#!/bin/bash #SBATCH --job-name=tr11c-2B5-ml #SBATCH --qos=qos_gpu-t3 #SBATCH --nodes=32 #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! #SBATCH --cpus-per-task=40 # number of cores per tasks #SBATCH --hint=nomultithread # we get physical cores not logical #SBATCH --gres=gpu:4 # number of gpus #SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS) #SBATCH --output=%x-%j.out # output file name #SBATCH --account=six@v100 set -x -e #source $six_ALL_CCFRWORK/start-py38-pt110 #source $six_ALL_CCFRWORK/start-py38-pt111 source $six_ALL_CCFRWORK/code/tr11-176B-ml/bigscience/train/tr11-176B-ml/start-tr11-176B-ml echo "START TIME: $(date)" variant=main DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr11c-2B5-ml CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints/$variant REPO_PATH=$DATA_OUTPUT_PATH/tr11c-2B5-ml-logs TENSORBOARD_PATH=$REPO_PATH/tensorboard/$variant LOGS_PATH=$REPO_PATH/logs/$variant mkdir -p $LOGS_PATH MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRWORK/code/tr11-176B-ml/Megatron-DeepSpeed cd $MEGATRON_DEEPSPEED_REPO BIGSCIENCE_REPO=$six_ALL_CCFRWORK/code/bigscience TRAIN_DATA_PATH=$MEGATRON_DEEPSPEED_REPO/data/train-splits-2B5.txt VALID_DATA_PATH=$MEGATRON_DEEPSPEED_REPO/data/valid-splits-2B5.txt CATALOGUE_JSON_PATH=$BIGSCIENCE_REPO/data/catalogue/training_dataset_ratios_merged_nigercongo_v3.json LOAD_RATIOS_SCRIPT=$BIGSCIENCE_REPO/data/catalogue/load_ratios_meg_ds_format.py python $LOAD_RATIOS_SCRIPT --dataset-ratios-path $CATALOGUE_JSON_PATH --split train --output-meg-ds-ratio-file $TRAIN_DATA_PATH python $LOAD_RATIOS_SCRIPT --dataset-ratios-path $CATALOGUE_JSON_PATH --split valid --output-meg-ds-ratio-file $VALID_DATA_PATH TOKENIZER_NAME_OR_PATH=bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles # defining the right environment variables export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 # testing for potential faulty nodes # srun --jobid $SLURM_JOBID bash -c 'python -c "import torch, socket; print(socket.gethostname(), torch.cuda.is_available())"' # so processes know who to talk to MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) MASTER_PORT=6000 GPUS_PER_NODE=4 NNODES=$SLURM_NNODES PP_SIZE=4 TP_SIZE=4 MICRO_BATCH_SIZE=1 GLOBAL_BATCH_SIZE=512 NLAYERS=30 NHIDDEN=2560 NHEADS=32 SEQ_LEN=2048 SAVE_INTERVAL=250 TRAIN_SAMPLES=220_000_000 # 450B tokens LR_DECAY_SAMPLES=200_000_000 # Decay for the first 410B tokens then continue at fixed --min-lr LR_WARMUP_SAMPLES=183_105 # 375M tokens OPTIMIZER_ARGS=" \ --optimizer adam \ --adam-beta1 0.9 \ --adam-beta2 0.95 \ --adam-eps 1e-8 \ --lr 1.6e-4 \ --min-lr 1e-5 \ --lr-decay-style cosine \ --lr-decay-samples $LR_DECAY_SAMPLES \ --lr-warmup-samples $LR_WARMUP_SAMPLES \ --clip-grad 1.0 \ --weight-decay 1e-1 \ " # for 20h 1190, for 100h 5990 # --exit-duration-in-mins 1190 \ EXIT_OPTS=" \ --exit-duration-in-mins 5990 \ " GPT_ARGS=" \ --pp-partition-method 'type:transformer|embedding' \ --num-layers $NLAYERS \ --hidden-size $NHIDDEN \ --num-attention-heads $NHEADS \ --seq-length $SEQ_LEN \ --max-position-embeddings $SEQ_LEN \ --micro-batch-size $MICRO_BATCH_SIZE \ --rampup-batch-size 192 32 9_765_625 \ --global-batch-size $GLOBAL_BATCH_SIZE \ --train-samples $TRAIN_SAMPLES \ --tokenizer-type PretrainedFromHF \ --tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \ --init-method-std 0.0048 \ --embed-layernorm \ --fp16 \ --seed 42 \ --position-embedding-type alibi \ --checkpoint-activations \ --abort-on-unmet-fused-kernel-constraints \ --pad-vocab-size-to 250880 \ $OPTIMIZER_ARGS \ $EXIT_OPTS \ " # TODO: decide on efficient eval-interval + eval-iters OUTPUT_ARGS=" \ --log-interval 1 \ --save-interval $SAVE_INTERVAL \ --eval-interval 1000 \ --eval-iters 1 \ --tensorboard-dir $TENSORBOARD_PATH \ --tensorboard-queue-size 5 \ --log-timers-to-tensorboard \ --log-batch-size-to-tensorboard \ --log-validation-ppl-to-tensorboard \ " ZERO_STAGE=0 # important: bf16 must use z0! it implements its own zero stage 1 equivalent config_json="./ds_config.$SLURM_JOBID.json" # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() cat < $config_json { "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, "train_batch_size": $GLOBAL_BATCH_SIZE, "gradient_clipping": 1.0, "zero_optimization": { "stage": $ZERO_STAGE }, "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 500, "hysteresis": 2, "min_loss_scale": 1, "initial_scale_power": 12 }, "steps_per_print": 2000, "wall_clock_breakdown": false } EOT DEEPSPEED_ARGS=" \ --deepspeed \ --deepspeed_config ${config_json} \ --zero-stage ${ZERO_STAGE} \ --deepspeed-activation-checkpointing \ " export LAUNCHER="python -u -m torch.distributed.run \ --nproc_per_node $GPUS_PER_NODE \ --nnodes $NNODES \ --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \ --rdzv_backend c10d \ --max_restarts 0 \ --tee 3 \ " export CMD=" \ `pwd`/pretrain_gpt.py \ --tensor-model-parallel-size $TP_SIZE \ --pipeline-model-parallel-size $PP_SIZE \ $GPT_ARGS \ $OUTPUT_ARGS \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --train-weighted-split-paths-path $TRAIN_DATA_PATH \ --valid-weighted-split-paths-path $VALID_DATA_PATH \ --data-impl mmap \ --distributed-backend nccl \ $DEEPSPEED_ARGS \ " echo $CMD # do not remove or the training will hang and nodes will be lost w/o this workaround export CUDA_LAUNCH_BLOCKING=1 # hide duplicated errors using this hack - will be properly fixed in pt-1.12 export TORCHELASTIC_ERROR_FILE=/tmp/torch-elastic-error.json clear; srun --jobid $SLURM_JOBID bash -c "$LAUNCHER --node_rank \$SLURM_PROCID $CMD" 2>&1 | tee -a $LOGS_PATH/main_log.txt echo "END TIME: $(date)"