import datasets import json steps_vs_samples = datasets.load_dataset("csv", data_files="run-.-tag-steps-vs-samples_y=steps,x=samples.csv")["train"] slope = (steps_vs_samples[-1]["Step"] - steps_vs_samples[-2]["Step"]) / ( steps_vs_samples[-1]["Value"] - steps_vs_samples[-2]["Value"]) offset = steps_vs_samples[-1]["Step"] - steps_vs_samples[-1]["Value"] * slope token_interval = 1e10 step_interval = 1500 tokens_per_sample = 2048 token_count = token_interval output_checkpoints = [] for item in steps_vs_samples: if item["Step"] * tokens_per_sample > token_count: token_count += token_interval step = step_interval * (item['Value'] // step_interval) tokens = tokens_per_sample * (slope * (step_interval * (item['Value'] // step_interval)) + offset) print(f"step: {step}") print(f"tokens at that step: {tokens}") output_checkpoints.append({"step": step, "tokens": tokens}) json.dump(output_checkpoints, open("steps_to_evaluate_with_tokens.json", "w"))