import os from transformers import TrainerCallback, is_tensorboard_available from transformers.integrations import rewrite_logs class LogFlosCallback(TrainerCallback): """ A :class:`~transformers.TrainerCallback` that adds current flos to every log. """ def on_log(self, args, state, control, logs=None, **kwargs): logs["total_flos"] = state.total_flos class TensorBoardFloIndexedCallback(TrainerCallback): """ A :class:`~transformers.TrainerCallback` that sends the logs to `TensorBoard `__. Args: tb_writer (:obj:`SummaryWriter`, `optional`): The writer to use. Will instantiate one if not set. """ def __init__(self, tb_writer=None): has_tensorboard = is_tensorboard_available() assert ( has_tensorboard ), "TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or install tensorboardX." if has_tensorboard: try: from torch.utils.tensorboard import SummaryWriter # noqa: F401 self._SummaryWriter = SummaryWriter except ImportError: try: from tensorboardX import SummaryWriter self._SummaryWriter = SummaryWriter except ImportError: self._SummaryWriter = None else: self._SummaryWriter = None self.tb_writer = tb_writer def _init_summary_writer(self, args, log_dir=None): log_dir = log_dir or args.logging_dir if self._SummaryWriter is not None: self.tb_writer = self._SummaryWriter(log_dir=log_dir) def on_train_begin(self, args, state, control, **kwargs): if not state.is_world_process_zero: return log_dir = None if state.is_hyper_param_search: trial_name = state.trial_name if trial_name is not None: log_dir = os.path.join(args.logging_dir, trial_name) self._init_summary_writer(args, log_dir) if self.tb_writer is not None: self.tb_writer.add_text("args", args.to_json_string()) if "model" in kwargs: model = kwargs["model"] if hasattr(model, "config") and model.config is not None: model_config_json = model.config.to_json_string() self.tb_writer.add_text("model_config", model_config_json) # Version of TensorBoard coming from tensorboardX does not have this method. if hasattr(self.tb_writer, "add_hparams"): self.tb_writer.add_hparams(args.to_sanitized_dict(), metric_dict={}) def on_log(self, args, state, control, logs=None, **kwargs): if not state.is_world_process_zero: return if self.tb_writer is None: self._init_summary_writer(args) if self.tb_writer is not None: logs = rewrite_logs(logs) self.tb_writer.add_scalar("Conversion/x steps - y flos", state.total_flos, state.global_step) self.tb_writer.add_scalar("Conversion/x flos - y steps", state.global_step, state.total_flos) for k, v in logs.items(): if isinstance(v, (int, float)): self.tb_writer.add_scalar(f"Flos/{k}", v, state.total_flos) self.tb_writer.add_scalar(f"Steps/{k}", v, state.global_step) self.tb_writer.flush() def on_train_end(self, args, state, control, **kwargs): if self.tb_writer: self.tb_writer.close()