***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** [2021-05-26 04:37:41,622] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:41,622] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:41,633] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:41,636] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:41,975] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:41,989] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:41,993] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:41,995] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:41,995] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:41,997] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,005] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,005] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,008] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,011] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,011] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,013] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,013] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,018] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,021] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,025] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,025] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,027] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,028] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,032] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,033] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,033] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,040] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,041] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,041] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,042] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,042] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,044] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,048] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,049] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,049] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,050] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,052] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,054] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,056] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,060] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,060] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,067] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,068] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,072] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,080] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,093] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,094] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,096] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,099] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,102] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,107] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,108] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,144] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,144] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,151] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,157] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,353] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,353] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,353] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:42,353] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:43,820] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:43,820] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:43,820] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:37:43,820] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl nn.functional.linear has been overridden with a more memory efficient version. This will persist unless manually reset. [2021-05-26 04:37:51,493] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed info: version=0.3.17+unknown, git-hash=unknown, git-branch=unknown [2021-05-26 04:37:51,549] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,550] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,550] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,550] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,551] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,552] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,552] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,552] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,552] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,552] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,553] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,553] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,553] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,553] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,554] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,554] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,554] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,554] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,555] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,555] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,555] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,556] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,557] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,557] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,557] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,557] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,557] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,558] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,558] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,560] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,560] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,560] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,560] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,561] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,561] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,561] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,561] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,561] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,561] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,562] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,565] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,565] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,566] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,566] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,567] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,567] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,567] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,568] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,568] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,569] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,569] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,570] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,571] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,572] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,572] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,573] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,573] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,573] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,574] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,575] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,683] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,684] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,684] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:51,687] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:37:52,017] [INFO] [engine.py:164:__init__] DeepSpeed