings -1 \
|
55 |
+
"
|
56 |
+
|
57 |
+
|
58 |
+
ZERO_STAGE=0
|
59 |
+
|
60 |
+
config_json="./ds_config.json"
|
61 |
+
|
62 |
+
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
|
63 |
+
cat <<EOT > $config_json
|
64 |
+
{
|
65 |
+
"train_micro_batch_size_per_gpu": 1,
|
66 |
+
"train_batch_size": 1,
|
67 |
+
"gradient_clipping": 1.0,
|
68 |
+
"zero_optimization": {
|
69 |
+
"stage": $ZERO_STAGE
|
70 |
+
},
|
71 |
+
"bf16": {
|
72 |
+
"enabled": false
|
73 |
+
},
|
74 |
+
"steps_per_print": 2000,
|
75 |
+
"wall_clock_breakdown": false
|
76 |
+
}
|
77 |
+
EOT
|
78 |
+
|
79 |
+
|
80 |
+
# Only in evalharness:hellaswag ; winogrande
|
81 |
+
TASKS=(
|
82 |
+
anli_r1
|
83 |
+
anli_r2
|
84 |
+
anli_r3
|
85 |
+
cb
|
86 |
+
rte
|
87 |
+
wsc.fixed
|
88 |
+
wic
|
89 |
+
copa
|
90 |
+
xcopa_id
|
91 |
+
xcopa_sw
|
92 |
+
xcopa_ta
|
93 |
+
xcopa_vi
|
94 |
+
xcopa_zh
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
CMD="./tasks/eval_harness/evaluate_bsevalharness_prefix.py \
|
99 |
+
--load $CHECKPOINT_PATH \
|
100 |
+
--results_path $VARIANT-results.json \
|
101 |
+
--tensor-model-parallel-size $TP_SIZE \
|
102 |
+
--pipeline-model-parallel-size $PP_SIZE \
|
103 |
+
--tokenizer-type PretrainedFromHF \
|
104 |
+
--tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \
|
105 |
+
--micro-batch-size $EVAL_MICRO_BATCH_SIZE \
|
106 |
+
--no-load-optim \
|
107 |
+
--no-load-rng \
|
108 |
+
--eval_fp32 \
|
109 |
+
--inference \
|
110 |
+
--seq-length $SEQ_LEN \
|
111 |
+
--task_list ${TASKS[$SLURM_ARRAY_TASK_ID]} \
|
112 |
+
--deepspeed \
|
113 |
+
--deepspeed_config ds_config.json \
|
114 |
+
--intermed_results \
|
115 |
+
--adaptive_seq_len \
|
116 |
+
--micro_bs_multiplier 8 \
|
117 |
+
$MEGATRON_REQUIRED_ARGS \
|
118 |
+
"
|
119 |
+
|
120 |
+
GPUS_PER_NODE=1
|
121 |
+
NNODES=$SLURM_NNODES
|
122 |
+
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
123 |
+
MASTER_PORT=$((6000 + $SLURM_ARRAY_TASK_ID))
|
124 |
+
export LAUNCHER="python -u -m torch.distributed.run \
|
125 |
+
--nproc_per_node $GPUS_PER_NODE \
|
126 |
+
--nnodes $NNODES \
|
127 |
+
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
|
128 |
+
--rdzv_backend c10d \
|
129 |
+
--max_restarts 0 \
|
130 |
+
--tee 3 \
|
131 |
+
"
|
132 |
+
|
133 |
+
export CUDA_LAUNCH_BLOCKING=1
|
134 |
+
|
135 |
+
echo $LAUNCHER $CMD
|
136 |
+
|
137 |
+
export PYTHONPATH=$MEGATRON_DEEPSPEED_REPO
|
138 |
+
|
139 |
+
$LAUNCHER $CMD 2>&1 | tee $VARIANT-eval-harness.log
|
evaluation/results/tr13/lmeval/run_generation.slurm
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=evaluate_t0
|
3 |
+
#SBATCH --nodes=1
|
4 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
5 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
6 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
7 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
8 |
+
#SBATCH --constraint=a100
|
9 |
+
#SBATCH --reservation=hug
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --array=0-9
|
14 |
+
|
15 |
+
set -x -e
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
18 |
+
conda activate muennighofflmevalgen
|
19 |
+
|
20 |
+
echo "START TIME: $(date)"
|
21 |
+
|
22 |
+
# defining the right environment variables
|
23 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
24 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
25 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
26 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
27 |
+
export HF_DATASETS_OFFLINE=1
|
28 |
+
export TRANSFORMERS_OFFLINE=1
|
29 |
+
export TOKENIZERS_PARALLELISM=false
|
30 |
+
|
31 |
+
# Converted transformer checkpoint
|
32 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3t0/tr13f-6b3-ml-t0-lmtoks341b-t0toks13b-xp3capmixlossseq
|
33 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3t0/tr13f-6b3-ml-t0-lmtoks341b-t0toks13b-xp3capmix
|
34 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3/bloom-6b3
|
35 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3t0/tr13f-6b3-ml-t0-lmtoks341b-t0toks13b-p31
|
36 |
+
|
37 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bslmevalgeneration/lm-evaluation-harness
|
38 |
+
|
39 |
+
# WMT19 ZH-EN does not work
|
40 |
+
DATASETS_AND_CONFIGS=(
|
41 |
+
wmt19_zh_en,zh-en,"version-en-zh-target"
|
42 |
+
wmt19_zh_en,zh-en,"a_good_translation-en-zh-target"
|
43 |
+
wmt19_zh_en,zh-en,"a_good_translation-en-zh-source+target"
|
44 |
+
wmt19_zh_en,zh-en,"xglm-en-zh-target"
|
45 |
+
wmt19_zh_en,zh-en,"gpt3-en-zh"
|
46 |
+
wmt19_zh_en,zh-en,"version-zh-en-target"
|
47 |
+
wmt19_zh_en,zh-en,"a_good_translation-zh-en-target"
|
48 |
+
wmt19_zh_en,zh-en,"a_good_translation-zh-en-source+target"
|
49 |
+
wmt19_zh_en,zh-en,"xglm-zh-en-target"
|
50 |
+
wmt19_zh_en,zh-en,"gpt3-zh-en"
|
51 |
+
)
|
52 |
+
|
53 |
+
DATASETS_AND_CONFIGS=(
|
54 |
+
wmt14_fr_en,fr-en,"version-en-fr-target"
|
55 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-target"
|
56 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-source+target"
|
57 |
+
wmt14_fr_en,fr-en,"xglm-en-fr-target"
|
58 |
+
wmt14_fr_en,fr-en,"gpt3-en-fr"
|
59 |
+
wmt14_fr_en,fr-en,"version-fr-en-target"
|
60 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-target"
|
61 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-source+target"
|
62 |
+
wmt14_fr_en,fr-en,"xglm-fr-en-target"
|
63 |
+
wmt14_fr_en,fr-en,"gpt3-fr-en"
|
64 |
+
)
|
65 |
+
|
66 |
+
# Use --limit 3000
|
67 |
+
DATASETS_AND_CONFIGS=(
|
68 |
+
mlsum_es,"es","layman_summ_es"
|
69 |
+
mlsum_es,"es","palm_prompt"
|
70 |
+
mlsum_es,"es","summarise_this_in_es_few_sentences"
|
71 |
+
)
|
72 |
+
|
73 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
74 |
+
echo $ARGUMENT
|
75 |
+
|
76 |
+
IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
|
77 |
+
|
78 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
79 |
+
python main.py \
|
80 |
+
--model_api_name 'hf-causal' \
|
81 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=float16 \
|
82 |
+
--device cuda \
|
83 |
+
--batch_size 16 \
|
84 |
+
--no_tracking \
|
85 |
+
--task_name $dataset_name \
|
86 |
+
--template_names $template_name \
|
87 |
+
--bootstrap_iters 10 \
|
88 |
+
--limit 3000
|
89 |
+
|
90 |
+
echo "END TIME: $(date)"
|
evaluation/results/tr13/lmeval/run_generation_7b1.slurm
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=evaluate_t0
|
3 |
+
#SBATCH --nodes=1
|
4 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
5 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
6 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
7 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
8 |
+
#SBATCH --constraint=a100
|
9 |
+
#SBATCH --reservation=hug
|
10 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
11 |
+
#SBATCH --output=%x-%j.out # output file name
|
12 |
+
#SBATCH --account=six@a100
|
13 |
+
#SBATCH --array=0-2
|
14 |
+
|
15 |
+
set -x -e
|
16 |
+
|
17 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
18 |
+
conda activate muennighofflmevalgen
|
19 |
+
|
20 |
+
echo "START TIME: $(date)"
|
21 |
+
|
22 |
+
# defining the right environment variables
|
23 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
24 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
25 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
26 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
27 |
+
export HF_DATASETS_OFFLINE=1
|
28 |
+
export TRANSFORMERS_OFFLINE=1
|
29 |
+
export TOKENIZERS_PARALLELISM=false
|
30 |
+
|
31 |
+
# Converted transformer checkpoint
|
32 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3t0/tr13f-6b3-ml-t0-lmtoks341b-t0toks13b-xp3capmixnewcodelonglossseq
|
33 |
+
|
34 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/lm-evaluation-harness
|
35 |
+
|
36 |
+
|
37 |
+
DATASETS_AND_CONFIGS=(
|
38 |
+
wmt14_fr_en,fr-en,"version-en-fr-target"
|
39 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-target"
|
40 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-source+target"
|
41 |
+
wmt14_fr_en,fr-en,"xglm-en-fr-target"
|
42 |
+
wmt14_fr_en,fr-en,"gpt3-en-fr"
|
43 |
+
wmt14_fr_en,fr-en,"version-fr-en-target"
|
44 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-target"
|
45 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-source+target"
|
46 |
+
wmt14_fr_en,fr-en,"xglm-fr-en-target"
|
47 |
+
wmt14_fr_en,fr-en,"gpt3-fr-en"
|
48 |
+
)
|
49 |
+
|
50 |
+
DATASETS_AND_CONFIGS=(
|
51 |
+
wmt14_hi_en,hi-en,"version-en-hi-target"
|
52 |
+
wmt14_hi_en,hi-en,"a_good_translation-en-hi-target"
|
53 |
+
wmt14_hi_en,hi-en,"a_good_translation-en-hi-source+target"
|
54 |
+
wmt14_hi_en,hi-en,"xglm-en-hi-target"
|
55 |
+
wmt14_hi_en,hi-en,"gpt3-en-hi-target"
|
56 |
+
wmt14_hi_en,hi-en,"version-hi-en-target"
|
57 |
+
wmt14_hi_en,hi-en,"a_good_translation-hi-en-target"
|
58 |
+
wmt14_hi_en,hi-en,"a_good_translation-hi-en-source+target"
|
59 |
+
wmt14_hi_en,hi-en,"xglm-hi-en-target"
|
60 |
+
wmt14_hi_en,hi-en,"gpt3-hi-en-target"
|
61 |
+
)
|
62 |
+
|
63 |
+
DATASETS_AND_CONFIGS=(
|
64 |
+
mlsum_es,"es","layman_summ_es"
|
65 |
+
mlsum_es,"es","palm_prompt"
|
66 |
+
mlsum_es,"es","summarise_this_in_es_few_sentences"
|
67 |
+
)
|
68 |
+
|
69 |
+
DATASET_AND_CONFIG=${DATASETS_AND_CONFIGS[$SLURM_ARRAY_TASK_ID]}
|
70 |
+
echo $ARGUMENT
|
71 |
+
|
72 |
+
IFS=',' read dataset_name lang template_name <<< "${DATASET_AND_CONFIG}"
|
73 |
+
|
74 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
75 |
+
python main.py \
|
76 |
+
--model_api_name 'hf-causal' \
|
77 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=float16 \
|
78 |
+
--device cuda \
|
79 |
+
--batch_size 16 \
|
80 |
+
--no_tracking \
|
81 |
+
--task_name $dataset_name \
|
82 |
+
--template_names $template_name \
|
83 |
+
--bootstrap_iters 10 \
|
84 |
+
--limit 3000
|
85 |
+
|
86 |
+
echo "END TIME: $(date)"
|
evaluation/results/tr13/lmeval/transformersbslmeval.slurm
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=bseval-tr13f-6B3
|
3 |
+
#SBATCH --partition=gpu_p5
|
4 |
+
#SBATCH --constraint=a100
|
5 |
+
#SBATCH --reservation=hug
|
6 |
+
#SBATCH --qos=qos_gpu-gc # up to 100h
|
7 |
+
#SBATCH --nodes=1
|
8 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
9 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
10 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
11 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
12 |
+
#SBATCH --time 100:00:00 # maximum execution time (HH:MM:SS)
|
13 |
+
#SBATCH --output=%x-%j.out # output file name
|
14 |
+
#SBATCH --account=six@a100
|
15 |
+
|
16 |
+
set -x -e
|
17 |
+
|
18 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
19 |
+
conda activate muennighofflmeval
|
20 |
+
|
21 |
+
echo "START TIME: $(date)"
|
22 |
+
|
23 |
+
# defining the right environment variables
|
24 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
25 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
26 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
27 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
28 |
+
export HF_DATASETS_OFFLINE=1
|
29 |
+
export TRANSFORMERS_OFFLINE=1
|
30 |
+
|
31 |
+
# Converted transformer checkpoint
|
