# python -m torch.distributed.run --nproc_per_node=2 all_reduce_bench.py import argparse import fcntl import os import socket import time import torch import torch.distributed as dist # note: this benchmark doesn't care how many gpus per node one has TRIALS = 5 N = 500000 M = 2000 def printflock(*msgs): """ print """ with open(__file__, "r") as fh: fcntl.flock(fh, fcntl.LOCK_EX) try: print(*msgs) finally: fcntl.flock(fh, fcntl.LOCK_UN) def timed_allreduce(mat, id): pre = time.perf_counter() dist.all_reduce(mat) printflock(f"ignore me {int(mat[0][0])}") # required due to lazy evaluation duration = time.perf_counter() - pre tput = ((M*N*4*2)/duration)*8 # *2 is for send + receive, *8 for gigabits/second size = M * N * 4 # 4 is fp32 n = dist.get_world_size() busbw = (size / duration) * (2 * (n - 1) / n) * 8 printflock(f"{id}:\n", f"duration: {duration:.4f} sec\n", f"algo throughput: {tput:.4f} bps, {tput/1e9:.4f} Gbps\n", f"busbw: {busbw / 1e9:.4f} Gbps" ) def run(local_rank): hostname = socket.gethostname() id = f"{hostname}:{local_rank}" global_rank = dist.get_rank() printflock(f"{id} data size: {M*N*4/1e9} GB") mat = torch.rand(N, M, dtype=torch.float32).cuda(local_rank) for i in range(TRIALS): dist.barrier() if global_rank == 0: print(f"\n\n\n-----------trial-{i}----------------") timed_allreduce(mat, id) def init_processes(local_rank, fn, backend='nccl'): torch.cuda.set_device(local_rank) dist.init_process_group(backend) fn(local_rank) if __name__ == "__main__": rank = int(os.environ["LOCAL_RANK"]) printflock("local_rank: %d" % rank) init_processes(local_rank=rank, fn=run)