Flops Profiler Enabled: False Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 [2021-05-26 04:37:53,035] [INFO] [engine.py:636:_configure_optimizer] Using DeepSpeed Optimizer param name adamw as basic optimizer [2021-05-26 04:37:53,035] [INFO] [engine.py:641:_configure_optimizer] DeepSpeed Basic Optimizer = DeepSpeedCPUAdam Checking ZeRO support for optimizer=DeepSpeedCPUAdam type= [2021-05-26 04:37:53,035] [INFO] [logging.py:60:log_dist] [Rank 0] Creating fp16 ZeRO stage 3 optimizer Initializing ZeRO Stage 3 Adam Optimizer #0 is created with AVX512 arithmetic capability. Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 [2021-05-26 04:37:53,113] [INFO] [utils.py:588:see_memory_usage] Stage 3 initialize beginning [2021-05-26 04:37:53,114] [INFO] [utils.py:589:see_memory_usage] MA 2.34 GB Max_MA 3.81 GB CA 5.4 GB Max_CA 5 GB [2021-05-26 04:37:53,115] [INFO] [utils.py:597:see_memory_usage] CPU Virtual Memory: used = 40.02 GB, percent = 21.4% [2021-05-26 04:37:53,115] [INFO] [stage3.py:624:__init__] Reduce bucket size 67108864 [2021-05-26 04:37:53,115] [INFO] [stage3.py:625:__init__] Allgather bucket size 60397977.6 [2021-05-26 04:37:53,128] [INFO] [stage3.py:39:print_rank_0] FP16 params swapping is False, Max params in CPU is 1000000000.0 [2021-05-26 04:37:53,191] [INFO] [utils.py:588:see_memory_usage] Before creating fp16 partitions [2021-05-26 04:37:53,192] [INFO] [utils.py:589:see_memory_usage] MA 2.34 GB Max_MA 2.34 GB CA 5.4 GB Max_CA 5 GB [2021-05-26 04:37:53,192] [INFO] [utils.py:597:see_memory_usage] CPU Virtual Memory: used = 40.02 GB, percent = 21.4% [2021-05-26 04:37:54,059] [INFO] [stage3.py:39:print_rank_0] fp16 group 0 has 1 subgroups [2021-05-26 04:37:55,731] [INFO] [stage3.py:39:print_rank_0] Swappable FP32 Partitions: count=0 size= 0.00 GB [2021-05-26 04:37:55,731] [INFO] [stage3.py:39:print_rank_0] In-Memory FP32 Partitions: count=1 size= 3.02 GB [2021-05-26 04:38:02,821] [INFO] [stage3.py:819:__init__] optimizer state initialized [2021-05-26 04:38:02,822] [INFO] [stage3.py:39:print_rank_0] Largest partitioned param numel = 811977088 [2021-05-26 04:38:20,030] [INFO] [utils.py:588:see_memory_usage] After initializing ZeRO optimizer [2021-05-26 04:38:20,031] [INFO] [utils.py:589:see_memory_usage] MA 3.09 GB Max_MA 4.09 GB CA 6.92 GB Max_CA 7 GB [2021-05-26 04:38:20,031] [INFO] [utils.py:597:see_memory_usage] CPU Virtual Memory: used = 94.98 GB, percent = 50.7% [2021-05-26 04:38:20,031] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed Final Optimizer = adamw [2021-05-26 04:38:20,031] [INFO] [engine.py:449:_configure_lr_scheduler] DeepSpeed using configured LR scheduler = WarmupLR [2021-05-26 04:38:20,031] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed LR Scheduler = [2021-05-26 04:38:20,031] [INFO] [logging.py:60:log_dist] [Rank 0] step=0, skipped=0, lr=[5e-05], mom=[[0.9, 0.999]] [2021-05-26 04:38:20,031] [INFO] [config.py:748:print] DeepSpeedEngine configuration: [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] activation_checkpointing_config { "partition_activations": false, "contiguous_memory_optimization": false, "cpu_checkpointing": false, "number_checkpoints": null, "synchronize_checkpoint_boundary": false, "profile": false } [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True} [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] allreduce_always_fp32 ........ False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] amp_enabled .................. False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] amp_params ................... False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] checkpoint_tag_validation_enabled True [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] checkpoint_tag_validation_fail False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] disable_allgather ............ False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] dump_state ................... False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] dynamic_loss_scale_args ...... {'init_scale': 256, 'scale_window': 1000, 'delayed_shift': 2, 'min_scale': 1} [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] elasticity_enabled ........... False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] flops_profiler_config ........ { "enabled": false, "profile_step": 1, "module_depth": -1, "top_modules": 1, "detailed": true, "output_file": null } [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] fp16_enabled ................. True [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] global_rank .................. 0 [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] gradient_accumulation_steps .. 1 [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] gradient_clipping ............ 1.0 [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] gradient_predivide_factor .... 1.0 [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] initial_dynamic_scale ........ 256 [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] loss_scale ................... 0 [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] memory_breakdown ............. False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] optimizer_legacy_fusion ...... False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] optimizer_name ............... adamw [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] optimizer_params ............. {'lr': 5e-05, 'betas': [0.9, 0.999], 'eps': 1e-08, 'weight_decay': 0.0} [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0} [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] pld_enabled .................. False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] pld_params ................... False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] prescale_gradients ........... False [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] scheduler_name ............... WarmupLR [2021-05-26 04:38:20,032] [INFO] [config.py:752:print] scheduler_params ............. {'warmup_min_lr': 0, 'warmup_max_lr': 5e-05, 'warmup_num_steps': 8} [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] sparse_attention ............. None [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] sparse_gradients_enabled ..... False [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] steps_per_print .............. 