32 |
+
#MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3t0/tr13f-6B3-ml-t0-lmtoks168B-t0toks8b5
|
33 |
+
#MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3t0/tr13f-6B3-ml-t0-lmtoks168B-t0toks0
|
34 |
+
MODEL_CKPT=/gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/6b3t0/tr13f-6b3-ml-t0-lmtoks168b-t0toks13b
|
35 |
+
|
36 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/bloomckpt/lm-evaluation-harness
|
37 |
+
|
38 |
+
# GEM/wiki_lingua_es has 5 prompts
|
39 |
+
NUM_TASKS=5
|
40 |
+
|
41 |
+
|
42 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
43 |
+
python3 main.py --model hf-causal \
|
44 |
+
--model_args pretrained=$MODEL_CKPT,use_accelerate=True,tokenizer=$MODEL_CKPT,dtype=float16 \
|
45 |
+
--tasks GEM/wiki_lingua_es \
|
46 |
+
--device cuda \
|
47 |
+
--batch_size 16 \
|
48 |
+
--no_cache \
|
49 |
+
--no_tracking \
|
50 |
+
--prompts $SLURM_ARRAY_TASK_ID \
|
51 |
+
--num_fewshot 0
|
52 |
+
|
53 |
+
echo "END TIME: $(date)"
|
evaluation/results/tr13/tzeroeval/convert_validation_176b.slurm
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=ckpts
|
3 |
+
#SBATCH --ntasks=1 # number of MP tasks
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
6 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
7 |
+
#SBATCH --time=20:00:00 # maximum execution time (HH:MM:SS)
|
8 |
+
#SBATCH --output=%x-%j.out # output file name
|
9 |
+
#SBATCH --account=six@cpu
|
10 |
+
#SBATCH --partition=cpu_p1
|
11 |
+
|
12 |
+
set -x -e
|
13 |
+
|
14 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
15 |
+
export HF_DATASETS_OFFLINE=1
|
16 |
+
export TRANSFORMERS_OFFLINE=1
|
17 |
+
conda activate muennighoffmodelconv
|
18 |
+
|
19 |
+
#CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13-176B-ml-t0/checkpoints/xp3zzlossseq
|
20 |
+
CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13-176B-ml-t0/checkpoints/p31lossseq
|
21 |
+
#CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13-176B-ml-t0/checkpoints/xp3capmixnewcodelonglossseq
|
22 |
+
|
23 |
+
CKPTS=(
|
24 |
+
global_step249
|
25 |
+
global_step498
|
26 |
+
global_step747
|
27 |
+
global_step996
|
28 |
+
global_step1245
|
29 |
+
global_step1494
|
30 |
+
global_step1743
|
31 |
+
global_step1992
|
32 |
+
global_step2241
|
33 |
+
)
|
34 |
+
EXAMPLE_CKPT=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/176bt0/tr13-176b-ml-t0-lmtoks341b-t0toks13b-xp3capmixnewcodelonglossseq
|
35 |
+
DUMP_PATH=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/176bt0
|
36 |
+
|
37 |
+
#OUT_PREFIX=xp3zzlossseq_
|
38 |
+
OUT_PREFIX=p31lossseq_
|
39 |
+
#OUT_PREFIX=xp3capmixnewcodelonglossseq_
|
40 |
+
|
41 |
+
TP=1
|
42 |
+
|
43 |
+
### CONVERT ###
|
44 |
+
|
45 |
+
|
46 |
+
for i in {0..8}; do
|
47 |
+
CKPT=${CKPTS[$i]}
|
48 |
+
echo "$i"
|
49 |
+
echo "Running $CKPT"
|
50 |
+
|
51 |
+
OUTPUTCKPT=$DUMP_PATH/"$OUT_PREFIX$CKPT"
|
52 |
+
mkdir -p $OUTPUTCKPT
|
53 |
+
python $six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/transformers_clone/src/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py --pytorch_dump_folder_path $OUTPUTCKPT --bloom_checkpoint_path $CKPT_PATH/$CKPT --pretraining_tp $TP --bloom_config_file $EXAMPLE_CKPT/config.json --shard_model
|
54 |
+
|
55 |
+
# Copy tokenizer.json etc
|
56 |
+
cp -r $EXAMPLE_CKPT/*.json $OUTPUTCKPT/
|
57 |
+
|
58 |
+
# Use model prior to finetuning
|
59 |
+
#OUTPUTCKPT=/gpfsscratch/rech/six/commun/uan68tv-model-conversion/bloom
|
60 |
+
|
61 |
+
eval_script="./eval_$i.slurm"
|
62 |
+
cat <<EOT > $eval_script
|
63 |
+
#!/bin/bash
|
64 |
+
#SBATCH --job-name=evaluate_t0
|
65 |
+
#SBATCH --nodes=1
|
66 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
67 |
+
#SBATCH --cpus-per-task=64 # number of cores per tasks
|
68 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
69 |
+
#SBATCH --gres=gpu:8 # number of gpus
|
70 |
+
#SBATCH --constraint=a100
|
71 |
+
#SBATCH --reservation=hug
|
72 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
73 |
+
#SBATCH --output=%x-%j.out # output file name
|
74 |
+
#SBATCH --account=six@a100
|
75 |
+
#SBATCH --array=0-155
|
76 |
+
|
77 |
+
set -x -e
|
78 |
+
|
79 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
80 |
+
conda activate thomas_t_zero_evaluation
|
81 |
+
|
82 |
+
CHECKPOINT_PATH=$OUTPUTCKPT
|
83 |
+
|
84 |
+
WORKDIR=/gpfswork/rech/six/commun/code/tr13f-6B3-ml-t0
|
85 |
+
pushd "\$WORKDIR"
|
86 |
+
OUTPUT_DIR="\$CHECKPOINT_PATH/evaluation"
|
87 |
+
mkdir -p "\$OUTPUT_DIR"
|
88 |
+
|
89 |
+
# Validation
|
90 |
+
DATASETS_AND_CONFIGS_VAL=(
|
91 |
+
head_qa,en,en,"multiple_choice_q_and_a_index_with_context_en",validation
|
92 |
+
head_qa,en,en,"multiple_choice_q_and_a_en",validation
|
93 |
+
head_qa,en,en,"multiple_choice_q_and_a_index_en",validation
|
94 |
+
head_qa,en,en,"multiple_choice_a_and_q_with_context_en",validation
|
95 |
+
head_qa,en,en,"multiple_choice_a_and_q_en",validation
|
96 |
+
head_qa,es,en,"multiple_choice_q_and_a_index_with_context_en",validation
|
97 |
+
head_qa,es,en,"multiple_choice_q_and_a_en",validation
|
98 |
+
head_qa,es,en,"multiple_choice_q_and_a_index_en",validation
|
99 |
+
head_qa,es,en,"multiple_choice_a_and_q_with_context_en",validation
|
100 |
+
head_qa,es,en,"multiple_choice_a_and_q_en",validation
|
101 |
+
climate_fever,None,None,"first_evidence_and_claim_itemization",test
|
102 |
+
climate_fever,None,None,"claim_and_all_supporting_evidences",test
|
103 |
+
climate_fever,None,None,"fifth_evidence_and_claim_itemization",test
|
104 |
+
climate_fever,None,None,"third_evidence_claim_pair",test
|
105 |
+
climate_fever,None,None,"second_evidence_and_claim_itemization",test
|
106 |
+
codah,codah,None,"interrogative_instruction_after_sentence_and_choices",train
|
107 |
+
codah,codah,None,"affirmative_instruction_before_sentence_and_choices",train
|
108 |
+
codah,codah,None,"affirmative_instruction_after_sentence_and_choices",train
|
109 |
+
aqua_rat,raw,None,"select_the_best_option",validation
|
110 |
+
aqua_rat,raw,None,"answer_quiz",validation
|
111 |
+
aqua_rat,raw,None,"Answer questions from options",validation
|
112 |
+
commonsense_qa,None,None,"answer_given_question_without_options",validation
|
113 |
+
commonsense_qa,None,None,"question_answering",validation
|
114 |
+
commonsense_qa,None,None,"most_suitable_answer",validation
|
115 |
+
amazon_reviews_multi,en,en,"prompt_title_to_star",validation
|
116 |
+
amazon_reviews_multi,en,en,"prompt_review_to_star",validation
|
117 |
+
amazon_reviews_multi,en,en,"prompt_body_title_to_star",validation
|
118 |
+
amazon_reviews_multi,zh,en,"prompt_title_to_star",validation
|
119 |
+
amazon_reviews_multi,zh,en,"prompt_review_to_star",validation
|
120 |
+
amazon_reviews_multi,zh,en,"prompt_body_title_to_star",validation
|
121 |
+
amazon_reviews_multi,fr,en,"prompt_title_to_star",validation
|
122 |
+
amazon_reviews_multi,fr,en,"prompt_review_to_star",validation
|
123 |
+
amazon_reviews_multi,fr,en,"prompt_body_title_to_star",validation
|
124 |
+
amazon_reviews_multi,es,en,"prompt_title_to_star",validation
|
125 |
+
amazon_reviews_multi,es,en,"prompt_review_to_star",validation
|
126 |
+
amazon_reviews_multi,es,en,"prompt_body_title_to_star",validation
|
127 |
+
art,None,None,"choose_hypothesis_options",validation
|
128 |
+
art,None,None,"choose_hypothesis_believable",validation
|
129 |
+
art,None,None,"choose_hypothesis",validation
|
130 |
+
art,None,None,"choose_hypothesis_desc",validation
|
131 |
+
art,None,None,"choose_hypothesis_likely",validation
|
132 |
+
banking77,None,None,"help_page_topic",test
|
133 |
+
banking77,None,None,"direct_to_which_department",test
|
134 |
+
banking77,None,None,"rephrase_as_banking_term",test
|
135 |
+
blbooksgenre,title_genre_classifiction,None,"multi-choice",train
|
136 |
+
blbooksgenre,title_genre_classifiction,None,"premise_context_first",train
|
137 |
+
blbooksgenre,title_genre_classifiction,None,"classify",train
|
138 |
+
blimp,adjunct_island,None,"grammatical_between_1_2",train
|
139 |
+
blimp,adjunct_island,None,"grammatical_between_A_B",train
|
140 |
+
blimp,adjunct_island,None,"grammatical_which_one_1_2",train
|
141 |
+
blimp,adjunct_island,None,"single_sentence_bad_yes_no",train
|
142 |
+
blimp,adjunct_island,None,"single_sentence_good_yes_no",train
|
143 |
+
conv_ai_3,None,None,"clarification_needed",validation
|
144 |
+
conv_ai_3,None,None,"score_give_number",validation
|
145 |
+
conv_ai_3,None,None,"ambiguous",validation
|
146 |
+
conv_ai_3,None,None,"directly_answer",validation
|
147 |
+
conv_ai_3,None,None,"score_how_much",validation
|
148 |
+
craigslist_bargains,None,None,"good deal for seller no list price implicit",validation
|
149 |
+
craigslist_bargains,None,None,"good deal for seller no list price",validation
|
150 |
+
craigslist_bargains,None,None,"good deal for seller",validation
|
151 |
+
craigslist_bargains,None,None,"best deal",validation
|
152 |
+
ecthr_cases,alleged-violation-prediction,None,"implicit_advice_number",validation
|
153 |
+
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_declaration_at_end",validation
|
154 |
+
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_question_at_start",validation
|
155 |
+
ecthr_cases,alleged-violation-prediction,None,"implicit_judgment_paragraph",validation
|
156 |
+
ecthr_cases,alleged-violation-prediction,None,"confirm number of violated articles",validation
|
157 |
+
emo,None,None,"persons_describe",validation
|
158 |
+
emo,None,None,"final_message",validation
|
159 |
+
emo,None,None,"what_emotion_do_you_think",validation
|
160 |
+
emo,None,None,"emotional_state",validation
|
161 |
+
emo,None,None,"dialogue_between",validation
|
162 |
+
emotion,None,None,"choose_the_best_emotion_label",test
|
163 |
+
emotion,None,None,"reply_with_emoation_label",test
|
164 |
+
emotion,None,None,"answer_with_class_label",test
|
165 |
+
emotion,None,None,"answer_question_with_emotion_label",test
|
166 |
+
financial_phrasebank,sentences_allagree,None,"share_price_option",train
|
167 |
+
financial_phrasebank,sentences_allagree,None,"sentiment",train
|
168 |
+
financial_phrasebank,sentences_allagree,None,"word_comes_to_mind",train
|
169 |
+
financial_phrasebank,sentences_allagree,None,"complementary_industries",train
|
170 |
+
financial_phrasebank,sentences_allagree,None,"bullish_neutral_bearish",train
|
171 |
+
glue,cola,None,"Make sense yes no",validation
|
172 |
+
glue,cola,None,"is_this_correct",validation
|
173 |
+
glue,cola,None,"editing",validation
|
174 |
+
glue,cola,None,"Following sentence acceptable",validation
|
175 |
+
glue,cola,None,"Previous sentence acceptable",validation
|
176 |
+
glue,sst2,None,"positive negative after",validation
|
177 |
+
glue,sst2,None,"review",validation
|
178 |
+
glue,sst2,None,"said",validation
|
179 |
+
glue,sst2,None,"following positive negative",validation
|
180 |
+
glue,sst2,None,"happy or mad",validation
|
181 |
+
health_fact,None,None,"claim_veracity_classification_after_reading_I_believe",validation
|
182 |
+
health_fact,None,None,"claim_explanation_classification",validation
|
183 |
+
