#!/bin/bash #SBATCH --job-name=meg_ds_zero_gpt2_perf_n16 #SBATCH --constraint=v100-32g #SBATCH --nodes=16 #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! #SBATCH --cpus-per-task=40 # number of cores per tasks #SBATCH --hint=nomultithread # we get physical cores not logical #SBATCH --gres=gpu:4 # number of gpus #SBATCH --time 00:10:00 # maximum execution time (HH:MM:SS) #SBATCH --output=%x-%j.out # output file name #SBATCH --error=%x-%j.out # error file name (same to watch just one file) #SBATCH --account=six@gpu set -x -e source $six_ALL_CCFRWORK/start-prod nvidia-smi cd $six_ALL_CCFRWORK/code/DeepSpeedExamples/Megatron-LM-v1.1.5-ZeRO3 CHECKPOINT_PATH=$six_ALL_CCFRWORK/models-custom/megatron-gpt2/megatron_lm_345m_v0.0/release VOCAB_FILE=$CHECKPOINT_PATH/gpt2-vocab.json MERGE_FILE=$CHECKPOINT_PATH/gpt2-merges.txt DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/openwebtext-10k/meg-gpt2_text_document SAVE_CHECKPOINT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/gpt2-meg-ds MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) MASTER_PORT=6000 # adjust depending on the number of the nodes NNODES=16 PP_SIZE=16 # NLAYERS must be a multiple of PP_SIZE here MICRO_BATCH_SIZE=48 # works at 48, OOMs at 64 # succeeded: #MSIZE=30 # @ mbs 16 # gpu ~17gb, cpu 5gb res per gpu, 20TFlops MSIZE=52 # @ mbs 48 gpu ~30gb, cpu 5gb res per gpu, 43TFlops # to try: if [[ ${MSIZE} == 7 ]]; then NHIDDEN=4096; NLAYERS=36 elif [[ ${MSIZE} == 14 ]]; then NHIDDEN=6144; NLAYERS=32 elif [[ ${MSIZE} == 18 ]]; then NHIDDEN=6144; NLAYERS=40 elif [[ ${MSIZE} == 25 ]]; then NHIDDEN=7168; NLAYERS=40 elif [[ ${MSIZE} == 30 ]]; then NHIDDEN=7168; NLAYERS=48 elif [[ ${MSIZE} == 39 ]]; then NHIDDEN=8192; NLAYERS=48 elif [[ ${MSIZE} == 52 ]]; then NHIDDEN=8192; NLAYERS=64 elif [[ ${MSIZE} == 65 ]]; then NHIDDEN=9216; NLAYERS=64 elif [[ ${MSIZE} == 81 ]]; then NHIDDEN=10240; NLAYERS=64 elif [[ ${MSIZE} == 97 ]]; then NHIDDEN=11264; NLAYERS=64 elif [[ ${MSIZE} == 116 ]]; then NHIDDEN=12288; NLAYERS=64 elif [[ ${MSIZE} == 136 ]]; then NHIDDEN=13312; NLAYERS=64 elif [[ ${MSIZE} == 158 ]]; then NHIDDEN=14336; NLAYERS=64 elif [[ ${MSIZE} == 181 ]]; then NHIDDEN=15360; NLAYERS=64 elif [[ ${MSIZE} == 206 ]]; then NHIDDEN=16384; NLAYERS=64 else echo "invalid MSIZE: $MSIZE" fi GPUS_PER_NODE=4 NHEADS=32 SEQ_LEN=1024 VOCAB_SIZE=50257 TP_SIZE=4 # always fixed to the size of a single node # Here TP takes over each nodes so DP sees only 16 "gpus" # So total batch size is MICRO_BATCH_SIZE*NNODES GPT_ARGS=" \ --num-layers $NLAYERS \ --hidden-size $NHIDDEN \ --num-attention-heads $NHEADS \ --seq-length $SEQ_LEN \ --max-position-embeddings $SEQ_LEN \ --batch-size $MICRO_BATCH_SIZE \ --train-iters 1000 \ --lr-decay-iters 800 \ --vocab-file $VOCAB_FILE \ --merge-file $MERGE_FILE \ --lr 1.5e-4 \ --lr-decay-style cosine \ --min-lr 1.0e-5 \ --weight-decay 1e-2 \ --clip-grad 1.0 \ --warmup 0.01 \ --fp16 \ " OUTPUT_ARGS=" \ --log-interval 1 \ --save-interval 500 \ --eval-interval 100 \ --eval-iters 10 \ " #ZeRO Configs gradient_accumulation_steps=1 reduce_bucket_size=$(($NHIDDEN*$NHIDDEN)) stage3_prefetch_bucket_size=$(($NHIDDEN*$NHIDDEN*9/10)) stage3_param_persistence_threshold=$((10*$NHIDDEN)) # Here it is different from the other setup # not using this anymore #train_batch_size=$(($WORLD_SIZE*$MICRO_BATCH_SIZE*$gradient_accumulation_steps)) config_json="./ds_zero_stage_3_config.json" # "": $train_batch_size, cat < $config_json { "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, "gradient_accumulation_steps": $gradient_accumulation_steps, "steps_per_print": 10, "zero_optimization": { "stage": 3, "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_prefetch_bucket_size": $stage3_prefetch_bucket_size, "stage3_param_persitence_threshold": $stage3_param_persistence_threshold, "reduce_bucket_size": $reduce_bucket_size, "contiguous_gradients": true }, "gradient_clipping": 1.0, "fp16": { "enabled": true, "loss_scale": 0, "initial_scale_power": 10, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "wall_clock_breakdown": false, "zero_allow_untested_optimizer": false } EOT MP_SIZE=$TP_SIZE stage=3 reduce_scatter=true contigious_gradients=true rbs=50000000 agbs=5000000000 #Activation Checkpointing and Contigious Memory chkp_layers=1 PA=true PA_CPU=true CC=true SYNCHRONIZE=true PROFILE=false # TiledLinear splits, "true" to enable TILED_LINEAR="false" TILE_DIM=1 DEEPSPEED_ARGS=" \ --deepspeed \ --deepspeed_config ${config_json} \ --zero-stage ${stage} \ --zero-reduce-bucket-size ${rbs} \ --zero-allgather-bucket-size ${agbs} \ " if [ "${contigious_gradients}" = "true" ]; then DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \ --zero-contigious-gradients" fi if [ "${reduce_scatter}" = "true" ]; then DEEPSPEED_ARGS="${DEEPSPEED_ARGS} \ --zero-reduce-scatter" fi CHKP_ARGS=" \ --checkpoint-activations \ --deepspeed-activation-checkpointing \ --checkpoint-num-layers ${chkp_layers}" if [ "${PA}" = "true" ]; then CHKP_ARGS="${CHKP_ARGS} --partition-activations" fi if [ "${PA_CPU}" = "true" ]; then CHKP_ARGS="${CHKP_ARGS} \ --checkpoint-in-cpu" fi if [ "${SYNCHRONIZE}" = "true" ]; then CHKP_ARGS="${CHKP_ARGS} \ --synchronize-each-layer" fi if [ "${CC}" = "true" ]; then CHKP_ARGS="${CHKP_ARGS} \ --contigious-checkpointing" fi if [ "${PROFILE}" = "true" ]; then CHKP_ARGS="${CHKP_ARGS} \ --profile-backward" fi if [ "${TILED_LINEAR}" = "true" ]; then tile_opt="${tile_opt} \ --memory-centric-tiled-linear \ --tile-factor=${TILE_DIM}" fi export LAUNCHER="python -u -m torch.distributed.launch \ --nproc_per_node $GPUS_PER_NODE \ --nnodes $NNODES \ --master_addr $MASTER_ADDR \ --master_port $MASTER_PORT \ " # --tensor-model-parallel-size $TP_SIZE \ # --pipeline-model-parallel-size $PP_SIZE \ export CMD=" \ `pwd`/pretrain_gpt2.py \ --model-parallel-size $TP_SIZE \ $GPT_ARGS \ $OUTPUT_ARGS \ --save $SAVE_CHECKPOINT_PATH \ --load $SAVE_CHECKPOINT_PATH \ --data-path $DATA_PATH \ --data-impl mmap \ --split 949,50,1 \ --distributed-backend nccl \ $DEEPSPEED_ARGS \ $CHKP_ARGS \ " # clear old checkpoint as it'd mismatch while we sort things out rm -rf $six_ALL_CCFRWORK/checkpoints/gpt2-meg-ds # model size python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l * (12*h**2 + 13*h) + (v * h) + (s * h) ) / 10**9 :.0f}B')" echo $CMD # to debug - add echo (it exits and prints what it would have launched) clear; srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee meg_ds_zero_gpt2_perf_n16.out # iteration 2/ 1000 | elapsed time per iteration (ms): 122204.8 | learning rate: 3.750E-05 | lm loss: 1.251770E+01 | loss scale: 1024.0 | number of skipped iterations: 0 | number of nan iterations: 0 | # time (ms) | forward: 34007.93 | backward: 87798.87 | backward-backward: 87798.82 | backward-allreduce: 0.00 | optimizer: 393.85 | batch generator: 3.51 # Effective Tera Flops per GPU: 41.83 and total parameters 52.005 B