2000 [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] tensorboard_enabled .......... False [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] tensorboard_job_name ......... DeepSpeedJobName [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] tensorboard_output_path ...... [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] train_batch_size ............. 2048 [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] train_micro_batch_size_per_gpu 32 [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] wall_clock_breakdown ......... False [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] world_size ................... 64 [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] zero_allow_untested_optimizer False [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] zero_config .................. { "stage": 3, "contiguous_gradients": true, "reduce_scatter": false, "reduce_bucket_size": 6.710886e+07, "allgather_partitions": true, "allgather_bucket_size": 5.000000e+08, "overlap_comm": true, "load_from_fp32_weights": true, "elastic_checkpoint": true, "offload_param": { "device": "cpu", "nvme_path": null, "buffer_count": 5, "buffer_size": 1.000000e+08, "max_in_cpu": 1.000000e+09, "pin_memory": true }, "offload_optimizer": { "device": "cpu", "nvme_path": null, "buffer_count": 4, "pin_memory": true, "pipeline_read": false, "pipeline_write": false, "fast_init": false, "pipeline": false }, "sub_group_size": 1.000000e+14, "prefetch_bucket_size": 6.039798e+07, "param_persistence_threshold": 8.192000e+04, "max_live_parameters": 1.000000e+09, "max_reuse_distance": 1.000000e+09, "gather_fp16_weights_on_model_save": false, "ignore_unused_parameters": true } [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] zero_enabled ................. True [2021-05-26 04:38:20,033] [INFO] [config.py:752:print] zero_optimization_stage ...... 3 [2021-05-26 04:38:20,033] [INFO] [config.py:754:print] json = { "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 8, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": 5e-05, "betas": [0.9, 0.999], "eps": 1e-08, "weight_decay": 0.0 } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 5e-05, "warmup_num_steps": 8 } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1.000000e+14, "reduce_bucket_size": 6.710886e+07, "stage3_prefetch_bucket_size": 6.039798e+07, "stage3_param_persistence_threshold": 8.192000e+04, "stage3_max_live_parameters": 1.000000e+09, "stage3_max_reuse_distance": 1.000000e+09, "stage3_gather_fp16_weights_on_model_save": false }, "gradient_accumulation_steps": 1, "gradient_clipping": 1.0, "steps_per_print": 2.000000e+03, "train_batch_size": 2.048000e+03, "train_micro_batch_size_per_gpu": 32, "wall_clock_breakdown": false } Killing subprocess 22920 Killing subprocess 22921 Killing subprocess 22922 Killing subprocess 22923 Killing subprocess 63213 Killing subprocess 63214 Killing subprocess 63215 Killing subprocess 63216 Killing subprocess 46668 Killing subprocess 46669 Killing subprocess 46670 Killing subprocess 46671 Killing subprocess 67000 Killing subprocess 67001 Killing subprocess 67002 Killing subprocess 67003 Killing subprocess 13436 Killing subprocess 13437 Killing subprocess 13438 Killing subprocess 13439 Killing subprocess 12298 Killing subprocess 12299 Killing subprocess 12300 Killing subprocess 12301 Killing subprocess 9315 Killing subprocess 9316 Killing subprocess 9317 Killing subprocess 9318 Killing subprocess 28132 Killing subprocess 28133 Killing subprocess 28134 Killing subprocess 28135 Killing subprocess 50556 Killing subprocess 50557 Killing subprocess 50558 Killing subprocess 50559 Killing subprocess 13485 Killing subprocess 13486 Killing subprocess 13487 Killing subprocess 13488 Killing subprocess 33836 Killing subprocess 33837 Killing subprocess 33838 Killing subprocess 33839 Killing subprocess 59977 Killing subprocess 59978 Killing subprocess 59979 Killing subprocess 59980 Killing subprocess 21554 Killing subprocess 21555 Killing subprocess 21556 Killing subprocess 21557 Killing subprocess 75475 Killing subprocess 75476 Killing subprocess 75477 Killing subprocess 75478 Killing subprocess 49793 Killing subprocess 49794 Killing subprocess 49795 Killing subprocess 49796 Killing subprocess 62660 Killing subprocess 62661 Killing subprocess 62662 Killing subprocess 62663 ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** [2021-05-26 04:40:19,839] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:19,839] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,034] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,036] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,052] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,053] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,057] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,059] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,063] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,072] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,072] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,072] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,073] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,074] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,074] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,074] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,080] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,081] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,082] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,083] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,083] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,086] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,089] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,094] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,097] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,097] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,099] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,101] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,101] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,103] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,115] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,116] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,122] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,123] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,124] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