health_fact,None,None,"claim_veracity_classification_tell_me",validation
|
184 |
+
hlgd,None,None,"is_same_event_with_time_interrogative_related",validation
|
185 |
+
hlgd,None,None,"is_same_event_interrogative_talk",validation
|
186 |
+
hlgd,None,None,"is_same_event_with_time_interrogative_talk",validation
|
187 |
+
hlgd,None,None,"is_same_event_refer",validation
|
188 |
+
hlgd,None,None,"is_same_event_editor_asks",validation
|
189 |
+
hyperpartisan_news_detection,byarticle,None,"consider_does_it_follow_a_hyperpartisan_argumentation",train
|
190 |
+
hyperpartisan_news_detection,byarticle,None,"follows_hyperpartisan_argumentation",train
|
191 |
+
hyperpartisan_news_detection,byarticle,None,"consume_with_caution",train
|
192 |
+
hyperpartisan_news_detection,byarticle,None,"extreme_left_wing_or_right_wing",train
|
193 |
+
hyperpartisan_news_detection,byarticle,None,"consider_it_exhibits_extreme_one_sidedness",train
|
194 |
+
liar,None,None,"Given statement guess category",validation
|
195 |
+
lince,sa_spaeng,None,"original poster expressed sentiment",validation
|
196 |
+
lince,sa_spaeng,None,"sentiment trying to express",validation
|
197 |
+
lince,sa_spaeng,None,"express sentiment",validation
|
198 |
+
lince,sa_spaeng,None,"negation template",validation
|
199 |
+
lince,sa_spaeng,None,"the author seem",validation
|
200 |
+
math_qa,None,None,"choose_correct_og",test
|
201 |
+
math_qa,None,None,"pick_the_correct",test
|
202 |
+
math_qa,None,None,"first_choice_then_problem",test
|
203 |
+
math_qa,None,None,"problem_set_type",test
|
204 |
+
math_qa,None,None,"gre_problem",test
|
205 |
+
movie_rationales,None,None,"Standard binary sentiment analysis",validation
|
206 |
+
movie_rationales,None,None,"Evidences sentiment classification",validation
|
207 |
+
movie_rationales,None,None,"Evidences + review",validation
|
208 |
+
movie_rationales,None,None,"Generate evidences and sentiment",validation
|
209 |
+
mwsc,None,None,"in-the-sentence-question-first",validation
|
210 |
+
mwsc,None,None,"what-think",validation
|
211 |
+
mwsc,None,None,"in-the-sentence",validation
|
212 |
+
mwsc,None,None,"options-or",validation
|
213 |
+
mwsc,None,None,"is-correct",validation
|
214 |
+
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_2",validation
|
215 |
+
poem_sentiment,None,None,"question_answer_format",validation
|
216 |
+
poem_sentiment,None,None,"guess_sentiment_without_options_variation_1",validation
|
217 |
+
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_1",validation
|
218 |
+
poem_sentiment,None,None,"most_appropriate_sentiment",validation
|
219 |
+
onestop_english,None,None,"esl_context",train
|
220 |
+
onestop_english,None,None,"ara_context",train
|
221 |
+
onestop_english,None,None,"determine_reading_level_from_the_first_three_sentences",train
|
222 |
+
onestop_english,None,None,"esl_variation",train
|
223 |
+
onestop_english,None,None,"assess",train
|
224 |
+
pubmed_qa,pqa_labeled,None,"Long Answer to Final Decision",train
|
225 |
+
pubmed_qa,pqa_labeled,None,"Question Answering (Short)",train
|
226 |
+
riddle_sense,None,None,"most_suitable_answer",validation
|
227 |
+
riddle_sense,None,None,"answer_given_question_without_options",validation
|
228 |
+
riddle_sense,None,None,"question_to_answer_index",validation
|
229 |
+
riddle_sense,None,None,"question_answering",validation
|
230 |
+
scicite,None,None,"Classify intent w/section (select choice)",validation
|
231 |
+
scicite,None,None,"Classify intent (choices first)",validation
|
232 |
+
scicite,None,None,"Classify intent (select choice)",validation
|
233 |
+
scicite,None,None,"Classify intent",validation
|
234 |
+
scicite,None,None,"can_describe",validation
|
235 |
+
selqa,answer_selection_analysis,None,"is-he-talking-about",validation
|
236 |
+
selqa,answer_selection_analysis,None,"would-make-sense-qu-rand",validation
|
237 |
+
selqa,answer_selection_analysis,None,"make-sense-rand",validation
|
238 |
+
selqa,answer_selection_analysis,None,"which-answer-1st-vs-random",validation
|
239 |
+
snips_built_in_intents,None,None,"voice_intent",train
|
240 |
+
snips_built_in_intents,None,None,"categorize_query",train
|
241 |
+
snips_built_in_intents,None,None,"intent_query",train
|
242 |
+
snips_built_in_intents,None,None,"categorize_query_brief",train
|
243 |
+
snips_built_in_intents,None,None,"query_intent",train
|
244 |
+
)
|
245 |
+
|
246 |
+
DATASETS_AND_CONFIGS_VAL=(
|
247 |
+
amazon_reviews_multi,en,en,"prompt_title_to_star",validation
|
248 |
+
amazon_reviews_multi,en,en,"prompt_review_to_star",validation
|
249 |
+
amazon_reviews_multi,en,en,"prompt_body_title_to_star",validation
|
250 |
+
amazon_reviews_multi,zh,en,"prompt_title_to_star",validation
|
251 |
+
amazon_reviews_multi,zh,en,"prompt_review_to_star",validation
|
252 |
+
amazon_reviews_multi,zh,en,"prompt_body_title_to_star",validation
|
253 |
+
amazon_reviews_multi,fr,en,"prompt_title_to_star",validation
|
254 |
+
amazon_reviews_multi,fr,en,"prompt_review_to_star",validation
|
255 |
+
amazon_reviews_multi,fr,en,"prompt_body_title_to_star",validation
|
256 |
+
amazon_reviews_multi,es,en,"prompt_title_to_star",validation
|
257 |
+
amazon_reviews_multi,es,en,"prompt_review_to_star",validation
|
258 |
+
amazon_reviews_multi,es,en,"prompt_body_title_to_star",validation
|
259 |
+
)
|
260 |
+
|
261 |
+
|
262 |
+
DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS_VAL[\$SLURM_ARRAY_TASK_ID]}"
|
263 |
+
echo "\$ARGUMENT"
|
264 |
+
|
265 |
+
# Run T0 evaluation
|
266 |
+
# For PrefixLM add --prefixlm
|
267 |
+
IFS=',' read dataset_name dataset_config_name template_config_name template_name split <<< "\${DATASET_AND_CONFIG}"
|
268 |
+
python t-zero/evaluation/run_eval.py \
|
269 |
+
--dataset_name "\$dataset_name" \
|
270 |
+
--dataset_config_name "\$dataset_config_name" \
|
271 |
+
--template_config_name "\$template_config_name" \
|
272 |
+
--template_name "\$template_name" \
|
273 |
+
--split "\$split" \
|
274 |
+
--model_name_or_path "\$CHECKPOINT_PATH" \
|
275 |
+
--output_dir "\$OUTPUT_DIR" \
|
276 |
+
--per_device_eval_batch_size 4 \
|
277 |
+
--max_length 2048 \
|
278 |
+
--dtype bfloat16
|
279 |
+
EOT
|
280 |
+
|
281 |
+
sbatch $eval_script
|
282 |
+
|
283 |
+
|
284 |
+
lm_eval_script="./lm_eval_$i.slurm"
|
285 |
+
cat <<EOT > $lm_eval_script
|
286 |
+
#!/bin/bash
|
287 |
+
#SBATCH --job-name=lmeval
|
288 |
+
#SBATCH --nodes=1
|
289 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
290 |
+
#SBATCH --cpus-per-task=64 # number of cores per tasks
|
291 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
292 |
+
#SBATCH --gres=gpu:8 # number of gpus
|
293 |
+
#SBATCH --constraint=a100
|
294 |
+
#SBATCH --reservation=hug
|
295 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
296 |
+
#SBATCH --output=%x-%j.out # output file name
|
297 |
+
#SBATCH --account=six@a100
|
298 |
+
#SBATCH --array=0-12
|
299 |
+
|
300 |
+
set -x -e
|
301 |
+
|
302 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
303 |
+
conda activate muennighofflmevalgen
|
304 |
+
|
305 |
+
echo "START TIME: $(date)"
|
306 |
+
|
307 |
+
# defining the right environment variables
|
308 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
309 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
310 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
311 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
312 |
+
export HF_DATASETS_OFFLINE=1
|
313 |
+
export TRANSFORMERS_OFFLINE=1
|
314 |
+
export TOKENIZERS_PARALLELISM=false
|
315 |
+
|
316 |
+
# Converted transformer checkpoint
|
317 |
+
MODEL_CKPT=$OUTPUTCKPT
|
318 |
+
|
319 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/lm-evaluation-harness
|
320 |
+
|
321 |
+
|
322 |
+
DATASETS_AND_CONFIGS=(
|
323 |
+
wmt14_fr_en,fr-en,"version-en-fr-target"
|
324 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-target"
|
325 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-source+target"
|
326 |
+
wmt14_fr_en,fr-en,"xglm-en-fr-target"
|
327 |
+
wmt14_fr_en,fr-en,"gpt3-en-fr"
|
328 |
+
wmt14_fr_en,fr-en,"version-fr-en-target"
|
329 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-target"
|
330 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-source+target"
|
331 |
+
wmt14_fr_en,fr-en,"xglm-fr-en-target"
|
332 |
+
wmt14_fr_en,fr-en,"gpt3-fr-en"
|
333 |
+
wmt14_hi_en,hi-en,"version-en-hi-target"
|
334 |
+
wmt14_hi_en,hi-en,"a_good_translation-en-hi-target"
|
335 |
+
wmt14_hi_en,hi-en,"a_good_translation-en-hi-source+target"
|
336 |
+
wmt14_hi_en,hi-en,"xglm-en-hi-target"
|
337 |
+
wmt14_hi_en,hi-en,"gpt-3-en-hi-target"
|
338 |
+
wmt14_hi_en,hi-en,"version-hi-en-target"
|
339 |
+
wmt14_hi_en,hi-en,"a_good_translation-hi-en-target"
|
340 |
+
wmt14_hi_en,hi-en,"a_good_translation-hi-en-source+target"
|
341 |
+
wmt14_hi_en,hi-en,"xglm-hi-en-target"
|
342 |
+
wmt14_hi_en,hi-en,"gpt-3-hi-en-target"
|
343 |
+
mlsum_es,"es","layman_summ_es"
|
344 |
+
mlsum_es,"es","palm_prompt"
|
345 |
+
mlsum_es,"es","summarise_this_in_es_few_sentences"
|
346 |
+
)
|
347 |
+
|
348 |
+
DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS[\$SLURM_ARRAY_TASK_ID]}"
|
349 |
+
echo "\$ARGUMENT"
|
350 |
+
|
351 |
+
IFS=',' read dataset_name lang template_name <<< "\${DATASET_AND_CONFIG}"
|
352 |
+
|
353 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
354 |
+
python main.py \
|
355 |
+
--model_api_name 'hf-causal' \
|
356 |
+
--model_args "pretrained=\$MODEL_CKPT,use_accelerate=True,tokenizer=\$MODEL_CKPT,dtype=bfloat16" \
|
357 |
+
--device cuda \
|
358 |
+
--batch_size 4 \
|
359 |
+
--no_tracking \
|
360 |
+
--task_name "\$dataset_name" \
|
361 |
+
--template_names "\$template_name" \
|
362 |
+
--bootstrap_iters 10 \
|
363 |
+
--limit 3000
|
364 |
+
|
365 |
+
mkdir -p "$OUTPUTCKPT/evaluation/\$dataset_name"
|
366 |
+
mv /gpfsscratch/rech/six/commun/experiments/muennighoff/lm-evaluation-harness/outputs/*$CKPT*\$dataset_name* "$OUTPUTCKPT/evaluation/\$dataset_name/"
|
367 |
+
|
368 |
+
echo "END TIME: $(date)"
|
369 |
+
EOT
|
370 |
+
|
371 |
+
sbatch $lm_eval_script
|
372 |
+
|
373 |
+
done
|
evaluation/results/tr13/tzeroeval/convert_validation_1b3.slurm
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=ckpts
|
3 |
+
#SBATCH --ntasks=1 # number of MP tasks
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
6 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
7 |
+
#SBATCH --time=20:00:00 # maximum execution time (HH:MM:SS)
|
8 |
+
#SBATCH --output=%x-%j.out # output file name
|
9 |
+
#SBATCH --account=ajs@cpu
|
10 |
+
#SBATCH --partition=cpu_p1
|
11 |
+
|
12 |
+
set -x -e
|
13 |
+
|
14 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
15 |
+
export HF_DATASETS_OFFLINE=1
|
16 |
+
export TRANSFORMERS_OFFLINE=1
|
17 |
+
conda activate muennighoffmodelconv
|
18 |
+
|
19 |
+
CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13b-1B3-ml-t0/checkpoints/xp3capmixnewcodelonglossseq
|
20 |
+
#CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13f-6B3-ml-t0/checkpoints/p31lossseq
|
21 |
+
|
22 |
+
CKPTS=(
|
23 |
+
global_step250
|
24 |
+
global_step500
|
25 |
