import os import math import json import argparse import subprocess from collections import OrderedDict from new_to_old_format_data_path import output_sampling_probs_new_format SPLIT = [0, 0.949, 0.999, 1.0] def calc_multinomial_sampling_prob_with_penalty(dataset_size, alpha=.5): """ Calculate multinomial probability distribution based on https://arxiv.org/pdf/1901.07291.pdf (section 3.1) :dataset_size: A dictionary contains the size (value) of each of the language (key). """ tot_size = 0 probs = OrderedDict() for lang, size in dataset_size.items(): tot_size += size for lang, size in dataset_size.items(): probs[lang] = size / tot_size pen_prob = OrderedDict() tot_pen_prob = 0.0 for lang, prob in probs.items(): tot_pen_prob += (prob ** alpha) sum_ = 0.0 for lang, prob in probs.items(): pen_prob[lang] = (prob ** alpha) / tot_pen_prob sum_ += pen_prob[lang] assert math.fabs(1 - sum_) < 1e-6 return pen_prob def get_size_stats(args): """ Calculate size for each of the iterator. It recusively iterate though a directory to find a specific extension file and report their size in preferred format. """ lang_size_dict = {} for (dirpath, dirnames, filenames) in os.walk(args.data_folder_path): for filename in filenames: if not (filename.startswith(args.name_prefix) and filename.endswith(args.extension_name)): continue full_file_path = os.path.join(dirpath, filename) lang_size = subprocess.check_output("du -s {}".format(full_file_path), shell=True) lang_size = int(lang_size.decode("utf-8").split("\t")[0]) if args.size_format == 'KB': _conv = 1 elif args.size_format == 'MB': _conv = 1024 elif args.size_format == 'GB': _conv = 1024 * 1024 elif args.size_format == 'TB': _conv = 1024 * 1024 * 1024 lang_size_ = round(lang_size / float(_conv), 2) lang_size_dict[full_file_path] = lang_size_ return lang_size_dict def print_stat(args, lang_size_dict, value_name='size'): """ Print size statistics. """ lang_list = sorted([(k, v) for k, v in lang_size_dict.items()], key=lambda tup: tup[1]) total_size = 0 print("\nLanguage : ({})".format(value_name)) print("-" * 20) for lang, size in lang_list: print("{} : {}".format(lang, size)) total_size += size print("-" * 20) print("Total size : {}".format(total_size)) def removesuffix(string, suffix): if string.endswith(suffix): string = string[:-len(suffix)] return string def main(): parser = argparse.ArgumentParser() parser.add_argument('--data-folder-path', type=str, required=True, help='Path to the data folder') parser.add_argument('--size-format', type=str, required=True, help='Calculation will be done in byte, mega-byte, giga-byte or tera-byte', choices=['KB', 'MB', 'GB', 'TB']) parser.add_argument('--alpha', type=float, required=True, help='Sampling penalty.') parser.add_argument('--output-dir', type=str, required=True, help='Output directory where sampling prob_dict will be saved.') parser.add_argument('--name-prefix', type=str, required=True, help='File name prefix to match. Combination of `--name-prefix` and --extension-name will be used to select file.') parser.add_argument('--extension-name', type=str, required=True, help='Extension of the file to match. Combination of `--name-prefix` and --extension-name will be used to select file') parser.add_argument('--old-format', action="store_true", help='Legacy option') args = parser.parse_args() size_dict = get_size_stats(args) print_stat(args, size_dict, value_name=args.size_format) sampling_probability = calc_multinomial_sampling_prob_with_penalty( size_dict, alpha=args.alpha ) print_stat(args, sampling_probability, 'probability') total_contrib = 0 print("\nLanguage : Per epoch contribution in {}".format(args.size_format)) print("-" * 50) for lang, prob in sampling_probability.items(): sampling_probability[lang] = (prob, size_dict[lang]) lang_contrib_size = round(size_dict[lang] * prob, 2) print("{} : {} ({} -> {})".format(lang, prob, size_dict[lang], lang_contrib_size)) total_contrib += lang_contrib_size print("-" * 50) print("Total size : {}".format(total_contrib)) open(os.path.join(args.output_dir, 'iterator_selection_prob.{}.json'.format(args.alpha)), "w").write( json.dumps(sampling_probability, indent=4) ) if args.old_format: with open(os.path.join(args.output_dir, "dataset_probabilities.{}.txt".format(args.alpha)), "w") as fout: fout.write( " ".join([f"{prob[0]} {removesuffix(path, '.bin')}" for path, prob in sampling_probability.items()])) pass else: output_sampling_probs_new_format(sampling_probability, args.output_dir, args.alpha) if __name__ == '__main__': main()