from argparse import ArgumentParser from multiprocessing import Pool from requests import HTTPError from transformers import AutoModel, AutoTokenizer def get_args(): parser = ArgumentParser() # --experiments bigscience/tr3d-1B3-oscar-checkpoints,bigscience/tr3e-1B3-c4-checkpoints,bigscience/tr3m-1B3-pile-checkpoints parser.add_argument('--experiments', type=lambda s: s.split(','), required=True, help='Experiments we want to download.') # --steps 19500,28500,37500,48000,57000,66000,76500,85500,94500,105000,114000 parser.add_argument('--steps', type=lambda s: [int(item) for item in s.split(',')], required=True, help='Steps we should download the model checkpoints') return parser.parse_args() def _load_model(pretrain:str, revision: str): try: AutoModel.from_pretrained(pretrain, revision=revision) AutoTokenizer.from_pretrained(pretrain, revision=revision) return f"Loaded: {{pretrain:{pretrain}, revision:{revision}}}" except HTTPError: return f"Failed to load: {{pretrain:{pretrain}, revision:{revision}}}" def load_model(kwargs): return _load_model(**kwargs) def main(): args = get_args() pretrains = args.experiments steps = args.steps revisions = [f"global_step{step}" for step in steps] # with Pool(10) as pool: # results = pool.imap( # load_model, # [{"pretrain": pretrain, "revision": revision} for pretrain in pretrains for revision in revisions], # chunksize=1 # ) # # for result in results: # print(result) for kwargs in [{"pretrain": pretrain, "revision": revision} for pretrain in pretrains for revision in revisions]: print(load_model(kwargs)) if __name__ == "__main__": main()