+
global_step750
|
26 |
+
global_step1000
|
27 |
+
global_step1250
|
28 |
+
global_step1500
|
29 |
+
global_step1750
|
30 |
+
global_step2000
|
31 |
+
global_step2250
|
32 |
+
global_step2500
|
33 |
+
global_step2750
|
34 |
+
global_step3000
|
35 |
+
)
|
36 |
+
EXAMPLE_CKPT=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/1b3/bloom-1b7
|
37 |
+
DUMP_PATH=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/1b3t0
|
38 |
+
OUT_PREFIX=xp3capmixlossseq_
|
39 |
+
#OUT_PREFIX=p31lossseq
|
40 |
+
|
41 |
+
TP=1
|
42 |
+
|
43 |
+
### CONVERT ###
|
44 |
+
|
45 |
+
|
46 |
+
for i in {0..11}; do
|
47 |
+
CKPT=${CKPTS[$i]}
|
48 |
+
echo "$i"
|
49 |
+
echo "Running $CKPT"
|
50 |
+
|
51 |
+
OUTPUTCKPT=$DUMP_PATH/"$OUT_PREFIX$CKPT"
|
52 |
+
python $six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/transformers_clone/src/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py --pytorch_dump_folder_path $OUTPUTCKPT --bloom_checkpoint_path $CKPT_PATH/$CKPT --pretraining_tp $TP --bloom_config_file $EXAMPLE_CKPT/config.json
|
53 |
+
|
54 |
+
# Copy tokenizer.json etc
|
55 |
+
cp -r $EXAMPLE_CKPT/*.json $OUTPUTCKPT/
|
56 |
+
|
57 |
+
eval_script="./eval_$i.slurm"
|
58 |
+
cat <<EOT > $eval_script
|
59 |
+
#!/bin/bash
|
60 |
+
#SBATCH --job-name=evaluate_t0
|
61 |
+
#SBATCH --nodes=1
|
62 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
63 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
64 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
65 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
66 |
+
#SBATCH --constraint=a100
|
67 |
+
#SBATCH --time 5:00:00 # maximum execution time (HH:MM:SS)
|
68 |
+
#SBATCH --output=%x-%j.out # output file name
|
69 |
+
#SBATCH --account=six@a100
|
70 |
+
#SBATCH --array=0-168
|
71 |
+
|
72 |
+
set -x -e
|
73 |
+
|
74 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
75 |
+
conda activate muennighofflmevalgen
|
76 |
+
|
77 |
+
CHECKPOINT_PATH=$OUTPUTCKPT
|
78 |
+
|
79 |
+
WORKDIR=/gpfswork/rech/six/commun/code/tr13f-6B3-ml-t0
|
80 |
+
pushd "\$WORKDIR"
|
81 |
+
OUTPUT_DIR="\$CHECKPOINT_PATH/evaluation"
|
82 |
+
mkdir -p "\$OUTPUT_DIR"
|
83 |
+
|
84 |
+
# Validation
|
85 |
+
DATASETS_AND_CONFIGS_VAL=(
|
86 |
+
head_qa,en,en,"multiple_choice_q_and_a_index_with_context_en",validation
|
87 |
+
head_qa,en,en,"multiple_choice_q_and_a_en",validation
|
88 |
+
head_qa,en,en,"multiple_choice_q_and_a_index_en",validation
|
89 |
+
head_qa,en,en,"multiple_choice_a_and_q_with_context_en",validation
|
90 |
+
head_qa,en,en,"multiple_choice_a_and_q_en",validation
|
91 |
+
head_qa,es,en,"multiple_choice_q_and_a_index_with_context_en",validation
|
92 |
+
head_qa,es,en,"multiple_choice_q_and_a_en",validation
|
93 |
+
head_qa,es,en,"multiple_choice_q_and_a_index_en",validation
|
94 |
+
head_qa,es,en,"multiple_choice_a_and_q_with_context_en",validation
|
95 |
+
head_qa,es,en,"multiple_choice_a_and_q_en",validation
|
96 |
+
climate_fever,None,None,"first_evidence_and_claim_itemization",test
|
97 |
+
climate_fever,None,None,"claim_and_all_supporting_evidences",test
|
98 |
+
climate_fever,None,None,"fifth_evidence_and_claim_itemization",test
|
99 |
+
climate_fever,None,None,"third_evidence_claim_pair",test
|
100 |
+
climate_fever,None,None,"second_evidence_and_claim_itemization",test
|
101 |
+
codah,codah,None,"interrogative_instruction_after_sentence_and_choices",train
|
102 |
+
codah,codah,None,"affirmative_instruction_before_sentence_and_choices",train
|
103 |
+
codah,codah,None,"affirmative_instruction_after_sentence_and_choices",train
|
104 |
+
aqua_rat,raw,None,"select_the_best_option",validation
|
105 |
+
aqua_rat,raw,None,"answer_quiz",validation
|
106 |
+
aqua_rat,raw,None,"Answer questions from options",validation
|
107 |
+
commonsense_qa,None,None,"answer_given_question_without_options",validation
|
108 |
+
commonsense_qa,None,None,"question_answering",validation
|
109 |
+
commonsense_qa,None,None,"most_suitable_answer",validation
|
110 |
+
amazon_reviews_multi,en,en,"prompt_title_to_star",validation
|
111 |
+
amazon_reviews_multi,en,en,"prompt_review_to_star",validation
|
112 |
+
amazon_reviews_multi,en,en,"prompt_body_title_to_star",validation
|
113 |
+
amazon_reviews_multi,zh,en,"prompt_title_to_star",validation
|
114 |
+
amazon_reviews_multi,zh,en,"prompt_review_to_star",validation
|
115 |
+
amazon_reviews_multi,zh,en,"prompt_body_title_to_star",validation
|
116 |
+
amazon_reviews_multi,fr,en,"prompt_title_to_star",validation
|
117 |
+
amazon_reviews_multi,fr,en,"prompt_review_to_star",validation
|
118 |
+
amazon_reviews_multi,fr,en,"prompt_body_title_to_star",validation
|
119 |
+
amazon_reviews_multi,es,en,"prompt_title_to_star",validation
|
120 |
+
amazon_reviews_multi,es,en,"prompt_review_to_star",validation
|
121 |
+
amazon_reviews_multi,es,en,"prompt_body_title_to_star",validation
|
122 |
+
art,None,None,"choose_hypothesis_options",validation
|
123 |
+
art,None,None,"choose_hypothesis_believable",validation
|
124 |
+
art,None,None,"choose_hypothesis",validation
|
125 |
+
art,None,None,"choose_hypothesis_desc",validation
|
126 |
+
art,None,None,"choose_hypothesis_likely",validation
|
127 |
+
banking77,None,None,"help_page_topic",test
|
128 |
+
banking77,None,None,"direct_to_which_department",test
|
129 |
+
banking77,None,None,"rephrase_as_banking_term",test
|
130 |
+
blbooksgenre,title_genre_classifiction,None,"multi-choice",train
|
131 |
+
blbooksgenre,title_genre_classifiction,None,"premise_context_first",train
|
132 |
+
blbooksgenre,title_genre_classifiction,None,"classify",train
|
133 |
+
blimp,adjunct_island,None,"grammatical_between_1_2",train
|
134 |
+
blimp,adjunct_island,None,"grammatical_between_A_B",train
|
135 |
+
blimp,adjunct_island,None,"grammatical_which_one_1_2",train
|
136 |
+
blimp,adjunct_island,None,"single_sentence_bad_yes_no",train
|
137 |
+
blimp,adjunct_island,None,"single_sentence_good_yes_no",train
|
138 |
+
conv_ai_3,None,None,"clarification_needed",validation
|
139 |
+
conv_ai_3,None,None,"score_give_number",validation
|
140 |
+
conv_ai_3,None,None,"ambiguous",validation
|
141 |
+
conv_ai_3,None,None,"directly_answer",validation
|
142 |
+
conv_ai_3,None,None,"score_how_much",validation
|
143 |
+
craigslist_bargains,None,None,"good deal for seller no list price implicit",validation
|
144 |
+
craigslist_bargains,None,None,"good deal for seller no list price",validation
|
145 |
+
craigslist_bargains,None,None,"good deal for seller",validation
|
146 |
+
craigslist_bargains,None,None,"best deal",validation
|
147 |
+
ecthr_cases,alleged-violation-prediction,None,"implicit_advice_number",validation
|
148 |
+
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_declaration_at_end",validation
|
149 |
+
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_question_at_start",validation
|
150 |
+
ecthr_cases,alleged-violation-prediction,None,"implicit_judgment_paragraph",validation
|
151 |
+
ecthr_cases,alleged-violation-prediction,None,"confirm number of violated articles",validation
|
152 |
+
emo,None,None,"persons_describe",validation
|
153 |
+
emo,None,None,"final_message",validation
|
154 |
+
emo,None,None,"what_emotion_do_you_think",validation
|
155 |
+
emo,None,None,"emotional_state",validation
|
156 |
+
emo,None,None,"dialogue_between",validation
|
157 |
+
emotion,None,None,"choose_the_best_emotion_label",test
|
158 |
+
emotion,None,None,"reply_with_emoation_label",test
|
159 |
+
emotion,None,None,"answer_with_class_label",test
|
160 |
+
emotion,None,None,"answer_question_with_emotion_label",test
|
161 |
+
financial_phrasebank,sentences_allagree,None,"share_price_option",train
|
162 |
+
financial_phrasebank,sentences_allagree,None,"sentiment",train
|
163 |
+
financial_phrasebank,sentences_allagree,None,"word_comes_to_mind",train
|
164 |
+
financial_phrasebank,sentences_allagree,None,"complementary_industries",train
|
165 |
+
financial_phrasebank,sentences_allagree,None,"bullish_neutral_bearish",train
|
166 |
+
glue,cola,None,"Make sense yes no",validation
|
167 |
+
glue,cola,None,"is_this_correct",validation
|
168 |
+
glue,cola,None,"editing",validation
|
169 |
+
glue,cola,None,"Following sentence acceptable",validation
|
170 |
+
glue,cola,None,"Previous sentence acceptable",validation
|
171 |
+
glue,sst2,None,"positive negative after",validation
|
172 |
+
glue,sst2,None,"review",validation
|
173 |
+
glue,sst2,None,"said",validation
|
174 |
+
glue,sst2,None,"following positive negative",validation
|
175 |
+
glue,sst2,None,"happy or mad",validation
|
176 |
+
health_fact,None,None,"claim_veracity_classification_after_reading_I_believe",validation
|
177 |
+
health_fact,None,None,"claim_explanation_classification",validation
|
178 |
+
health_fact,None,None,"claim_veracity_classification_tell_me",validation
|
179 |
+
hlgd,None,None,"is_same_event_with_time_interrogative_related",validation
|
180 |
+
hlgd,None,None,"is_same_event_interrogative_talk",validation
|
181 |
+
hlgd,None,None,"is_same_event_with_time_interrogative_talk",validation
|
182 |
+
hlgd,None,None,"is_same_event_refer",validation
|
183 |
+
hlgd,None,None,"is_same_event_editor_asks",validation
|
184 |
+
hyperpartisan_news_detection,byarticle,None,"consider_does_it_follow_a_hyperpartisan_argumentation",train
|
185 |
+
hyperpartisan_news_detection,byarticle,None,"follows_hyperpartisan_argumentation",train
|
186 |
+
hyperpartisan_news_detection,byarticle,None,"consume_with_caution",train
|
187 |
+
hyperpartisan_news_detection,byarticle,None,"extreme_left_wing_or_right_wing",train
|
188 |
+
hyperpartisan_news_detection,byarticle,None,"consider_it_exhibits_extreme_one_sidedness",train
|
189 |
+
liar,None,None,"Given statement guess category",validation
|
190 |
+
lince,sa_spaeng,None,"original poster expressed sentiment",validation
|
191 |
+
lince,sa_spaeng,None,"sentiment trying to express",validation
|
192 |
+
lince,sa_spaeng,None,"express sentiment",validation
|
193 |
+
lince,sa_spaeng,None,"negation template",validation
|
194 |
+
lince,sa_spaeng,None,"the author seem",validation
|
195 |
+
math_qa,None,None,"choose_correct_og",test
|
196 |
+
math_qa,None,None,"pick_the_correct",test
|
197 |
+
math_qa,None,None,"first_choice_then_problem",test
|
198 |
+
math_qa,None,None,"problem_set_type",test
|
199 |
+
math_qa,None,None,"gre_problem",test
|
200 |
+
movie_rationales,None,None,"Standard binary sentiment analysis",validation
|
201 |
+
movie_rationales,None,None,"Evidences sentiment classification",validation
|
202 |
+
movie_rationales,None,None,"Evidences + review",validation
|
203 |
+
movie_rationales,None,None,"Generate evidences and sentiment",validation
|
204 |
+
mwsc,None,None,"in-the-sentence-question-first",validation
|
205 |
+
mwsc,None,None,"what-think",validation
|
206 |
+
mwsc,None,None,"in-the-sentence",validation
|
207 |
+
mwsc,None,None,"options-or",validation
|
208 |
+
mwsc,None,None,"is-correct",validation
|
209 |
+
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_2",validation
|
210 |
+
poem_sentiment,None,None,"question_answer_format",validation
