#!/bin/bash #SBATCH --job-name=gpt2_repro_initial # job name #SBATCH --partition=gpu_p2l # partition with 8 32GB gpu nodes #SBATCH --qos=qos_gpu-t4 # t4 enables 100H trainings #SBATCH --ntasks=1 # number of MP tasks #SBATCH --gres=gpu:4 # number of GPUs per node #SBATCH --cpus-per-task=20 # number of cores per tasks #SBATCH --hint=nomultithread # we get physical cores not logical #SBATCH --time=20:00:00 # maximum execution time (HH:MM:SS) #SBATCH --output=%x-%j.out # output file name #SBATCH --error=%x-%j.err # error file name #SBATCH --account=ajs@gpu #SBATCH --mail-type=ALL set -x -e module load cuda/10.2 DATASET=openwebtext SERIALIZATION_DIR=${ALL_CCFRWORK}/experiments/gpt2_repro LOGGING_DIR=${ALL_CCFRWORK}/tensorboard/gpt2_repro source ~/.bashrc source ${WORK}/reckoner/bin/activate export TOKENIZERS_PARALLELISM=false export PYTHONUNBUFFERED=true export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 export CUDA_VISIBLE_DEVICES=0 python ${WORK}/jay-z/scripts/run_clm.py \ --model_type gpt2 \ --tokenizer_name gpt2 \ --dataset_name ${ALL_CCFRSCRATCH}/datasets/${DATASET} --block_size 1024 \ --cache_dir ${ALL_CCFRSCRATCH}/cache_dir \ --preprocessing_num_workers 32 \ --do_train --do_eval \ --max_steps 15000 \ --max_train_samples 10000000 \ --per_device_train_batch_size 4 --gradient_accumulation_steps 16 \ --per_device_eval_batch_size 8 \ --output_dir ${SERIALIZATION_DIR} --overwrite_output_dir \ --report_to tensorboard \ --logging_strategy steps --logging_first_step --logging_dir ${LOGGING_DIR} --logging_steps 20 \ --eval_steps 250 --evaluation_strategy steps \ --save_strategy steps --save_steps 500 --save_total_limit 31 \ --n_layer 3 --n_embd 128 --n_inner 128 --n_head 8