#!/bin/bash #SBATCH --job-name=hf_ds_gpt2_perf_n16 #SBATCH --constraint=v100-32g #SBATCH --nodes=16 #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! #SBATCH --cpus-per-task=40 # number of cores per tasks #SBATCH --hint=nomultithread # we get physical cores not logical #SBATCH --gres=gpu:4 # number of gpus #SBATCH --time 00:30:00 # maximum execution time (HH:MM:SS) #SBATCH --output=%x-%j.out # output file name #SBATCH --error=%x-%j.out # error file name (same to watch just one file) #SBATCH --account=six@gpu set -x -e export PYTHONUNBUFFERED=1 source $six_ALL_CCFRWORK/start-prod nvidia-smi cd $six_ALL_CCFRWORK/code/transformers-clm-any-model-config/ export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics DATASET="stas/openwebtext-10k" MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) MASTER_PORT=6000 # adjust depending on the number of the nodes NNODES=16 MICRO_BATCH_SIZE=10 # 10 is 99% gpu # succeeded: MSIZE=52 if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36 elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32 elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40 elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40 elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48 elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48 elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64 elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64 elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64 elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64 elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64 elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64 elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64 elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64 elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64 else echo "invalid MSIZE: $MSIZE" fi GPUS_PER_NODE=4 NHEADS=32 SEQ_LEN=1024 VOCAB_SIZE=50257 export LAUNCHER="python -u -m torch.distributed.launch \ --nproc_per_node $GPUS_PER_NODE \ --nnodes $NNODES \ --master_addr $MASTER_ADDR \ --master_port $MASTER_PORT \ " config_json="./ds_z3_cpu_offload.json" cat < $config_json { "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 8, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "none" }, "offload_param": { "device": "none" }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e14, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_fp16_weights_on_model_save": false }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false } EOT export PYTHONPATH=src export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 export USE_TF=0 # new arg to start using # --log_on_each_node 0 \ export CMD=" \ examples/pytorch/language-modeling/run_clm.py \ --model_type gpt2 \ --tokenizer_name gpt2 \ --config_overrides "n_embd=$NHIDDEN,n_head=$NHEADS,n_layer=$NLAYERS,n_positions=$SEQ_LEN,gradient_checkpointing=true,use_cache=False" \ --dataset_name $DATASET \ --output_dir output_dir \ --overwrite_output_dir \ --do_train \ --max_train_samples 1000 \ --per_device_train_batch_size $MICRO_BATCH_SIZE \ --num_train_epochs 1 \ --warmup_steps 8 \ --fp16 \ --report_to none \ --deepspeed $config_json \ " # clear old checkpoint as it'd mismatch while we sort things out rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-1-node # model size python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')" # make sure no zombies have been left behind from previous runs export PKILL="pkill python" echo $CMD # to debug - add echo (it exits and prints what it would have launched) clear; srun --jobid $SLURM_JOBID bash -c '$PKILL; $LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a hf_ds_gpt2_perf_n16_bs4.out