|
211 |
+
poem_sentiment,None,None,"guess_sentiment_without_options_variation_1",validation
|
212 |
+
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_1",validation
|
213 |
+
poem_sentiment,None,None,"most_appropriate_sentiment",validation
|
214 |
+
onestop_english,None,None,"esl_context",train
|
215 |
+
onestop_english,None,None,"ara_context",train
|
216 |
+
onestop_english,None,None,"determine_reading_level_from_the_first_three_sentences",train
|
217 |
+
onestop_english,None,None,"esl_variation",train
|
218 |
+
onestop_english,None,None,"assess",train
|
219 |
+
pubmed_qa,pqa_labeled,None,"Long Answer to Final Decision",train
|
220 |
+
pubmed_qa,pqa_labeled,None,"Question Answering (Short)",train
|
221 |
+
riddle_sense,None,None,"most_suitable_answer",validation
|
222 |
+
riddle_sense,None,None,"answer_given_question_without_options",validation
|
223 |
+
riddle_sense,None,None,"question_to_answer_index",validation
|
224 |
+
riddle_sense,None,None,"question_answering",validation
|
225 |
+
scicite,None,None,"Classify intent w/section (select choice)",validation
|
226 |
+
scicite,None,None,"Classify intent (choices first)",validation
|
227 |
+
scicite,None,None,"Classify intent (select choice)",validation
|
228 |
+
scicite,None,None,"Classify intent",validation
|
229 |
+
scicite,None,None,"can_describe",validation
|
230 |
+
selqa,answer_selection_analysis,None,"is-he-talking-about",validation
|
231 |
+
selqa,answer_selection_analysis,None,"would-make-sense-qu-rand",validation
|
232 |
+
selqa,answer_selection_analysis,None,"make-sense-rand",validation
|
233 |
+
selqa,answer_selection_analysis,None,"which-answer-1st-vs-random",validation
|
234 |
+
snips_built_in_intents,None,None,"voice_intent",train
|
235 |
+
snips_built_in_intents,None,None,"categorize_query",train
|
236 |
+
snips_built_in_intents,None,None,"intent_query",train
|
237 |
+
snips_built_in_intents,None,None,"categorize_query_brief",train
|
238 |
+
snips_built_in_intents,None,None,"query_intent",train
|
239 |
+
)
|
240 |
+
|
241 |
+
DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS_VAL[\$SLURM_ARRAY_TASK_ID]}"
|
242 |
+
echo "\$ARGUMENT"
|
243 |
+
|
244 |
+
# Run T0 evaluation
|
245 |
+
# For PrefixLM add --prefixlm
|
246 |
+
IFS=',' read dataset_name dataset_config_name template_config_name template_name split <<< "\${DATASET_AND_CONFIG}"
|
247 |
+
python t-zero/evaluation/run_eval.py \
|
248 |
+
--dataset_name "\$dataset_name" \
|
249 |
+
--dataset_config_name "\$dataset_config_name" \
|
250 |
+
--template_config_name "\$template_config_name" \
|
251 |
+
--template_name "\$template_name" \
|
252 |
+
--split "\$split" \
|
253 |
+
--model_name_or_path "\$CHECKPOINT_PATH" \
|
254 |
+
--output_dir "\$OUTPUT_DIR" \
|
255 |
+
--per_device_eval_batch_size 4 \
|
256 |
+
--max_length 2048 \
|
257 |
+
--dtype float16
|
258 |
+
EOT
|
259 |
+
|
260 |
+
sbatch $eval_script
|
261 |
+
|
262 |
+
|
263 |
+
lm_eval_script="./lm_eval_$i.slurm"
|
264 |
+
cat <<EOT > $lm_eval_script
|
265 |
+
#!/bin/bash
|
266 |
+
#SBATCH --job-name=lmeval
|
267 |
+
#SBATCH --nodes=1
|
268 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
269 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
270 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
271 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
272 |
+
#SBATCH --constraint=a100
|
273 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
274 |
+
#SBATCH --output=%x-%j.out # output file name
|
275 |
+
#SBATCH --account=six@a100
|
276 |
+
#SBATCH --array=0-22
|
277 |
+
|
278 |
+
set -x -e
|
279 |
+
|
280 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
281 |
+
conda activate muennighofflmevalgen
|
282 |
+
|
283 |
+
echo "START TIME: $(date)"
|
284 |
+
|
285 |
+
# defining the right environment variables
|
286 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
287 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
288 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
289 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
290 |
+
export HF_DATASETS_OFFLINE=1
|
291 |
+
export TRANSFORMERS_OFFLINE=1
|
292 |
+
export TOKENIZERS_PARALLELISM=false
|
293 |
+
|
294 |
+
# Converted transformer checkpoint
|
295 |
+
MODEL_CKPT=$OUTPUTCKPT
|
296 |
+
|
297 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/lm-evaluation-harness
|
298 |
+
|
299 |
+
|
300 |
+
DATASETS_AND_CONFIGS=(
|
301 |
+
wmt14_fr_en,fr-en,"version-en-fr-target"
|
302 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-target"
|
303 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-source+target"
|
304 |
+
wmt14_fr_en,fr-en,"xglm-en-fr-target"
|
305 |
+
wmt14_fr_en,fr-en,"gpt3-en-fr"
|
306 |
+
wmt14_fr_en,fr-en,"version-fr-en-target"
|
307 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-target"
|
308 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-source+target"
|
309 |
+
wmt14_fr_en,fr-en,"xglm-fr-en-target"
|
310 |
+
wmt14_fr_en,fr-en,"gpt3-fr-en"
|
311 |
+
wmt14_hi_en,hi-en,"version-en-hi-target"
|
312 |
+
wmt14_hi_en,hi-en,"a_good_translation-en-hi-target"
|
313 |
+
wmt14_hi_en,hi-en,"a_good_translation-en-hi-source+target"
|
314 |
+
wmt14_hi_en,hi-en,"xglm-en-hi-target"
|
315 |
+
wmt14_hi_en,hi-en,"gpt-3-en-hi-target"
|
316 |
+
wmt14_hi_en,hi-en,"version-hi-en-target"
|
317 |
+
wmt14_hi_en,hi-en,"a_good_translation-hi-en-target"
|
318 |
+
wmt14_hi_en,hi-en,"a_good_translation-hi-en-source+target"
|
319 |
+
wmt14_hi_en,hi-en,"xglm-hi-en-target"
|
320 |
+
wmt14_hi_en,hi-en,"gpt-3-hi-en-target"
|
321 |
+
mlsum_es,"es","layman_summ_es"
|
322 |
+
mlsum_es,"es","palm_prompt"
|
323 |
+
mlsum_es,"es","summarise_this_in_es_few_sentences"
|
324 |
+
)
|
325 |
+
|
326 |
+
DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS[\$SLURM_ARRAY_TASK_ID]}"
|
327 |
+
echo "\$ARGUMENT"
|
328 |
+
|
329 |
+
IFS=',' read dataset_name lang template_name <<< "\${DATASET_AND_CONFIG}"
|
330 |
+
|
331 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
332 |
+
python main.py \
|
333 |
+
--model_api_name 'hf-causal' \
|
334 |
+
--model_args "pretrained=\$MODEL_CKPT,use_accelerate=True,tokenizer=\$MODEL_CKPT,dtype=float16" \
|
335 |
+
--device cuda \
|
336 |
+
--batch_size 16 \
|
337 |
+
--no_tracking \
|
338 |
+
--task_name "\$dataset_name" \
|
339 |
+
--template_names "\$template_name" \
|
340 |
+
--bootstrap_iters 10 \
|
341 |
+
--limit 3000
|
342 |
+
|
343 |
+
mkdir -p "$OUTPUTCKPT/evaluation/\$dataset_name"
|
344 |
+
mv "outputs/*$CKPT*\$dataset_name*" "$OUTPUTCKPT/evaluation/\$dataset_name/"
|
345 |
+
|
346 |
+
echo "END TIME: $(date)"
|
347 |
+
EOT
|
348 |
+
|
349 |
+
sbatch $lm_eval_script
|
350 |
+
|
351 |
+
|
352 |
+
done
|
evaluation/results/tr13/tzeroeval/convert_validation_350m.slurm
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=ckpts
|
3 |
+
#SBATCH --ntasks=1 # number of MP tasks
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
6 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
7 |
+
#SBATCH --time=20:00:00 # maximum execution time (HH:MM:SS)
|
8 |
+
#SBATCH --output=%x-%j.out # output file name
|
9 |
+
#SBATCH --account=ajs@cpu
|
10 |
+
#SBATCH --partition=cpu_p1
|
11 |
+
|
12 |
+
set -x -e
|
13 |
+
|
14 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
15 |
+
export HF_DATASETS_OFFLINE=1
|
16 |
+
export TRANSFORMERS_OFFLINE=1
|
17 |
+
conda activate muennighoffmodelconv
|
18 |
+
|
19 |
+
CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13e-350M-ml-t0/checkpoints/xp3capmixnewcodelonglossseq
|
20 |
+
|
21 |
+
CKPTS=(
|
22 |
+
global_step250
|
23 |
+
global_step500
|
24 |
+
global_step750
|
25 |
+
global_step1000
|
26 |
+
global_step1250
|
27 |
+
global_step1500
|
28 |
+
global_step1750
|
29 |
+
global_step2000
|
30 |
+
global_step2250
|
31 |
+
global_step2500
|
32 |
+
global_step2750
|
33 |
+
global_step3000
|
34 |
+
)
|
35 |
+
EXAMPLE_CKPT=/gpfsssd/scratch/rech/six/commun/experiments/muennighoff/bloomckpt/350m/bloom-560m
|
36 |
+
DUMP_PATH=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/350mt0
|
37 |
+
OUT_PREFIX=xp3capmixnewcodelonglossseq
|
38 |
+
|
39 |
+
TP=1
|
40 |
+
|
41 |
+
### CONVERT ###
|
42 |
+
|
43 |
+
|
44 |
+
for i in {0..12}; do
|
45 |
+
CKPT=${CKPTS[$i]}
|
46 |
+
echo "$i"
|
47 |
+
echo "Running $CKPT"
|
48 |
+
|
49 |
+
OUTPUTCKPT=$DUMP_PATH/"$OUT_PREFIX$CKPT"
|
50 |
+
python $six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/transformers_clone/src/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py --pytorch_dump_folder_path $OUTPUTCKPT --bloom_checkpoint_path $CKPT_PATH/$CKPT --pretraining_tp $TP --bloom_config_file $EXAMPLE_CKPT/config.json
|
51 |
+
|
52 |
+
# Copy tokenizer.json etc
|
53 |
+
cp -r $EXAMPLE_CKPT/*.json $OUTPUTCKPT/
|
54 |
+
|
55 |
+
eval_script="./eval_$i.slurm"
|
56 |
+
cat <<EOT > $eval_script
|
57 |
+
#!/bin/bash
|
58 |
+
#SBATCH --job-name=evaluate_t0
|
59 |
+
#SBATCH --nodes=1
|
60 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
61 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
62 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
63 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
64 |
+
#SBATCH --constraint=a100
|
65 |
+
#SBATCH --time 5:00:00 # maximum execution time (HH:MM:SS)
|
66 |
+
#SBATCH --output=%x-%j.out # output file name
|
67 |
+
#SBATCH --account=six@a100
|
68 |
+
#SBATCH --array=0-168
|
69 |
+
|
70 |
+
set -x -e
|
71 |
+
|
72 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
73 |
+
conda activate muennighofflmevalgen
|
74 |
+
|
75 |
+
CHECKPOINT_PATH=$OUTPUTCKPT
|
76 |
+
|
77 |
+
WORKDIR=/gpfswork/rech/six/commun/code/tr13f-6B3-ml-t0
|
78 |
+
pushd "\$WORKDIR"
|
79 |
+
OUTPUT_DIR="\$CHECKPOINT_PATH/evaluation"
|
80 |
+
mkdir -p "\$OUTPUT_DIR"
|
81 |
+
|
82 |
+
# Validation
|
83 |
+
DATASETS_AND_CONFIGS_VAL=(
|
84 |
+
head_qa,en,en,"multiple_choice_q_and_a_index_with_context_en",validation
|
85 |
+
head_qa,en,en,"multiple_choice_q_and_a_en",validation
|
86 |
+
head_qa,en,en,"multiple_choice_q_and_a_index_en",validation
|
87 |
+
head_qa,en,en,"multiple_choice_a_and_q_with_context_en",validation
|
88 |
+
head_qa,en,en,"multiple_choice_a_and_q_en",validation
|
89 |
+
head_qa,es,en,"multiple_choice_q_and_a_index_with_context_en",validation
|
90 |
+
head_qa,es,en,"multiple_choice_q_and_a_en",validation
|
91 |
+
head_qa,es,en,"multiple_choice_q_and_a_index_en",validation
|
92 |
+
head_qa,es,en,"multiple_choice_a_and_q_with_context_en",validation
|
93 |
+
head_qa,es,en,"multiple_choice_a_and_q_en",validation
|
94 |
+
climate_fever,None,None,"first_evidence_and_claim_itemization",test
|
95 |
+
climate_fever,None,None,"claim_and_all_supporting_evidences",test
|
96 |
+
climate_fever,None,None,"fifth_evidence_and_claim_itemization",test
|
97 |
+
climate_fever,None,None,"third_evidence_claim_pair",test
|
98 |
+
climate_fever,None,None,"second_evidence_and_claim_itemization",test
|
99 |
+
codah,codah,None,"interrogative_instruction_after_sentence_and_choices",train
|
100 |
+
codah,codah,None,"affirmative_instruction_before_sentence_and_choices",train
|
101 |
+
codah,codah,None,"affirmative_instruction_after_sentence_and_choices",train
|
102 |
+
aqua_rat,raw,None,"select_the_best_option",validation
|
103 |
+
aqua_rat,raw,None,"answer_quiz",validation
|
104 |
+
aqua_rat,raw,None,"Answer questions from options",validation
|
105 |
+
commonsense_qa,None,None,"answer_given_question_without_options",validation
|
106 |
+
commonsense_qa,None,None,"question_answering",validation
|
107 |
+
commonsense_qa,None,None,"most_suitable_answer",validation
|
108 |
+
amazon_reviews_multi,en,en,"prompt_title_to_star",validation
|
109 |
+
amazon_reviews_multi,en,en,"prompt_review_to_star",validation
|
110 |
+
amazon_reviews_multi,en,en,"prompt_body_title_to_star",validation
|
111 |
+
amazon_reviews_multi,zh,en,"prompt_title_to_star",validation
|
112 |
+
amazon_reviews_multi,zh,en,"prompt_review_to_star",validation
|
113 |
+
amazon_reviews_multi,zh,en,"prompt_body_title_to_star",validation
|
114 |
+
amazon_reviews_multi,fr,en,"prompt_title_to_star",validation
|
115 |
+
amazon_reviews_multi,fr,en,"prompt_review_to_star",validation
|
116 |
+
amazon_reviews_multi,fr,en,"prompt_body_title_to_star",validation
|
117 |
+
amazon_reviews_multi,es,en,"prompt_title_to_star",validation
|
118 |
+
amazon_reviews_multi,es,en,"prompt_review_to_star",validation
|
119 |
+
amazon_reviews_multi,es,en,"prompt_body_title_to_star",validation
|
120 |
+
art,None,None,"choose_hypothesis_options",validation
|
121 |
+
art,None,None,"choose_hypothesis_believable",validation
|
122 |
+
art,None,None,"choose_hypothesis",validation
|
123 |
+
art,None,None,"choose_hypothesis_desc",validation
|
124 |
+
art,None,None,"choose_hypothesis_likely",validation
|
125 |
+
banking77,None,None,"help_page_topic",test
|
126 |
+
banking77,None,None,"direct_to_which_department",test
|
127 |
+
banking77,None,None,"rephrase_as_banking_term",test
|
128 |
+
blbooksgenre,title_genre_classifiction,None,"multi-choice",train
|
129 |
+
blbooksgenre,title_genre_classifiction,None,"premise_context_first",train
|
130 |
+
blbooksgenre,title_genre_classifiction,None,"classify",train
|
131 |
+
blimp,adjunct_island,None,"grammatical_between_1_2",train
|
132 |
+
blimp,adjunct_island,None,"grammatical_between_A_B",train
|
133 |
+
blimp,adjunct_island,None,"grammatical_which_one_1_2",train
|
134 |
+
blimp,adjunct_island,None,"single_sentence_bad_yes_no",train
|
135 |
+
blimp,adjunct_island,None,"single_sentence_good_yes_no",train
|
136 |
+
conv_ai_3,None,None,"clarification_needed",validation
|
137 |
+
conv_ai_3,None,None,"score_give_number",validation
|
138 |
+
conv_ai_3,None,None,"ambiguous",validation
|
139 |
+
conv_ai_3,None,None,"directly_answer",validation
|
140 |
+
conv_ai_3,None,None,"score_how_much",validation
|
141 |
+
craigslist_bargains,None,None,"good deal for seller no list price implicit",validation
|
142 |
+
craigslist_bargains,None,None,"good deal for seller no list price",validation
|
143 |
+
craigslist_bargains,None,None,"good deal for seller",validation
|
144 |
+
craigslist_bargains,None,None,"best deal",validation
|
145 |
+
ecthr_cases,alleged-violation-prediction,None,"implicit_advice_number",validation
|
146 |
+
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_declaration_at_end",validation
|
147 |
+
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_question_at_start",validation
|
148 |
+
ecthr_cases,alleged-violation-prediction,None,"implicit_judgment_paragraph",validation
|
149 |
+
ecthr_cases,alleged-violation-prediction,None,"confirm number of violated articles",validation
|
150 |
+
emo,None,None,"persons_describe",validation
|
151 |
+
emo,None,None,"final_message",validation
|
152 |
+
emo,None,None,"what_emotion_do_you_think",validation
|
153 |
+
emo,None,None,"emotional_state",validation
|
154 |
+
emo,None,None,"dialogue_between",validation
|
155 |
+
emotion,None,None,"choose_the_best_emotion_label",test
|
156 |
+
emotion,None,None,"reply_with_emoation_label",test
|
157 |
+
emotion,None,None,"answer_with_class_label",test
|
158 |
+
emotion,None,None,"answer_question_with_emotion_label",test
|
159 |
+
financial_phrasebank,sentences_allagree,None,"share_price_option",train
|
160 |
+
financial_phrasebank,sentences_allagree,None,"sentiment",train
|
161 |
+
financial_phrasebank,sentences_allagree,None,"word_comes_to_mind",train
|
162 |
+
financial_phrasebank,sentences_allagree,None,"complementary_industries",train
|
163 |
+
financial_phrasebank,sentences_allagree,None,"bullish_neutral_bearish",train
|
164 |
+
glue,cola,None,"Make sense yes no",validation
|
165 |
+
glue,cola,None,"is_this_correct",validation
|
166 |
+
glue,cola,None,"editing",validation
|
167 |
+
glue,cola,None,"Following sentence acceptable",validation
|
168 |
+
glue,cola,None,"Previous sentence acceptable",validation
|
169 |
+
glue,sst2,None,"positive negative after",validation
|
170 |
+
glue,sst2,None,"review",validation
|
171 |
+
glue,sst2,None,"said",validation
|
172 |
+
glue,sst2,None,"following positive negative",validation
|
173 |
+
glue,sst2,None,"happy or mad",validation
|
174 |
+
health_fact,None,None,"claim_veracity_classification_after_reading_I_believe",validation
|
175 |
+
health_fact,None,None,"claim_explanation_classification",validation
|
176 |
+
health_fact,None,None,"claim_veracity_classification_tell_me",validation
|
177 |
+
hlgd,None,None,"is_same_event_with_time_interrogative_related",validation
|
178 |
+
hlgd,None,None,"is_same_event_interrogative_talk",validation
|
179 |
+
hlgd,None,None,"is_same_event_with_time_interrogative_talk",validation
|
180 |
+
hlgd,None,None,"is_same_event_refer",validation
|
181 |
+
hlgd,None,None,"is_same_event_editor_asks",validation
|
182 |
+
hyperpartisan_news_detection,byarticle,None,"consider_does_it_follow_a_hyperpartisan_argumentation",train
|
183 |
+
hyperpartisan_news_detection,byarticle,None,"follows_hyperpartisan_argumentation",train
|
184 |
+
hyperpartisan_news_detection,byarticle,None,"consume_with_caution",train
|
185 |
+
hyperpartisan_news_detection,byarticle,None,"extreme_left_wing_or_right_wing",train
|
186 |
+
hyperpartisan_news_detection,byarticle,None,"consider_it_exhibits_extreme_one_sidedness",train
|
187 |
+
liar,None,None,"Given statement guess category",validation
|
188 |
+
lince,sa_spaeng,None,"original poster expressed sentiment",validation
|
189 |
+
lince,sa_spaeng,None,"sentiment trying to express",validation
|
190 |
+
lince,sa_spaeng,None,"express sentiment",validation
|
191 |
+
lince,sa_spaeng,None,"negation template",validation
|
192 |
+
lince,sa_spaeng,None,"the author seem",validation
|
193 |
+
math_qa,None,None,"choose_correct_og",test
|
194 |
+
math_qa,None,None,"pick_the_correct",test
|
195 |
+
math_qa,None,None,"first_choice_then_problem",test
|
196 |
+
math_qa,None,None,"problem_set_type",test
|
197 |
+
math_qa,None,None,"gre_problem",test
|
198 |
+
movie_rationales,None,None,"Standard binary sentiment analysis",validation
|
199 |
+
movie_rationales,None,None,"Evidences sentiment classification",validation
|
200 |
+
movie_rationales,None,None,"Evidences + review",validation
|
201 |
+
movie_rationales,None,None,"Generate evidences and sentiment",validation
|
202 |
+
mwsc,None,None,"in-the-sentence-question-first",validation
|
203 |
+
mwsc,None,None,"what-think",validation
|
204 |
+
mwsc,None,None,"in-the-sentence",validation
|
205 |
+
mwsc,None,None,"options-or",validation
|
206 |
+
mwsc,None,None,"is-correct",validation
|
207 |
+
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_2",validation
|
208 |
+
poem_sentiment,None,None,"question_answer_format",validation
|
209 |
+
poem_sentiment,None,None,"guess_sentiment_without_options_variation_1",validation
|
210 |
+
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_1",validation
|
211 |
+
poem_sentiment,None,None,"most_appropriate_sentiment",validation
|
212 |
+
onestop_english,None,None,"esl_context",train
|
213 |
+
onestop_english,None,None,"ara_context",train
|
214 |
+
onestop_english,None,None,"determine_reading_level_from_the_first_three_sentences",train
|
215 |
+
onestop_english,None,None,"esl_variation",train
|
216 |
+
onestop_english,None,None,"assess",train
|
217 |
+
pubmed_qa,pqa_labeled,None,"Long Answer to Final Decision",train
|
218 |
+
pubmed_qa,pqa_labeled,None,"Question Answering (Short)",train
|
219 |
+
riddle_sense,None,None,"most_suitable_answer",validation
|
220 |
+
riddle_sense,None,None,"answer_given_question_without_options",validation
|
221 |
+
riddle_sense,None,None,"question_to_answer_index",validation
|
222 |
+
riddle_sense,None,None,"question_answering",validation
|
223 |
+
scicite,None,None,"Classify intent w/section (select choice)",validation
|
224 |
+
scicite,None,None,"Classify intent (choices first)",validation
|
225 |
+
scicite,None,None,"Classify intent (select choice)",validation
|
226 |
+
scicite,None,None,"Classify intent",validation
|
227 |
+
scicite,None,None,"can_describe",validation
|
228 |
+
selqa,answer_selection_analysis,None,"is-he-talking-about",validation
|
229 |
+
selqa,answer_selection_analysis,None,"would-make-sense-qu-rand",validation
|
230 |
+
selqa,answer_selection_analysis,None,"make-sense-rand",validation
|
231 |
+
selqa,answer_selection_analysis,None,"which-answer-1st-vs-random",validation
|
232 |
+
snips_built_in_intents,None,None,"voice_intent",train
|
233 |
+
snips_built_in_intents,None,None,"categorize_query",train
|
234 |
+
snips_built_in_intents,None,None,"intent_query",train
|
235 |
+
snips_built_in_intents,None,None,"categorize_query_brief",train
|
236 |
+
snips_built_in_intents,None,None,"query_intent",train
|
237 |
+
)
|
238 |
+
|
239 |
+
DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS_VAL[\$SLURM_ARRAY_TASK_ID]}"
|
240 |
+
echo "\$ARGUMENT"
|
241 |
+
|
242 |
+
# Run T0 evaluation
|
243 |
+
# For PrefixLM add --prefixlm
|
244 |
+
IFS=',' read dataset_name dataset_config_name template_config_name template_name split <<< "\${DATASET_AND_CONFIG}"
|
245 |
+
python t-zero/evaluation/run_eval.py \
|
246 |
+
--dataset_name "\$dataset_name" \
|
247 |
+
--dataset_config_name "\$dataset_config_name" \
|
248 |
+
--template_config_name "\$template_config_name" \
|
249 |
+
--template_name "\$template_name" \
|
250 |
+
--split "\$split" \
|
251 |
+
--model_name_or_path "\$CHECKPOINT_PATH" \
|
252 |
+
--output_dir "\$OUTPUT_DIR" \
|
253 |
+
--per_device_eval_batch_size 4 \
|
254 |
+
--max_length 2048 \
|
255 |
+
--dtype float16
|
256 |
+
EOT
|
257 |
+
|
258 |
+
sbatch $eval_script
|
259 |
+
|
260 |
+
|
261 |
+
lm_eval_script="./lm_eval_$i.slurm"
|
262 |
+
cat <<EOT > $lm_eval_script
|
263 |
+
#!/bin/bash
|
264 |
+
#SBATCH --job-name=lmeval
|
265 |
+
#SBATCH --nodes=1
|
266 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
267 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
268 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
269 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
270 |
+
#SBATCH --constraint=a100
|
271 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
272 |
+
#SBATCH --output=%x-%j.out # output file name