,124] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,125] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,125] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,127] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,128] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,129] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,140] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,141] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,143] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,143] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,144] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,153] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,153] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,202] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,205] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,211] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,215] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,216] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,229] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,239] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,239] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,415] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,418] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,427] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:20,433] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:21,852] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:21,856] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:22,741] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:40:22,761] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl nn.functional.linear has been overridden with a more memory efficient version. This will persist unless manually reset. [2021-05-26 04:40:28,842] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed info: version=0.3.17+unknown, git-hash=unknown, git-branch=unknown [2021-05-26 04:40:28,940] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,940] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,945] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,946] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,946] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,946] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,946] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,947] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,947] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,947] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,947] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,947] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,947] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,947] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,948] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,948] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,949] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,949] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,949] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,950] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,950] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,950] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,950] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,951] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,951] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,951] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,951] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,952] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,952] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,952] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,952] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,953] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,953] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,953] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,953] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,953] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,954] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,954] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,954] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,954] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,954] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,954] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,954] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,955] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,955] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,955] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,956] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,956] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,956] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,957] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,957] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,957] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,958] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,958] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,958] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,958] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,959] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,960] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,960] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,960] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,960] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,961] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,961] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:28,963] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:40:29,315] [INFO] [engine.py:164:__init__] DeepSpeed Flops Profiler Enabled: False Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 [2021-05-26 04:40:30,228] [INFO] [engine.py:636:_configure_optimizer] Using DeepSpeed Optimizer param name adamw as basic optimizer [2021-05-26 04:40:30,228] [INFO] [engine.py:641:_configure_optimizer] DeepSpeed Basic Optimizer = DeepSpeedCPUAdam Checking ZeRO support for optimizer=DeepSpeedCPUAdam type= [2021-05-26 04:40:30,228] [INFO] [logging.py:60:log_dist] [Rank 0] Creating fp16 ZeRO stage 3 optimizer Initializing ZeRO Stage 3 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 [2021-05-26 04:40:30,309] [INFO] [utils.py:588:see_memory_usage] Stage 3 initialize beginning [2021-05-26 04:40:30,311] [INFO] [utils.py:589:see_memory_usage] MA 2.34 GB Max_MA 3.81 GB CA 5.4 GB Max_CA 5 GB [2021-05-26 04:40:30,311] [INFO] [utils.py:597:see_memory_usage] CPU Virtual Memory: used = 40.02 GB, percent = 21.4% [2021-05-26 04:40:30,311] [INFO] [stage3.py:624:__init__] Reduce bucket size 67108864 [2021-05-26 04:40:30,311] [INFO] [stage3.py:625:__init__] Allgather bucket size 60397977.6 [2021-05-26 