#!/bin/bash #SBATCH --job-name=preprocesslmt5 #SBATCH --partition=prepost #SBATCH --ntasks=1 # number of MP tasks #SBATCH --cpus-per-task=40 # number of cores per tasks #SBATCH --hint=nomultithread # we get physical cores not logical #SBATCH --time=10:00:00 # maximum execution time (HH:MM:SS) #SBATCH --output=%x-%j.out # output file name #SBATCH --error=%x-%j.out # error file name (same to watch just one file) #SBATCH --account=six@gpu #SBATCH --mail-type=ALL set -x -e source $six_ALL_CCFRWORK/start-prod export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 DATASET=openwebtext LOGG_FREQUENCY=125 SAVE_FREQUENCY=250 EVAL_FREQUENCY=100000 SERIALIZATION_DIR=${eha_ALL_CCFRSCRATCH}/experiments/preprocesslmt5 LOGGING_DIR=${eha_ALL_CCFRSCRATCH}/tensorboard/preprocesslmt5 python ${six_ALL_CCFRWORK/code/bigscience/jz/scripts/run_text2text.py \ --model_type t5 \ --tokenizer_name t5-small \ --config_name ${six_ALL_CCFRWORK/code/bigscience/jz/configs/lm_t5/lm_t5-tiny.json \ --dataset_name ${DATASET} --block_size 512 \ --preprocessing_num_workers 76 \ --do_train --do_eval \ --max_train_samples 1 --max_val_samples 1 \ --per_device_train_batch_size 1 --gradient_accumulation_steps 1 \ --per_device_eval_batch_size 1 \ --output_dir ${SERIALIZATION_DIR} --overwrite_output_dir \ --report_to tensorboard \ --logging_strategy steps --logging_first_step --logging_dir ${LOGGING_DIR} --logging_steps ${LOGG_FREQUENCY} \ --eval_steps ${EVAL_FREQUENCY} --evaluation_strategy steps \ --save_strategy steps --save_steps ${SAVE_FREQUENCY} --save_total_limit 200