|
273 |
+
#SBATCH --account=six@a100
|
274 |
+
#SBATCH --array=0-22
|
275 |
+
|
276 |
+
set -x -e
|
277 |
+
|
278 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
279 |
+
conda activate muennighofflmevalgen
|
280 |
+
|
281 |
+
echo "START TIME: $(date)"
|
282 |
+
|
283 |
+
# defining the right environment variables
|
284 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
285 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
286 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
287 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
288 |
+
export HF_DATASETS_OFFLINE=1
|
289 |
+
export TRANSFORMERS_OFFLINE=1
|
290 |
+
export TOKENIZERS_PARALLELISM=false
|
291 |
+
|
292 |
+
# Converted transformer checkpoint
|
293 |
+
MODEL_CKPT=$OUTPUTCKPT
|
294 |
+
|
295 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/lm-evaluation-harness
|
296 |
+
|
297 |
+
|
298 |
+
DATASETS_AND_CONFIGS=(
|
299 |
+
wmt14_fr_en,fr-en,"version-en-fr-target"
|
300 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-target"
|
301 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-source+target"
|
302 |
+
wmt14_fr_en,fr-en,"xglm-en-fr-target"
|
303 |
+
wmt14_fr_en,fr-en,"gpt3-en-fr"
|
304 |
+
wmt14_fr_en,fr-en,"version-fr-en-target"
|
305 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-target"
|
306 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-source+target"
|
307 |
+
wmt14_fr_en,fr-en,"xglm-fr-en-target"
|
308 |
+
wmt14_fr_en,fr-en,"gpt3-fr-en"
|
309 |
+
wmt14_hi_en,hi-en,"version-en-hi-target"
|
310 |
+
wmt14_hi_en,hi-en,"a_good_translation-en-hi-target"
|
311 |
+
wmt14_hi_en,hi-en,"a_good_translation-en-hi-source+target"
|
312 |
+
wmt14_hi_en,hi-en,"xglm-en-hi-target"
|
313 |
+
wmt14_hi_en,hi-en,"gpt-3-en-hi-target"
|
314 |
+
wmt14_hi_en,hi-en,"version-hi-en-target"
|
315 |
+
wmt14_hi_en,hi-en,"a_good_translation-hi-en-target"
|
316 |
+
wmt14_hi_en,hi-en,"a_good_translation-hi-en-source+target"
|
317 |
+
wmt14_hi_en,hi-en,"xglm-hi-en-target"
|
318 |
+
wmt14_hi_en,hi-en,"gpt-3-hi-en-target"
|
319 |
+
mlsum_es,"es","layman_summ_es"
|
320 |
+
mlsum_es,"es","palm_prompt"
|
321 |
+
mlsum_es,"es","summarise_this_in_es_few_sentences"
|
322 |
+
)
|
323 |
+
|
324 |
+
DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS[\$SLURM_ARRAY_TASK_ID]}"
|
325 |
+
echo "\$ARGUMENT"
|
326 |
+
|
327 |
+
IFS=',' read dataset_name lang template_name <<< "\${DATASET_AND_CONFIG}"
|
328 |
+
|
329 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
330 |
+
python main.py \
|
331 |
+
--model_api_name 'hf-causal' \
|
332 |
+
--model_args "pretrained=\$MODEL_CKPT,use_accelerate=True,tokenizer=\$MODEL_CKPT,dtype=float16" \
|
333 |
+
--device cuda \
|
334 |
+
--batch_size 16 \
|
335 |
+
--no_tracking \
|
336 |
+
--task_name "\$dataset_name" \
|
337 |
+
--template_names "\$template_name" \
|
338 |
+
--bootstrap_iters 10 \
|
339 |
+
--limit 3000
|
340 |
+
|
341 |
+
mkdir -p "$OUTPUTCKPT/evaluation/\$dataset_name"
|
342 |
+
mv "outputs/*$CKPT*\$dataset_name*" "$OUTPUTCKPT/evaluation/\$dataset_name/"
|
343 |
+
|
344 |
+
echo "END TIME: $(date)"
|
345 |
+
EOT
|
346 |
+
|
347 |
+
sbatch $lm_eval_script
|
348 |
+
|
349 |
+
|
350 |
+
done
|
evaluation/results/tr13/tzeroeval/convert_validation_760m.slurm
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=ckpts
|
3 |
+
#SBATCH --ntasks=1 # number of MP tasks
|
4 |
+
#SBATCH --nodes=1
|
5 |
+
#SBATCH --cpus-per-task=40 # number of cores per tasks
|
6 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
7 |
+
#SBATCH --time=20:00:00 # maximum execution time (HH:MM:SS)
|
8 |
+
#SBATCH --output=%x-%j.out # output file name
|
9 |
+
#SBATCH --account=ajs@cpu
|
10 |
+
#SBATCH --partition=cpu_p1
|
11 |
+
|
12 |
+
set -x -e
|
13 |
+
|
14 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
15 |
+
export HF_DATASETS_OFFLINE=1
|
16 |
+
export TRANSFORMERS_OFFLINE=1
|
17 |
+
conda activate muennighoffmodelconv
|
18 |
+
|
19 |
+
CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13d-760M-ml-t0/checkpoints/xp3capmixnewcodelonglossseq
|
20 |
+
#CKPT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr13f-6B3-ml-t0/checkpoints/p31lossseq
|
21 |
+
|
22 |
+
CKPTS=(
|
23 |
+
global_step250
|
24 |
+
global_step500
|
25 |
+
global_step750
|
26 |
+
global_step1000
|
27 |
+
global_step1250
|
28 |
+
global_step1500
|
29 |
+
global_step1750
|
30 |
+
global_step2000
|
31 |
+
global_step2250
|
32 |
+
global_step2500
|
33 |
+
global_step2750
|
34 |
+
global_step3000
|
35 |
+
)
|
36 |
+
EXAMPLE_CKPT=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/760m/bloom-760m
|
37 |
+
DUMP_PATH=$six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/760mt0
|
38 |
+
OUT_PREFIX=xp3capmixlossseq_
|
39 |
+
#OUT_PREFIX=p31lossseq
|
40 |
+
|
41 |
+
TP=1
|
42 |
+
|
43 |
+
### CONVERT ###
|
44 |
+
|
45 |
+
|
46 |
+
for i in {0..11}; do
|
47 |
+
CKPT=${CKPTS[$i]}
|
48 |
+
echo "$i"
|
49 |
+
echo "Running $CKPT"
|
50 |
+
|
51 |
+
OUTPUTCKPT=$DUMP_PATH/"$OUT_PREFIX$CKPT"
|
52 |
+
python $six_ALL_CCFRSCRATCH/commun/experiments/muennighoff/bloomckpt/transformers_clone/src/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py --pytorch_dump_folder_path $OUTPUTCKPT --bloom_checkpoint_path $CKPT_PATH/$CKPT --pretraining_tp $TP --bloom_config_file $EXAMPLE_CKPT/config.json
|
53 |
+
|
54 |
+
# Copy tokenizer.json etc
|
55 |
+
cp -r $EXAMPLE_CKPT/*.json $OUTPUTCKPT/
|
56 |
+
|
57 |
+
eval_script="./eval_$i.slurm"
|
58 |
+
cat <<EOT > $eval_script
|
59 |
+
#!/bin/bash
|
60 |
+
#SBATCH --job-name=evaluate_t0
|
61 |
+
#SBATCH --nodes=1
|
62 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
63 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
64 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
65 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
66 |
+
#SBATCH --constraint=a100
|
67 |
+
#SBATCH --time 5:00:00 # maximum execution time (HH:MM:SS)
|
68 |
+
#SBATCH --output=%x-%j.out # output file name
|
69 |
+
#SBATCH --account=six@a100
|
70 |
+
#SBATCH --array=0-168
|
71 |
+
|
72 |
+
set -x -e
|
73 |
+
|
74 |
+
source $six_ALL_CCFRWORK/start-py38-pt111
|
75 |
+
conda activate thomas_t_zero_evaluation
|
76 |
+
|
77 |
+
CHECKPOINT_PATH=$OUTPUTCKPT
|
78 |
+
|
79 |
+
WORKDIR=/gpfswork/rech/six/commun/code/tr13f-6B3-ml-t0
|
80 |
+
pushd "\$WORKDIR"
|
81 |
+
OUTPUT_DIR="\$CHECKPOINT_PATH/evaluation"
|
82 |
+
mkdir -p "\$OUTPUT_DIR"
|
83 |
+
|
84 |
+
# Validation
|
85 |
+
DATASETS_AND_CONFIGS_VAL=(
|
86 |
+
head_qa,en,en,"multiple_choice_q_and_a_index_with_context_en",validation
|
87 |
+
head_qa,en,en,"multiple_choice_q_and_a_en",validation
|
88 |
+
head_qa,en,en,"multiple_choice_q_and_a_index_en",validation
|
89 |
+
head_qa,en,en,"multiple_choice_a_and_q_with_context_en",validation
|
90 |
+
head_qa,en,en,"multiple_choice_a_and_q_en",validation
|
91 |
+
head_qa,es,en,"multiple_choice_q_and_a_index_with_context_en",validation
|
92 |
+
head_qa,es,en,"multiple_choice_q_and_a_en",validation
|
93 |
+
head_qa,es,en,"multiple_choice_q_and_a_index_en",validation
|
94 |
+
head_qa,es,en,"multiple_choice_a_and_q_with_context_en",validation
|
95 |
+
head_qa,es,en,"multiple_choice_a_and_q_en",validation
|
96 |
+
climate_fever,None,None,"first_evidence_and_claim_itemization",test
|
97 |
+
climate_fever,None,None,"claim_and_all_supporting_evidences",test
|
98 |
+
climate_fever,None,None,"fifth_evidence_and_claim_itemization",test
|
99 |
+
climate_fever,None,None,"third_evidence_claim_pair",test
|
100 |
+
climate_fever,None,None,"second_evidence_and_claim_itemization",test
|
101 |
+
codah,codah,None,"interrogative_instruction_after_sentence_and_choices",train
|
102 |
+
codah,codah,None,"affirmative_instruction_before_sentence_and_choices",train
|
103 |
+
codah,codah,None,"affirmative_instruction_after_sentence_and_choices",train
|
104 |
+
aqua_rat,raw,None,"select_the_best_option",validation
|
105 |
+
aqua_rat,raw,None,"answer_quiz",validation
|
106 |
+
aqua_rat,raw,None,"Answer questions from options",validation
|
107 |
+
commonsense_qa,None,None,"answer_given_question_without_options",validation
|
108 |
+
commonsense_qa,None,None,"question_answering",validation
|
109 |
+
commonsense_qa,None,None,"most_suitable_answer",validation
|
110 |
+
amazon_reviews_multi,en,en,"prompt_title_to_star",validation
|
111 |
+
amazon_reviews_multi,en,en,"prompt_review_to_star",validation
|
112 |
+
amazon_reviews_multi,en,en,"prompt_body_title_to_star",validation
|
113 |
+
amazon_reviews_multi,zh,en,"prompt_title_to_star",validation
|
114 |
+
amazon_reviews_multi,zh,en,"prompt_review_to_star",validation
|
115 |
+
amazon_reviews_multi,zh,en,"prompt_body_title_to_star",validation
|
116 |
+
amazon_reviews_multi,fr,en,"prompt_title_to_star",validation
|
117 |
+
amazon_reviews_multi,fr,en,"prompt_review_to_star",validation
|
118 |
+
amazon_reviews_multi,fr,en,"prompt_body_title_to_star",validation
|
119 |
+
amazon_reviews_multi,es,en,"prompt_title_to_star",validation
|
120 |
+
amazon_reviews_multi,es,en,"prompt_review_to_star",validation
|
121 |
+
amazon_reviews_multi,es,en,"prompt_body_title_to_star",validation
|
122 |
+
art,None,None,"choose_hypothesis_options",validation
|
123 |
+
art,None,None,"choose_hypothesis_believable",validation
|
124 |
+
art,None,None,"choose_hypothesis",validation
|
125 |
+
art,None,None,"choose_hypothesis_desc",validation
|
126 |
+
art,None,None,"choose_hypothesis_likely",validation
|
127 |
+
banking77,None,None,"help_page_topic",test
|
128 |
+
banking77,None,None,"direct_to_which_department",test
|
129 |
+
banking77,None,None,"rephrase_as_banking_term",test
|
130 |
+
blbooksgenre,title_genre_classifiction,None,"multi-choice",train
|
131 |
+
blbooksgenre,title_genre_classifiction,None,"premise_context_first",train
|
132 |
+
blbooksgenre,title_genre_classifiction,None,"classify",train
|
133 |
+
blimp,adjunct_island,None,"grammatical_between_1_2",train
|
134 |
+
blimp,adjunct_island,None,"grammatical_between_A_B",train
|
135 |
+
blimp,adjunct_island,None,"grammatical_which_one_1_2",train
|
136 |
+
blimp,adjunct_island,None,"single_sentence_bad_yes_no",train
|
137 |
+
blimp,adjunct_island,None,"single_sentence_good_yes_no",train
|
138 |
+
conv_ai_3,None,None,"clarification_needed",validation
|
139 |
+
conv_ai_3,None,None,"score_give_number",validation
|
140 |
+
conv_ai_3,None,None,"ambiguous",validation
|
141 |
+
conv_ai_3,None,None,"directly_answer",validation
|
142 |
+
conv_ai_3,None,None,"score_how_much",validation
|
143 |
+
craigslist_bargains,None,None,"good deal for seller no list price implicit",validation
|
144 |
+
craigslist_bargains,None,None,"good deal for seller no list price",validation
|
145 |
+
craigslist_bargains,None,None,"good deal for seller",validation
|
146 |
+
craigslist_bargains,None,None,"best deal",validation
|
147 |
+
ecthr_cases,alleged-violation-prediction,None,"implicit_advice_number",validation
|
148 |
+
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_declaration_at_end",validation
|
149 |
+
ecthr_cases,alleged-violation-prediction,None,"ecthr_alleged_articles_question_at_start",validation
