#!/bin/bash #SBATCH --job-name=deconlyt5 #SBATCH --qos=qos_gpu-t4 #SBATCH --nodes=32 #SBATCH --ntasks-per-node=1 # number of MP tasks #SBATCH --gres=gpu:8 # number of GPUs per node #SBATCH -C v100-32g #SBATCH --cpus-per-task=40 # number of cores per tasks #SBATCH --hint=nomultithread # we get physical cores not logical #SBATCH --time=50:00:00 # maximum execution time (HH:MM:SS) #SBATCH --output=%j.out # output file name #SBATCH --error=%j.out # error file name (same to watch just one file) #SBATCH --account=six@gpu #SBATCH --mail-type=ALL GPUS_PER_NODE=8 NNODES=$SLURM_JOB_NUM_NODES WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) set -x -e source $six_ALL_CCFRWORK/start-prod cd $six_ALL_CCFRWORK/code/transformers export PYTHONPATH=$six_ALL_CCFRWORK/code/transformers export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics export PYTHONPATH=src export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) MASTER_PORT=13370 export LAUNCHER=" \ python -u -m torch.distributed.launch \ --nproc_per_node $GPUS_PER_NODE \ --nnodes $NNODES \ --master_addr $MASTER_ADDR \ --master_port $MASTER_PORT \ " DATASET=openwebtext LOGG_FREQUENCY=125 SAVE_FREQUENCY=250 EVAL_FREQUENCY=1000 SERIALIZATION_DIR=${ALL_CCFRSCRATCH}/experiments/dec_only_t5-xl-multinode LOGGING_DIR=${ALL_CCFRSCRATCH}/tensorboard/dec_only_t5-xl-multinode export CMD=" \ ${SCRATCH}/code/bigscience/jz/scripts/run_clm.py \ --deepspeed ${six_ALL_CCFRWORK/code/bigscience/jz/configs/deepspeed/ds_zero3.json \ --model_type decoder_only_t5 \ --tokenizer_name t5-small \ --config_name ${six_ALL_CCFRWORK/code/bigscience/jz/configs/dec_only_t5/decoder_only_t5-xl.json \ --dataset_name ${DATASET} --block_size 1024 \ --preprocessing_num_workers 76 \ --do_train --do_eval \ --max_steps 34000 \ --per_device_train_batch_size 1 --gradient_accumulation_steps 2 \ --per_device_eval_batch_size 1 \ --learning_rate 6e-4 \ --adam_beta1 0.9 --adam_beta2 0.95 --weight_decay 0.1 \ --warmup_steps 800 \ --max_grad_norm 1.0 \ --output_dir ${SERIALIZATION_DIR} --overwrite_output_dir \ --report_to tensorboard \ --logging_strategy steps --logging_first_step --logging_dir ${LOGGING_DIR} --logging_steps ${LOGG_FREQUENCY} \ --eval_steps ${EVAL_FREQUENCY} --evaluation_strategy steps --max_val_samples 10000 \ --save_strategy steps --save_steps ${SAVE_FREQUENCY} --save_total_limit 200 " # to debug - add echo (it exits and prints what it would have launched) srun bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD'