# Handy info utils for gpt2 ## Calculate model size Calculate the number of params in the model: - h = hidden size - l = num_layers - s = sequence length - v = vocabulary size ``` $ python -c "h=1024; l=24; s=1024; v=50257; print(f'{l*(12*h**2 + 13*h) + v*h + s*h + 2*h >> 20}M')" 338M ``` For our scripts where we only care for Billions: ``` NHIDDEN=4096 NLAYERS=36 SEQ_LEN=512 VOCAB_SIZE=50257 python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l*(12*h**2 + 13*h) + v*h + s*h + 2*h) / 10**9 :.0f}B')" ``` Full math for the above final formula: (num_heads is not really part of the calculations) ```# Let h = hidden size, n = num_layers, k = num_heads, s = sequence length, v = vocabulary size # Compute Embedding Parameters (Vocab + Position) emb_params = (v * h) + (s * h) # Compute Parameters per Transformer Block head_dim = h / k qkv_params_w = k * (3 * (h * (h / k))) = 3 * h * h # 3h^2 mh_reduce_w = (k * ((h / k)) * h = h * h # h^2 qkv_params_b = k * (3 * (h / k)) = 3 * h # 3h mh_reduce_b = h # h pos_ff_exp_w = h * (4 * h) # 4h^2 pos_ff_con_w = (4 * h) * h # 4h^2 pos_ff_exp_b = 4 * h # 4h pos_ff_con_b = h # h layer_norm1 = 2 * h # 2h layer_norm2 = 2 * h # 2h # Magic Formula: total_params = n * (12h^2 + 13h) + (v * h) + (s * h) + 2*h ``` credits: Sidd Karamcheti An estimate variations of this for large hidden size and number of layers (seq and vocab size have very small contribution) ``` NHIDDEN=4096 NLAYERS=36 python -c "h=$NHIDDEN; l=$NLAYERS; print(f'Model size: {(12*l*h**2) / 10**9 :.0f}B')" ``` credits: Mohammad Shoeybi Can calculate the same on a given `model` object (counts shared params once): ``` sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values()) ```