#!/bin/bash #SBATCH --job-name=1B3.slurm #SBATCH --qos=qos_gpu-t3 #SBATCH --nodes=16 #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! #SBATCH --cpus-per-task=40 # number of cores per tasks #SBATCH --hint=nomultithread # we get physical cores not logical #SBATCH --gres=gpu:4 # number of gpus #SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS) #SBATCH --output=%x-%j.out # output file name #SBATCH --error=%x-%j.out # error file name (same to watch just one file) #SBATCH --account=six@v100 set -x -e # TODO: modify these for your training setup, just Ctrl-F replace DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/synched_exps/ CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints REPO_PATH=$DATA_OUTPUT_PATH/-logs TENSORBOARD_PATH=$REPO_PATH/tensorboard CODECARBON_PATH=$REPO_PATH/codecarbon LOGS_PATH=$REPO_PATH/logs # You need to git clone the Megatron-DeepSpeed MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRWORK/code/Megatron-DeepSpeed # TODO: you may change the dataset, some examples are at tr3-1B3-baseline (tr3 = c4 + t5-tokenizer, tr3m = the Pile) VOCAB_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-vocab.json MERGE_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-merges.txt DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/oscar-en/meg-gpt2_text_document # defining the right environment variables source $six_ALL_CCFRWORK/start-prod export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 cd $MEGATRON_DEEPSPEED_REPO # testing for potential faulty nodes srun --jobid $SLURM_JOBID bash -c 'python -c "import torch, socket; print(socket.gethostname(), torch.cuda.is_available())"' # so processes know who to talk to MASTER_ADDR=`scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1` MASTER_PORT=6000 # TODO: this is our base config for 1B3, edit PP/TP/batch size/model config if smaller or bigger GPUS_PER_NODE=4 NNODES=16 PP_SIZE=2 # NLAYERS must be a multiple of PP_SIZE here TP_SIZE=1 # always fixed to the size of a single node DP_SIZE=$((NNODES*GPUS_PER_NODE/(PP_SIZE*TP_SIZE))) # will get derived automatically by trainer MICRO_BATCH_SIZE=1 GLOBAL_BATCH_SIZE=512 TRAIN_ITER=73_242_187 NLAYERS=24 NHIDDEN=2048 NHEADS=16 FFN_HIDDEN_SIZE=8192 SEQ_LEN=2048 SAVE_INTERVAL=1500 OPTIMIZER_ARGS=" \ --optimizer adam \ --adam-beta1 0.9 \ --adam-beta2 0.999 \ --adam-eps 1e-8 \ --lr 2e-4 \ --min-lr 1e-5 \ --lr-decay-style cosine \ --lr-warmup-samples 183_105 \ --clip-grad 1.0 \ --weight-decay 1e-1 \ " EXIT_OPTS=" \ --exit-duration-in-mins 1190 \ " GPT_ARGS=" \ --num-layers $NLAYERS \ --hidden-size $NHIDDEN \ --num-attention-heads $NHEADS \ --ffn-hidden-size $FFN_HIDDEN_SIZE \ --seq-length $SEQ_LEN \ --max-position-embeddings $SEQ_LEN \ --micro-batch-size $MICRO_BATCH_SIZE \ --global-batch-size $GLOBAL_BATCH_SIZE \ --rampup-batch-size 32 32 2_000_000 \ --train-samples $TRAIN_ITER \ --vocab-file $VOCAB_FILE \ --merge-file $MERGE_FILE \ --loss-scale 12 \ --clip-grad 1.0 \ --fp16 \ --checkpoint-activations \ $OPTIMIZER_ARGS \ $EXIT_OPTS \ " OUTPUT_ARGS=" \ --log-interval 200 \ --save-interval $SAVE_INTERVAL \ --eval-interval 1000 \ --eval-iters 100 \ --tensorboard-dir $TENSORBOARD_PATH \ --tensorboard-queue-size 5 \ --log-timers-to-tensorboard \ --log-batch-size-to-tensorboard \ --log-validation-ppl-to-tensorboard \ " # TODO: Add --codecarbon-dir $CODECARBON_PATH \ if you want to use codecarbon, not adding it for now to make the current # series of experiments consistent, especially speed-wise. Adding it once Tr6 and Tr7 are done ZERO_STAGE=1 config_json="./ds_config.$SLURM_JOBID.json" # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() cat < $config_json { "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, "train_batch_size": $GLOBAL_BATCH_SIZE, "gradient_clipping": 1.0, "zero_optimization": { "stage": $ZERO_STAGE }, "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 500, "hysteresis": 2, "min_loss_scale": 1, "initial_scale_power": 12 }, "steps_per_print": 2000, "wall_clock_breakdown": false } EOT DEEPSPEED_ARGS=" \ --deepspeed \ --deepspeed_config ${config_json} \ --zero-stage ${ZERO_STAGE} \ --deepspeed-activation-checkpointing \ " export LAUNCHER="python -u -m torch.distributed.launch \ --nproc_per_node $GPUS_PER_NODE \ --nnodes $NNODES \ --master_addr $MASTER_ADDR \ --master_port $MASTER_PORT \ " export CMD=" \ `pwd`/pretrain_gpt.py \ --tensor-model-parallel-size $TP_SIZE \ --pipeline-model-parallel-size $PP_SIZE \ $GPT_ARGS \ $OUTPUT_ARGS \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data-path $DATA_PATH \ --data-impl mmap \ --split 949,50,1 \ --distributed-backend nccl \ $DEEPSPEED_ARGS \ " # # clear old checkpoint as it'd mismatch while we sort things out # rm -rf $SAVE_CHECKPOINT_PATH echo $CMD # We create the folder where the logs and codecarbon will be stored. mkdir -p $LOGS_PATH # to debug - add echo (it exits and prints what it would have launched) srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a $LOGS_PATH/main_log.txt