import os import numpy as np import wandb import json import argparse RANDOM_BASELINE={ "arc_challenge": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6 "arc_easy": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6 "boolq": 0.5, "copa": 0.5, "headqa_en": 0.25, "hellaswag": 0.25, "lambada": 0., # Safe to say that random models won't perform well at all. "logiqa": 0.25, "mathqa": (4360 * 1/ 5 - (4475 - 4360) * 1/ 4) / 4475, "mrpc": 0.5, "multirc": 0., # TODO: I couldn't figure it out "openbookqa": 0.25, "piqa": 0.5, "prost": 0.25, "pubmedqa": 1/3, "qnli": 0.5, "qqp": 0.5, "race": 0.25, # Source: https://arxiv.org/pdf/1704.04683.pdf table 5 "rte": 0.5, "sciq": 0.25, "sst": 0.5, "triviaqa": 0., "webqs": 0., "wic": 0.5, "winogrande": 0.5, "wnli": 0.5, "wsc": 0.5 } def normalise(score, task): return (score - RANDOM_BASELINE[task]) / (1. - RANDOM_BASELINE[task]) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--input_files", type=lambda s: s.split(','), required=True) parser.add_argument("--all_tasks", action="store_true") parser.add_argument("--naive_average", action="store_true") parser.add_argument("--acc_average", action="store_true") parser.add_argument("--normalised_acc_average", action="store_true") return parser.parse_args() def main(): args = parse_args() for input_file in args.input_files: assert os.path.basename(input_file).endswith("_agg.json") experiment_name = os.path.basename(input_file).split("_agg.json")[0] with open(input_file, "r") as fi: experiment = json.load(fi) results = experiment["results"] tokens = experiment["tokens"] run = wandb.init(project="bigscience-tr3-evaluation-through-training", entity="timerobber", name=experiment_name, reinit=True) for i, n_tokens in enumerate(tokens): all_values = [] acc_average = [] normalised_acc_average = [] for task, task_results in results.items(): values = None for metric, values in task_results.items(): if args.all_tasks: wandb.log({f"{task}_{metric}": values[i], "tokens": tokens[i]}) if "stderr" not in metric and "ppl" not in metric: all_values.append(values[i]) if metric == "acc": acc_average.append(values[i]) normalised_acc_average.append(normalise(values[i], task)) if args.naive_average: wandb.log({f"naive_average": np.mean(all_values), "tokens": tokens[i]}) if args.acc_average: wandb.log({f"acc_average": np.mean(acc_average), "tokens": tokens[i]}) if args.normalised_acc_average: wandb.log({f"normalised_acc_average": np.mean(normalised_acc_average), "tokens": tokens[i]}) run.finish() if __name__ == "__main__": main()