|
150 |
+
ecthr_cases,alleged-violation-prediction,None,"implicit_judgment_paragraph",validation
|
151 |
+
ecthr_cases,alleged-violation-prediction,None,"confirm number of violated articles",validation
|
152 |
+
emo,None,None,"persons_describe",validation
|
153 |
+
emo,None,None,"final_message",validation
|
154 |
+
emo,None,None,"what_emotion_do_you_think",validation
|
155 |
+
emo,None,None,"emotional_state",validation
|
156 |
+
emo,None,None,"dialogue_between",validation
|
157 |
+
emotion,None,None,"choose_the_best_emotion_label",test
|
158 |
+
emotion,None,None,"reply_with_emoation_label",test
|
159 |
+
emotion,None,None,"answer_with_class_label",test
|
160 |
+
emotion,None,None,"answer_question_with_emotion_label",test
|
161 |
+
financial_phrasebank,sentences_allagree,None,"share_price_option",train
|
162 |
+
financial_phrasebank,sentences_allagree,None,"sentiment",train
|
163 |
+
financial_phrasebank,sentences_allagree,None,"word_comes_to_mind",train
|
164 |
+
financial_phrasebank,sentences_allagree,None,"complementary_industries",train
|
165 |
+
financial_phrasebank,sentences_allagree,None,"bullish_neutral_bearish",train
|
166 |
+
glue,cola,None,"Make sense yes no",validation
|
167 |
+
glue,cola,None,"is_this_correct",validation
|
168 |
+
glue,cola,None,"editing",validation
|
169 |
+
glue,cola,None,"Following sentence acceptable",validation
|
170 |
+
glue,cola,None,"Previous sentence acceptable",validation
|
171 |
+
glue,sst2,None,"positive negative after",validation
|
172 |
+
glue,sst2,None,"review",validation
|
173 |
+
glue,sst2,None,"said",validation
|
174 |
+
glue,sst2,None,"following positive negative",validation
|
175 |
+
glue,sst2,None,"happy or mad",validation
|
176 |
+
health_fact,None,None,"claim_veracity_classification_after_reading_I_believe",validation
|
177 |
+
health_fact,None,None,"claim_explanation_classification",validation
|
178 |
+
health_fact,None,None,"claim_veracity_classification_tell_me",validation
|
179 |
+
hlgd,None,None,"is_same_event_with_time_interrogative_related",validation
|
180 |
+
hlgd,None,None,"is_same_event_interrogative_talk",validation
|
181 |
+
hlgd,None,None,"is_same_event_with_time_interrogative_talk",validation
|
182 |
+
hlgd,None,None,"is_same_event_refer",validation
|
183 |
+
hlgd,None,None,"is_same_event_editor_asks",validation
|
184 |
+
hyperpartisan_news_detection,byarticle,None,"consider_does_it_follow_a_hyperpartisan_argumentation",train
|
185 |
+
hyperpartisan_news_detection,byarticle,None,"follows_hyperpartisan_argumentation",train
|
186 |
+
hyperpartisan_news_detection,byarticle,None,"consume_with_caution",train
|
187 |
+
hyperpartisan_news_detection,byarticle,None,"extreme_left_wing_or_right_wing",train
|
188 |
+
hyperpartisan_news_detection,byarticle,None,"consider_it_exhibits_extreme_one_sidedness",train
|
189 |
+
liar,None,None,"Given statement guess category",validation
|
190 |
+
lince,sa_spaeng,None,"original poster expressed sentiment",validation
|
191 |
+
lince,sa_spaeng,None,"sentiment trying to express",validation
|
192 |
+
lince,sa_spaeng,None,"express sentiment",validation
|
193 |
+
lince,sa_spaeng,None,"negation template",validation
|
194 |
+
lince,sa_spaeng,None,"the author seem",validation
|
195 |
+
math_qa,None,None,"choose_correct_og",test
|
196 |
+
math_qa,None,None,"pick_the_correct",test
|
197 |
+
math_qa,None,None,"first_choice_then_problem",test
|
198 |
+
math_qa,None,None,"problem_set_type",test
|
199 |
+
math_qa,None,None,"gre_problem",test
|
200 |
+
movie_rationales,None,None,"Standard binary sentiment analysis",validation
|
201 |
+
movie_rationales,None,None,"Evidences sentiment classification",validation
|
202 |
+
movie_rationales,None,None,"Evidences + review",validation
|
203 |
+
movie_rationales,None,None,"Generate evidences and sentiment",validation
|
204 |
+
mwsc,None,None,"in-the-sentence-question-first",validation
|
205 |
+
mwsc,None,None,"what-think",validation
|
206 |
+
mwsc,None,None,"in-the-sentence",validation
|
207 |
+
mwsc,None,None,"options-or",validation
|
208 |
+
mwsc,None,None,"is-correct",validation
|
209 |
+
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_2",validation
|
210 |
+
poem_sentiment,None,None,"question_answer_format",validation
|
211 |
+
poem_sentiment,None,None,"guess_sentiment_without_options_variation_1",validation
|
212 |
+
poem_sentiment,None,None,"positive_or_negative_sentiment_variation_1",validation
|
213 |
+
poem_sentiment,None,None,"most_appropriate_sentiment",validation
|
214 |
+
onestop_english,None,None,"esl_context",train
|
215 |
+
onestop_english,None,None,"ara_context",train
|
216 |
+
onestop_english,None,None,"determine_reading_level_from_the_first_three_sentences",train
|
217 |
+
onestop_english,None,None,"esl_variation",train
|
218 |
+
onestop_english,None,None,"assess",train
|
219 |
+
pubmed_qa,pqa_labeled,None,"Long Answer to Final Decision",train
|
220 |
+
pubmed_qa,pqa_labeled,None,"Question Answering (Short)",train
|
221 |
+
riddle_sense,None,None,"most_suitable_answer",validation
|
222 |
+
riddle_sense,None,None,"answer_given_question_without_options",validation
|
223 |
+
riddle_sense,None,None,"question_to_answer_index",validation
|
224 |
+
riddle_sense,None,None,"question_answering",validation
|
225 |
+
scicite,None,None,"Classify intent w/section (select choice)",validation
|
226 |
+
scicite,None,None,"Classify intent (choices first)",validation
|
227 |
+
scicite,None,None,"Classify intent (select choice)",validation
|
228 |
+
scicite,None,None,"Classify intent",validation
|
229 |
+
scicite,None,None,"can_describe",validation
|
230 |
+
selqa,answer_selection_analysis,None,"is-he-talking-about",validation
|
231 |
+
selqa,answer_selection_analysis,None,"would-make-sense-qu-rand",validation
|
232 |
+
selqa,answer_selection_analysis,None,"make-sense-rand",validation
|
233 |
+
selqa,answer_selection_analysis,None,"which-answer-1st-vs-random",validation
|
234 |
+
snips_built_in_intents,None,None,"voice_intent",train
|
235 |
+
snips_built_in_intents,None,None,"categorize_query",train
|
236 |
+
snips_built_in_intents,None,None,"intent_query",train
|
237 |
+
snips_built_in_intents,None,None,"categorize_query_brief",train
|
238 |
+
snips_built_in_intents,None,None,"query_intent",train
|
239 |
+
)
|
240 |
+
|
241 |
+
DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS_VAL[\$SLURM_ARRAY_TASK_ID]}"
|
242 |
+
echo "\$ARGUMENT"
|
243 |
+
|
244 |
+
# Run T0 evaluation
|
245 |
+
# For PrefixLM add --prefixlm
|
246 |
+
IFS=',' read dataset_name dataset_config_name template_config_name template_name split <<< "\${DATASET_AND_CONFIG}"
|
247 |
+
python t-zero/evaluation/run_eval.py \
|
248 |
+
--dataset_name "\$dataset_name" \
|
249 |
+
--dataset_config_name "\$dataset_config_name" \
|
250 |
+
--template_config_name "\$template_config_name" \
|
251 |
+
--template_name "\$template_name" \
|
252 |
+
--split "\$split" \
|
253 |
+
--model_name_or_path "\$CHECKPOINT_PATH" \
|
254 |
+
--output_dir "\$OUTPUT_DIR" \
|
255 |
+
--per_device_eval_batch_size 4 \
|
256 |
+
--max_length 2048 \
|
257 |
+
--dtype float16
|
258 |
+
EOT
|
259 |
+
|
260 |
+
sbatch $eval_script
|
261 |
+
|
262 |
+
|
263 |
+
lm_eval_script="./lm_eval_$i.slurm"
|
264 |
+
cat <<EOT > $lm_eval_script
|
265 |
+
#!/bin/bash
|
266 |
+
#SBATCH --job-name=lmeval
|
267 |
+
#SBATCH --nodes=1
|
268 |
+
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
269 |
+
#SBATCH --cpus-per-task=8 # number of cores per tasks
|
270 |
+
#SBATCH --hint=nomultithread # we get physical cores not logical
|
271 |
+
#SBATCH --gres=gpu:1 # number of gpus
|
272 |
+
#SBATCH --constraint=a100
|
273 |
+
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
|
274 |
+
#SBATCH --output=%x-%j.out # output file name
|
275 |
+
#SBATCH --account=six@a100
|
276 |
+
#SBATCH --array=0-22
|
277 |
+
|
278 |
+
set -x -e
|
279 |
+
|
280 |
+
source $six_ALL_CCFRWORK/start-tr13f-6B3-ml-t0
|
281 |
+
conda activate muennighofflmevalgen
|
282 |
+
|
283 |
+
echo "START TIME: $(date)"
|
284 |
+
|
285 |
+
# defining the right environment variables
|
286 |
+
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models
|
287 |
+
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets
|
288 |
+
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules
|
289 |
+
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics
|
290 |
+
export HF_DATASETS_OFFLINE=1
|
291 |
+
export TRANSFORMERS_OFFLINE=1
|
292 |
+
export TOKENIZERS_PARALLELISM=false
|
293 |
+
|
294 |
+
# Converted transformer checkpoint
|
295 |
+
MODEL_CKPT=$OUTPUTCKPT
|
296 |
+
|
297 |
+
cd /gpfsscratch/rech/six/commun/experiments/muennighoff/lm-evaluation-harness
|
298 |
+
|
299 |
+
|
300 |
+
DATASETS_AND_CONFIGS=(
|
301 |
+
wmt14_fr_en,fr-en,"version-en-fr-target"
|
302 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-target"
|
303 |
+
wmt14_fr_en,fr-en,"a_good_translation-en-fr-source+target"
|
304 |
+
wmt14_fr_en,fr-en,"xglm-en-fr-target"
|
305 |
+
wmt14_fr_en,fr-en,"gpt3-en-fr"
|
306 |
+
wmt14_fr_en,fr-en,"version-fr-en-target"
|
307 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-target"
|
308 |
+
wmt14_fr_en,fr-en,"a_good_translation-fr-en-source+target"
|
309 |
+
wmt14_fr_en,fr-en,"xglm-fr-en-target"
|
310 |
+
wmt14_fr_en,fr-en,"gpt3-fr-en"
|
311 |
+
wmt14_hi_en,hi-en,"version-en-hi-target"
|
312 |
+
wmt14_hi_en,hi-en,"a_good_translation-en-hi-target"
|
313 |
+
wmt14_hi_en,hi-en,"a_good_translation-en-hi-source+target"
|
314 |
+
wmt14_hi_en,hi-en,"xglm-en-hi-target"
|
315 |
+
wmt14_hi_en,hi-en,"gpt-3-en-hi-target"
|
316 |
+
wmt14_hi_en,hi-en,"version-hi-en-target"
|
317 |
+
wmt14_hi_en,hi-en,"a_good_translation-hi-en-target"
|
318 |
+
wmt14_hi_en,hi-en,"a_good_translation-hi-en-source+target"
|
319 |
+
wmt14_hi_en,hi-en,"xglm-hi-en-target"
|
320 |
+
wmt14_hi_en,hi-en,"gpt-3-hi-en-target"
|
321 |
+
mlsum_es,"es","layman_summ_es"
|
322 |
+
mlsum_es,"es","palm_prompt"
|
323 |
+
mlsum_es,"es","summarise_this_in_es_few_sentences"
|
324 |
+
)
|
325 |
+
|
326 |
+
DATASET_AND_CONFIG="\${DATASETS_AND_CONFIGS[\$SLURM_ARRAY_TASK_ID]}"
|
327 |
+
echo "\$ARGUMENT"
|
328 |
+
|
329 |
+
IFS=',' read dataset_name lang template_name <<< "\${DATASET_AND_CONFIG}"
|
330 |
+
|
331 |
+
# Use this fork of lm-eval: https://github.com/bigscience-workshop/lm-evaluation-harness/pull/109
|
332 |
+
python main.py \
|
333 |
+
--model_api_name 'hf-causal' \
|
334 |
+
--model_args "pretrained=\$MODEL_CKPT,use_accelerate=True,tokenizer=\$MODEL_CKPT,dtype=float16" \
|
335 |
+
--device cuda \
|
336 |
+
--batch_size 16 \
|
337 |
+
--no_tracking \
|
338 |
+
--task_name "\$dataset_name" \
|
339 |
+
--template_names "\$template_name" \
|
340 |
+
--bootstrap_iters 10 \
|
341 |
+
--limit 3000
|
342 |
+
|
343 |
+
mkdir -p "$OUTPUTCKPT/evaluation/\$dataset_name"
|
344 |
+
mv "outputs/*$CKPT*\$dataset_name*" "$OUTPUTCKPT/evaluation/\$dataset_name/"
|
345 |
+
|
346 |
+
echo "END TIME: $(date)"
|
347 |
+
EOT
|
348 |
+
|
349 |
+
sbatch $lm_eval_script
|
350 |
+
|
351 |
+
|
352 |
+
done
|