import argparse import datetime import torch from transformers import AutoTokenizer, AutoModelForCausalLM def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--checkpoint", type=str, help="Checkpoint path", required=True) parser.add_argument("--max-memory-per-gpu", type=str, help="Defines maximum memory allocated to gpu", required=True) parser.add_argument("--global-step", type=str, default=None) parser.add_argument("--generate-max-length", type=int, default=50, help="max generation length") parser.add_argument("--greedy", action="store_true") parser.add_argument("--top-k", type=int, default=0) parser.add_argument("--top-p", type=float, default=0.) parser.add_argument("--offload_folder", type=str, help="offload folder for accelerate", default="./offload") return parser.parse_args() def get_gpus_max_memory(max_memory): max_memory = {i: max_memory for i in range(torch.cuda.device_count())} return max_memory def generate_from_text(model, text, tokenizer, max_length=200, greedy=False, top_k=0, top_p=0.): input_ids = tokenizer.encode(text, return_tensors='pt').to("cuda:0") max_length = input_ids.size(-1) + max_length greedy_output = model.generate( input_ids.to('cuda:0'), max_length=max_length, do_sample=not greedy, top_k=None if greedy else top_k, top_p=None if greedy else top_p ) return tokenizer.decode(greedy_output[0], skip_special_tokens=True) def main(): args = get_args() print("Loading model") tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, padding_side="left") print("Loaded tokenizer!") start = datetime.datetime.now() model = AutoModelForCausalLM.from_pretrained( args.checkpoint, device_map="auto", max_memory=get_gpus_max_memory(args.max_memory_per_gpu), torch_dtype=torch.bfloat16, revision="gs{}".format(args.global_step) if args.global_step else None, offload_folder=args.offload_folder, ) print(f"Loaded model in {datetime.datetime.now() - start}") texts = [] while True: try: dummy = input('''Enter the paragraph (Enter for to validate new input line and Ctrl-c to start generating the prompt):''') texts.append(dummy) except KeyboardInterrupt: text = "\n".join(texts) output = generate_from_text(model, text, tokenizer, max_length=args.generate_max_length, greedy=args.greedy, top_k=args.top_k, top_p=args.top_p) print(output) texts = [] if __name__ == "__main__": main()