#!/bin/bash #SBATCH --job-name=eval-array # job name #SBATCH --qos=qos_gpu-t3 # t3 enables 20h jobs but on 512 GPUs #SBATCH --ntasks=1 # number of MP tasks #SBATCH --gres=gpu:4 # number of GPUs per node #SBATCH --cpus-per-task=40 # number of cores per tasks #SBATCH -C v100-16g #SBATCH --array=500-17000:1000%26 # array of values #SBATCH --hint=nomultithread # we get physical cores not logical #SBATCH --time=04:00:00 # maximum execution time (HH:MM:SS) #SBATCH --output=std-eval-%A_%a.out # output file name #SBATCH --error=std-eval-%A_%a.out # error file name #SBATCH --account=six@gpu #SBATCH --mail-type=ALL set -x -e source $six_ALL_CCFRWORK/start-prod export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 DATASET=openwebtext SERIALIZATION_DIR=${eha_ALL_CCFRSCRATCH}/experiments/dec_only_t5-tiny python -m torch.distributed.launch --nproc_per_node 4 ${six_ALL_CCFRWORK/code/bigscience/jz/scripts/run_clm.py \ --model_name_or_path ${SERIALIZATION_DIR}/checkpoint-${SLURM_ARRAY_TASK_ID} \ --tokenizer_name t5-small \ --dataset_name ${DATASET} --block_size 1024 \ --preprocessing_num_workers 76 \ --do_eval \ --per_device_eval_batch_size 16 \ --output_dir ${SERIALIZATION_DIR}/checkpoint-${SLURM_ARRAY_TASK_ID} \ --report_to tensorboard --logging_dir ${SERIALIZATION_DIR}/checkpoint-${SLURM_ARRAY_TASK_ID}