import json import math import os from argparse import ArgumentParser from os import listdir from os.path import isfile def get_args(): parser = ArgumentParser() # --experiments tr3d-1B3-oscar-checkpoints,tr3e-1B3-c4-checkpoints,tr3m-1B3-pile-checkpoints parser.add_argument('--experiment', type=str, required=True, help='Experiment we want to download.') parser.add_argument('--result-dir', type=str, required=True, help='Result directory containing all results, and to store aggregated json results.') parser.add_argument('--batch-size', type=int, default=512, help='Experiment training batch size.') parser.add_argument('--sequence_length', type=int, default=2048, help='Experiment training sequence length.') parser.add_argument('--rampup-batch-size', type=lambda s: tuple(int(item) for item in s.split(',')), default=(32, 32, 2_000_000), help='Experiment training batch size rampup.') return parser.parse_args() def checkpoint_step_to_tokens(checkpoint_step, args) -> int: def fn(checkpoint_step) -> int: if not hasattr(checkpoint_step_to_tokens, "CACHE"): checkpoint_step_to_tokens.CACHE = {} BATCH_SIZE=args.batch_size SEQUENCE_LENGTH=args.sequence_length # Linear increase in terms of samples. RAMPUP_BATCH_SIZE = args.rampup_batch_size # Compute RAMPUP checkpoint_step if not hasattr(checkpoint_step_to_tokens, "RAMPUP_OFFSET"): initial_batch_size, increment_batch_size, sample_limit_for_rampup = RAMPUP_BATCH_SIZE number_of_increments = (BATCH_SIZE - initial_batch_size) // increment_batch_size assert (BATCH_SIZE - initial_batch_size) % increment_batch_size == 0 offset_step = 0 start_sample = 0 for incr in range(number_of_increments): batch_size = initial_batch_size + incr * increment_batch_size end_sample = int(math.ceil((incr + 1) * sample_limit_for_rampup / number_of_increments)) number_of_step_per_increment = int(math.ceil((end_sample - start_sample) / batch_size)) checkpoint_step_to_tokens.CACHE.update({ offset_step + i: (start_sample + i * batch_size) * SEQUENCE_LENGTH for i in range(number_of_step_per_increment) }) offset_step += number_of_step_per_increment start_sample += number_of_step_per_increment * batch_size checkpoint_step_to_tokens.CACHE[offset_step] = start_sample * SEQUENCE_LENGTH checkpoint_step_to_tokens.RAMPUP_OFFSET = offset_step if checkpoint_step in checkpoint_step_to_tokens.CACHE: return checkpoint_step_to_tokens.CACHE[checkpoint_step] number_steps_after_rampup = checkpoint_step - checkpoint_step_to_tokens.RAMPUP_OFFSET assert number_steps_after_rampup >= 0 slope = BATCH_SIZE * SEQUENCE_LENGTH checkpoint_step_to_tokens.CACHE[checkpoint_step] = \ checkpoint_step_to_tokens.CACHE[checkpoint_step_to_tokens.RAMPUP_OFFSET] + \ slope * number_steps_after_rampup return checkpoint_step_to_tokens.CACHE[checkpoint_step] return fn(checkpoint_step) def main(): args = get_args() result_dir = args.result_dir experiment = args.experiment results_file_per_checkpoint = [ file for file in listdir(result_dir) if isfile(os.path.join(result_dir, file)) and file.startswith(experiment) ] checkpoint_steps = sorted([int(file.split("_")[-1].split(".json")[0]) for file in results_file_per_checkpoint]) absolute_paths = [f"{result_dir}/{experiment}_{checkpoint_step}.json" for checkpoint_step in checkpoint_steps] # format = "{EXPERIMENT_NAME}_{CHECKPOINT_STEP}.json" tokens = [checkpoint_step_to_tokens(checkpoint_step, args) for checkpoint_step in checkpoint_steps] result_json = {} for absolute_path in absolute_paths: with open(absolute_path, 'r') as fi: results = json.load(fi)["results"] for task in results: if task not in result_json: result_json[task] = {} for metric in results[task]: if metric not in result_json[task]: result_json[task][metric] = [] result_json[task][metric].append(results[task][metric]) # check for task in result_json: assert len(tokens) == len(checkpoint_steps) for metric in result_json[task]: assert len(result_json[task][metric]) == len(checkpoint_steps) output_path = os.path.join(result_dir, f"{experiment}_agg.json") print(f"Printing results to {output_path}") with open(output_path, 'w') as fo: json.dump({"tokens": tokens, "checkpoints": checkpoint_steps, "results": result_json}, fo, indent=2) if __name__ == "__main__": main()