04:40:30,325] [INFO] [stage3.py:39:print_rank_0] FP16 params swapping is False, Max params in CPU is 1000000000.0 [2021-05-26 04:40:30,392] [INFO] [utils.py:588:see_memory_usage] Before creating fp16 partitions [2021-05-26 04:40:30,392] [INFO] [utils.py:589:see_memory_usage] MA 2.34 GB Max_MA 2.34 GB CA 5.4 GB Max_CA 5 GB [2021-05-26 04:40:30,393] [INFO] [utils.py:597:see_memory_usage] CPU Virtual Memory: used = 40.02 GB, percent = 21.4% [2021-05-26 04:40:31,251] [INFO] [stage3.py:39:print_rank_0] fp16 group 0 has 1 subgroups [2021-05-26 04:40:32,871] [INFO] [stage3.py:39:print_rank_0] Swappable FP32 Partitions: count=0 size= 0.00 GB [2021-05-26 04:40:32,871] [INFO] [stage3.py:39:print_rank_0] In-Memory FP32 Partitions: count=1 size= 3.02 GB [2021-05-26 04:40:39,984] [INFO] [stage3.py:819:__init__] optimizer state initialized [2021-05-26 04:40:39,984] [INFO] [stage3.py:39:print_rank_0] Largest partitioned param numel = 811977088 [2021-05-26 04:40:56,470] [INFO] [utils.py:588:see_memory_usage] After initializing ZeRO optimizer [2021-05-26 04:40:56,471] [INFO] [utils.py:589:see_memory_usage] MA 3.09 GB Max_MA 4.09 GB CA 6.92 GB Max_CA 7 GB [2021-05-26 04:40:56,471] [INFO] [utils.py:597:see_memory_usage] CPU Virtual Memory: used = 94.99 GB, percent = 50.7% [2021-05-26 04:40:56,472] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed Final Optimizer = adamw [2021-05-26 04:40:56,472] [INFO] [engine.py:449:_configure_lr_scheduler] DeepSpeed using configured LR scheduler = WarmupLR [2021-05-26 04:40:56,472] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed LR Scheduler = [2021-05-26 04:40:56,472] [INFO] [logging.py:60:log_dist] [Rank 0] step=0, skipped=0, lr=[5e-05], mom=[[0.9, 0.999]] [2021-05-26 04:40:56,472] [INFO] [config.py:748:print] DeepSpeedEngine configuration: [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] activation_checkpointing_config { "partition_activations": false, "contiguous_memory_optimization": false, "cpu_checkpointing": false, "number_checkpoints": null, "synchronize_checkpoint_boundary": false, "profile": false } [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True} [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] allreduce_always_fp32 ........ False [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] amp_enabled .................. False [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] amp_params ................... False [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] checkpoint_tag_validation_enabled True [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] checkpoint_tag_validation_fail False [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] disable_allgather ............ False [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] dump_state ................... False [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] dynamic_loss_scale_args ...... {'init_scale': 256, 'scale_window': 1000, 'delayed_shift': 2, 'min_scale': 1} [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] elasticity_enabled ........... False [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] flops_profiler_config ........ { "enabled": false, "profile_step": 1, "module_depth": -1, "top_modules": 1, "detailed": true, "output_file": null } [2021-05-26 04:40:56,472] [INFO] [config.py:752:print] fp16_enabled ................. True [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] global_rank .................. 0 [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] gradient_accumulation_steps .. 1 [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] gradient_clipping ............ 1.0 [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] gradient_predivide_factor .... 1.0 [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] initial_dynamic_scale ........ 256 [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] loss_scale ................... 0 [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] memory_breakdown ............. False [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] optimizer_legacy_fusion ...... False [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] optimizer_name ............... adamw [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] optimizer_params ............. {'lr': 5e-05, 'betas': [0.9, 0.999], 'eps': 1e-08, 'weight_decay': 0.0} [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0} [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] pld_enabled .................. False [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] pld_params ................... False [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] prescale_gradients ........... False [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] scheduler_name ............... WarmupLR [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] scheduler_params ............. {'warmup_min_lr': 0, 'warmup_max_lr': 5e-05, 'warmup_num_steps': 8} [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] sparse_attention ............. None [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] sparse_gradients_enabled ..... False [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] steps_per_print .............. 2000 [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] tensorboard_enabled .......... False [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] tensorboard_job_name ......... DeepSpeedJobName [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] tensorboard_output_path ...... [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] train_batch_size ............. 1024 [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] train_micro_batch_size_per_gpu 16 [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] wall_clock_breakdown ......... False [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] world_size ................... 64 [2021-05-26 04:40:56,473] [INFO] [config.py:752:print] zero_allow_untested_optimizer False [2021-05-26 04:40:56,474] [INFO] [config.py:752:print] zero_config .................. { "stage": 3, "contiguous_gradients": true, "reduce_scatter": false, "reduce_bucket_size": 6.710886e+07, "allgather_partitions": true, "allgather_bucket_size": 5.000000e+08, "overlap_comm": true, "load_from_fp32_weights": true, "elastic_checkpoint": true, "offload_param": { "device": "cpu", "nvme_path": null, "buffer_count": 5, "buffer_size": 1.000000e+08, "max_in_cpu": 1.000000e+09, "pin_memory": true }, "offload_optimizer": { "device": "cpu", "nvme_path": null, "buffer_count": 4, "pin_memory": true, "pipeline_read": false, "pipeline_write": false, "fast_init": false, "pipeline": false }, "sub_group_size": 1.000000e+14, "prefetch_bucket_size": 6.039798e+07, "param_persistence_threshold": 8.192000e+04, "max_live_parameters": 1.000000e+09, "max_reuse_distance": 1.000000e+09, "gather_fp16_weights_on_model_save": false, "ignore_unused_parameters": true } [2021-05-26 04:40:56,474] [INFO] [config.py:752:print] zero_enabled ................. True [2021-05-26 04:40:56,474] [INFO] [config.py:752:print] zero_optimization_stage ...... 3 [2021-05-26 04:40:56,474] [INFO] [config.py:754:print] json = { "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 8, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": 5e-05, "betas": [0.9, 0.999], "eps": 1e-08, "weight_decay": 0.0 } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 5e-05, "warmup_num_steps": 8 } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1.000000e+14, "reduce_bucket_size": 6.710886e+07, "stage3_prefetch_bucket_size": 6.039798e+07, "stage3_param_persistence_threshold": 8.192000e+04, "stage3_max_live_parameters": 1.000000e+09, "stage3_max_reuse_distance": 1.000000e+09, "stage3_gather_fp16_weights_on_model_save": false }, "gradient_accumulation_steps": 1, "gradient_clipping": 1.0, "steps_per_print": 2.000000e+03, "train_batch_size": 1.024000e+03, "train_micro_batch_size_per_gpu": 16, "wall_clock_breakdown": false } Killing subprocess 67163 Killing subprocess 67164 Killing subprocess 67166 Killing subprocess 67167 Killing subprocess 23075 Killing subprocess 23076 Killing subprocess 23077 Killing subprocess 23078 Killing subprocess 63366 Killing subprocess 63367 Killing subprocess 63368 Killing subprocess 63369 Killing subprocess 75633 Killing subprocess 75634 Killing subprocess 75635 Killing subprocess 75636 Killing subprocess 62906 Killing subprocess 62907 Killing subprocess 62908 Killing subprocess 62909 Killing subprocess 50730 Killing subprocess 50731 Killing subprocess 50732 Killing subprocess 50733 Killing subprocess 46815 Killing subprocess 46816 Killing subprocess 46817 Killing subprocess 46818 Killing subprocess 28296 Killing subprocess 28297 Killing subprocess 28298 Killing subprocess 28299 Killing subprocess 34107 Killing subprocess 34108 Killing subprocess 34109 Killing subprocess 34110 Killing subprocess 49946 Killing subprocess 49947 Killing subprocess 49948 Killing subprocess 49949 Killing subprocess 21767 Killing subprocess 21768 Killing subprocess 21769 Killing subprocess 21770 Killing subprocess 13683 Killing subprocess 13684 Killing subprocess 13685 Killing subprocess 13686 Killing subprocess 9471 Killing subprocess 9472 Killing subprocess 9473 Killing subprocess 9474 Killing subprocess 12445 Killing subprocess 12446 Killing subprocess 12447 Killing subprocess 12448 Killing subprocess 60136 Killing subprocess 60137 Killing subprocess 60138 Killing subprocess 60139 Killing subprocess 13587 Killing subprocess 13588 Killing subprocess 13589 Killing subprocess 13590 ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. ***************************************** [2021-05-26 04:50:54,815] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,820] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,835] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,835] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,839] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,844] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,852] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,858] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,859] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,862] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,862] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,871] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,875] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,876] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,876] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,878] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,883] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,883] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,893] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,894] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,895] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,896] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,896] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,896] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,898] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,902] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,903] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,907] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,910] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,913] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,913] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,914] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,914] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,917] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,919] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,920] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,923] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,923] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,923] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,924] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,927] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,927] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,929] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,929] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,932] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,933] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,935] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,936] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,937] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,937] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,937] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,938] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,938] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,950] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,951] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,955] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,956] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,958] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:54,984] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:55,000] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:55,005] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:55,012] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:56,695] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl [2021-05-26 04:50:56,696] [INFO] [distributed.py:46:init_distributed] Initializing torch distributed with backend: nccl nn.functional.linear has been overridden with a more memory efficient version. This will persist unless manually reset. [2021-05-26 04:51:02,757] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed info: version=0.3.17+unknown, git-hash=unknown, git-branch=unknown [2021-05-26 