#!/bin/bash #SBATCH --job-name=gpt2_repro_initial # job name #SBATCH --partition=gpu_p13 # partition with 8 32GB gpu nodes #SBATCH --qos=qos_gpu-t4 # t4 enables 100H trainings #SBATCH --ntasks=1 # number of MP tasks #SBATCH --gres=gpu:8 # number of GPUs per node #SBATCH --cpus-per-task=10 # number of cores per tasks #SBATCH --output=%j.out # output file name #SBATCH --error=%j.out # error file name (same to watch just one file) #SBATCH --account=six@gpu #SBATCH --mail-type=ALL set -x -e source $six_ALL_CCFRWORK/start-prod export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 DATASET=openwebtext N_LAYER=3 N_EMBD=128 N_INNER=128 N_HEAD=8 LOG_FREQUENCY=10000 RUN_NAME=${N_LAYER}-${N_EMBD}-${N_INNER} SERIALIZATION_DIR=${SCRATCH}/experiments/gpt2_repro/${RUN_NAME} LOGGING_DIR=${SCRATCH}/tensorboard/gpt2_repro/${RUN_NAME} deepspeed ${SCRATCH}/code/bigscience/jz/scripts/run_clm.py \ --deepspeed ${SCRATCH}/code/bigscience/jz/configs/deepspeed/ds_zero2.json \ --model_type gpt2 \ --tokenizer_name gpt2 \ --dataset_name ${DATASET} --block_size 1024 \ --cache_dir ${ALL_CCFRSCRATCH}/cache_dir \ --preprocessing_num_workers 76 \ --do_train --do_eval \ --max_steps 15000 \ --max_train_samples 10000000 \ --per_device_train_batch_size 4 --gradient_accumulation_steps 16 \ --per_device_eval_batch_size 8 \ --output_dir ${SERIALIZATION_DIR} --overwrite_output_dir \ --report_to tensorboard \ --logging_strategy steps --logging_first_step --logging_dir ${LOGGING_DIR} --logging_steps ${LOG_FREQUENCY} \ --eval_steps ${LOG_FREQUENCY} --evaluation_strategy steps \ --save_strategy steps --save_steps ${LOG_FREQUENCY} --save_total_limit 31 \ --n_layer ${N_LAYER} --n_embd ${N_EMBD} --n_inner ${N_INNER} --n_head ${N_HEAD}