#!/usr/bin/env python # # generate jsonl version of dataset that can be fed to megatron-lm pre-processor # # see various notes in the scripts for different options # # full dataset: # ./oscar-to-jsonl.py # cat oscar-[0-4].jsonl > oscar.jsonl # # small dataset (0.1%): # ./oscar-to-jsonl.py -s # cat oscar-[0-4].jsonl > oscar.jsonl import logging from argparse import ArgumentParser from multiprocessing import cpu_count, Process, Queue from datasets import concatenate_datasets, load_dataset, ReadInstruction from transformers import GPT2TokenizerFast import datasets print(f"Using datasets=={datasets.__version__}") DATASET_NAME = "oscar" CONTEXT_SIZE = 1024 logging.getLogger("transformers.tokenization_utils_base").setLevel(logging.ERROR) # used by map def filter_short_documents(batch_documents): results = {"id": [], "text": []} tokenized_documents = tokenizer(batch_documents["text"], return_length=True) for i in range(len(batch_documents["id"])): if tokenized_documents.length[i] >= CONTEXT_SIZE: results["id"].append(batch_documents["id"][i]) results["text"].append(batch_documents["text"][i]) return results # used by filter def is_big(batch_documents): tokenized_documents = tokenizer(batch_documents["text"], return_length=True) return [length >= CONTEXT_SIZE for length in tokenized_documents.length] parser = ArgumentParser() parser.add_argument('-s', '--subset', action='store_true', help='Process and save a subset (0.1%) of data') args = parser.parse_args() tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") # Once this part of the process runs it gets cached, so on subsequent runs it'll be much faster split = ReadInstruction("train", to=0.1 if args.subset else 100, unit="%") ### Build/Load Datasets # Once this part of the process completes it gets cached, so on subsequent runs it'll be much faster language_subsets = ( # "unshuffled_deduplicated_ar", # "unshuffled_deduplicated_sw", # "unshuffled_deduplicated_zh", "unshuffled_deduplicated_en", # "unshuffled_deduplicated_fr", # "unshuffled_deduplicated_pt", # "unshuffled_deduplicated_es", ) datasets = [] for language_subset in language_subsets: dataset = load_dataset(DATASET_NAME, language_subset, split=split, keep_in_memory=False, cache_dir='cache') datasets.append(dataset) concat_dataset = concatenate_datasets(datasets) # Realized we don't need to filter short records out as Megatron-LM concats all the data together anyway # ### Filter large records # # # Once this part of the process completes it gets cached, so on subsequent runs it'll be much faster # # print(f"Filtering {len(concat_dataset)} examples") # # # version 1 using map: # # takes about 8-10h # filtered_dataset = concat_dataset.map(filter_short_documents, batched=True, batch_size=256, num_proc=cpu_count()) # # # version 2 using the experimental 'optimize-filter' branch of datasets # # this should be faster as it manipulates the indices - less disc space used as well # # didn't run fully, but based on ETAs didn't suggest to finish any faster than version 1 # #filtered_dataset = concat_dataset.filter(is_big, load_from_cache_file=True, batched=True, num_proc=cpu_count()) # # print(f"Before filtering: {len(concat_dataset)} examples, after filtering: {len(filtered_dataset)} examples") filtered_dataset = concat_dataset print(f"Saving {len(filtered_dataset)} examples") ### Save jsonl # important: shuffling makes the process 5-7 times slower! best to shuffle the end jsonl file using # https://github.com/alexandres/terashuf (should take ~1h to shuffle 900GB file with 70M records # using 150GB RAM) # version 1: one writer - quite slow #shuffled_dataset = filtered_dataset.shuffle() #shuffled_dataset = filtered_dataset #shuffled_dataset.to_json(f"{DATASET_NAME}.jsonl", orient="records", lines=True, force_ascii=False) # version 2: multiple parallel sharded writes # much faster, but will require concatenation at the end # 10 shards proved to much for the instance and 3 processed were killed, 5 worked well # took about 1.5h per shard SHARDS = 5 def process_shard(idx): print(f"Sharding {idx}") ds_shard = filtered_dataset.shard(SHARDS, idx, contiguous=True) # shuffle will make things much much slower #ds_shard = ds_shard.shuffle() # remove contiguous=True above if shuffling print(f"Saving {DATASET_NAME}-{idx}.jsonl") ds_shard.to_json(f"{DATASET_NAME}-{idx}.jsonl", orient="records", lines=True, force_ascii=False) queue = Queue() processes = [Process(target=process_shard, args=(idx,)) for idx in range(SHARDS)] for p in processes: p.start() for p in processes: p.join()