04:51:02,861] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,862] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,862] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,864] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,864] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,864] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,865] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,865] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,865] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,865] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,866] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,866] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,866] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,867] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,868] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,868] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,868] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,868] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,868] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,868] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,868] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,868] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,868] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,869] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,869] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,869] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,869] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,870] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,870] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,870] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,871] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,871] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,871] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,872] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,873] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,873] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,873] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,873] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,873] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,873] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,873] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,873] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,874] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,875] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,877] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,879] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:02,891] [INFO] [utils.py:11:_initialize_parameter_parallel_groups] data_parallel_size: 64, parameter_parallel_size: 64 [2021-05-26 04:51:03,229] [INFO] [engine.py:164:__init__] DeepSpeed Flops Profiler Enabled: False Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 [2021-05-26 04:51:04,136] [INFO] [engine.py:636:_configure_optimizer] Using DeepSpeed Optimizer param name adamw as basic optimizer [2021-05-26 04:51:04,136] [INFO] [engine.py:641:_configure_optimizer] DeepSpeed Basic Optimizer = DeepSpeedCPUAdam Checking ZeRO support for optimizer=DeepSpeedCPUAdam type= [2021-05-26 04:51:04,136] [INFO] [logging.py:60:log_dist] [Rank 0] Creating fp16 ZeRO stage 3 optimizer Initializing ZeRO Stage 3 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 [2021-05-26 04:51:04,212] [INFO] [utils.py:588:see_memory_usage] Stage 3 initialize beginning [2021-05-26 04:51:04,213] [INFO] [utils.py:589:see_memory_usage] MA 2.34 GB Max_MA 3.81 GB CA 5.4 GB Max_CA 5 GB [2021-05-26 04:51:04,213] [INFO] [utils.py:597:see_memory_usage] CPU Virtual Memory: used = 40.07 GB, percent = 21.4% [2021-05-26 04:51:04,213] [INFO] [stage3.py:624:__init__] Reduce bucket size 67108864 [2021-05-26 04:51:04,213] [INFO] [stage3.py:625:__init__] Allgather bucket size 60397977.6 Adam Optimizer #0 is created with AVX512 arithmetic capability. Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.000000, adam_w=1 [2021-05-26 04:51:04,227] [INFO] [stage3.py:39:print_rank_0] FP16 params swapping is False, Max params in CPU is 1000000000.0 [2021-05-26 04:51:04,290] [INFO] [utils.py:588:see_memory_usage] Before creating fp16 partitions [2021-05-26 04:51:04,291] [INFO] [utils.py:589:see_memory_usage] MA 2.34 GB Max_MA 2.34 GB CA 5.4 GB Max_CA 5 GB [2021-05-26 04:51:04,291] [INFO] [utils.py:597:see_memory_usage] CPU Virtual Memory: used = 40.07 GB, percent = 21.4% [2021-05-26 04:51:05,151] [INFO] [stage3.py:39:print_rank_0] fp16 group 0 has 1 subgroups [2021-05-26 04:51:06,824] [INFO] [stage3.py:39:print_rank_0] Swappable FP32 Partitions: count=0 size= 0.00 GB [2021-05-26 04:51:06,824] [INFO] [stage3.py:39:print_rank_0] In-Memory FP32 Partitions: count=1 size= 3.02 GB [2021-05-26 04:51:14,301] [INFO] [stage3.py:819:__init__] optimizer state initialized [2021-05-26 04:51:14,302] [INFO] [stage3.py:39:print_rank_0] Largest partitioned param numel = 811977088 [2021-05-26 04:51:31,916] [INFO] [utils.py:588:see_memory_usage] After initializing ZeRO optimizer [2021-05-26 04:51:31,917] [INFO] [utils.py:589:see_memory_usage] MA 3.09 GB Max_MA 4.09 GB CA 6.92 GB Max_CA 7 GB [2021-05-26 04:51:31,917] [INFO] [utils.py:597:see_memory_usage] CPU Virtual Memory: used = 95.03 GB, percent = 50.7% [2021-05-26 04:51:31,918] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed Final Optimizer = adamw [2021-05-26 04:51:31,918] [INFO] [engine.py:449:_configure_lr_scheduler] DeepSpeed using configured LR scheduler = WarmupLR [2021-05-26 04:51:31,918] [INFO] [logging.py:60:log_dist] [Rank 0] DeepSpeed LR Scheduler = [2021-05-26 04:51:31,918] [INFO] [logging.py:60:log_dist] [Rank 0] step=0, skipped=0, lr=[5e-05], mom=[[0.9, 0.999]] [2021-05-26 04:51:31,918] [INFO] [config.py:748:print] DeepSpeedEngine configuration: [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] activation_checkpointing_config { "partition_activations": false, "contiguous_memory_optimization": false, "cpu_checkpointing": false, "number_checkpoints": null, "synchronize_checkpoint_boundary": false, "profile": false } [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True} [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] allreduce_always_fp32 ........ False [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] amp_enabled .................. False [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] amp_params ................... False [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] checkpoint_tag_validation_enabled True [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] checkpoint_tag_validation_fail False [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] disable_allgather ............ False [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] dump_state ................... False [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] dynamic_loss_scale_args ...... {'init_scale': 256, 'scale_window': 1000, 'delayed_shift': 2, 'min_scale': 1} [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] elasticity_enabled ........... False [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] flops_profiler_config ........ { "enabled": false, "profile_step": 1, "module_depth": -1, "top_modules": 1, "detailed": true, "output_file": null } [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] fp16_enabled ................. True [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] global_rank .................. 0 [2021-05-26 04:51:31,918] [INFO] [config.py:752:print] gradient_accumulation_steps .. 1 [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] gradient_clipping ............ 1.0 [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] gradient_predivide_factor .... 1.0 [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] initial_dynamic_scale ........ 256 [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] loss_scale ................... 0 [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] memory_breakdown ............. False [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] optimizer_legacy_fusion ...... False [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] optimizer_name ............... adamw [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] optimizer_params ............. {'lr': 5e-05, 'betas': [0.9, 0.999], 'eps': 1e-08, 'weight_decay': 0.0} [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0} [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] pld_enabled .................. False [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] pld_params ................... False [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] prescale_gradients ........... False [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] scheduler_name ............... WarmupLR [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] scheduler_params ............. {'warmup_min_lr': 0, 'warmup_max_lr': 5e-05, 'warmup_num_steps': 8} [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] sparse_attention ............. None [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] sparse_gradients_enabled ..... False [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] steps_per_print .............. 2000 [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] tensorboard_enabled .......... False [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] tensorboard_job_name ......... DeepSpeedJobName [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] tensorboard_output_path ...... [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] train_batch_size ............. 512 [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] train_micro_batch_size_per_gpu 8 [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] wall_clock_breakdown ......... False [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] world_size ................... 64 [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] zero_allow_untested_optimizer False [2021-05-26 04:51:31,919] [INFO] [config.py:752:print] zero_config .................. { "stage": 3, "contiguous_gradients": true, "reduce_scatter": false, "reduce_bucket_size": 6.710886e+07, "allgather_partitions": true, "allgather_bucket_size": 5.000000e+08, "overlap_comm": true, "load_from_fp32_weights": true, "elastic_checkpoint": true, "offload_param": { "device": "cpu", "nvme_path": null, "buffer_count": 5, "buffer_size": 1.000000e+08, "max_in_cpu": 1.000000e+09, "pin_memory": true }, "offload_optimizer": { "device": "cpu", "nvme_path": null, "buffer_count": 4, "pin_memory": true, "pipeline_read": false, "pipeline_write": false, "fast_init": false, "pipeline": false }, "sub_group_size": 1.000000e+14, "prefetch_bucket_size": 6.039798e+07, "param_persistence_threshold": 8.192000e+04, "max_live_parameters": 1.000000e+09, "max_reuse_distance": 1.000000e+09, "gather_fp16_weights_on_model_save": false, "ignore_unused_parameters": true } [2021-05-26 04:51:31,920] [INFO] [config.py:752:print] zero_enabled ................. True [2021-05-26 04:51:31,920] [INFO] [config.py:752:print] zero_optimization_stage ...... 3 [2021-05-26 04:51:31,920] [INFO] [config.py:754:print] json = { "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 8, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": 5e-05, "betas": [0.9, 0.999], "eps": 1e-08, "weight_decay": 0.0 } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 5e-05, "warmup_num_steps": 8 } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "cpu", "pin_memory": true }, "offload_param": { "device": "cpu", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1.000000e+14, "reduce_bucket_size": 6.710886e+07, "stage3_prefetch_bucket_size": 6.039798e+07, "stage3_param_persistence_threshold": 8.192000e+04, "stage3_max_live_parameters": 1.000000e+09, "stage3_max_reuse_distance": 1.000000e+09, "stage3_gather_fp16_weights_on_model_save": false }, "gradient_accumulation_steps": 1, "gradient_clipping": 1.0, "steps_per_print": 2.000000e+03, "train_batch_size": 512, "train_micro_batch_size_per_gpu": 8, "wall_clock_breakdown": false } [2021-05-26 04:56:04,854] [INFO] [stage3.py:2708:_overflow_clean_up] [deepscale] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 256, reducing to 256 {'train_runtime': 273.0148, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0144, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0144, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0145, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0148, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0146, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0144, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0145, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 272.9369, 'train_samples_per_second': 3.664, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0143, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0147, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0148, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0125, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0143, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0146, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} {'train_runtime': 273.0149, 'train_samples_per_second': 3.663, 'train_steps_per_second': 0.007, 'epoch': 1.0} [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,861] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,862] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,863] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,864] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:04,866] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False [2021-05-26 04:56:05,256] [INFO] [engine.py:1867:save_fp16_model] Did not save the model output_dir/pytorch_model.bin because `stage3_gather_fp16_weights_on_model_save` is False