Add files using upload-large-folder tool
Browse files- LICENSE +201 -0
- README.md +97 -0
- chat_data_pipeline/cleaners.py +79 -0
- chat_data_pipeline/filters.py +289 -0
- chat_data_pipeline/kenlm_model.py +200 -0
- chat_data_pipeline/minhash_deduplication.py +319 -0
- chat_data_pipeline/pipeline.py +75 -0
- chat_data_pipeline/preprocessor.py +91 -0
- chat_data_pipeline/utils.py +339 -0
- experiments/instructions/vicuna-v0.yaml +42 -0
- experiments/tiny-example.yaml +41 -0
- main.py +139 -0
- requirements.txt +9 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Chat Data Pipeline
|
2 |
+
|
3 |
+
This repository helps to clean, filter and deduplicate conversation datasets.
|
4 |
+
|
5 |
+
Open Source Community rules the world, so please contribute: open Pull Request or create an Issue.
|
6 |
+
|
7 |
+
Star this repository:
|
8 |
+
|
9 |
+
[](https://github.com/AlekseyKorshuk/chat-data-pipeline)
|
10 |
+
|
11 |
+
## Quick Start
|
12 |
+
|
13 |
+
Clone and install dependencies:
|
14 |
+
|
15 |
+
```shell
|
16 |
+
git clone https://github.com/AlekseyKorshuk/chat-data-pipeline
|
17 |
+
cd chat-data-pipeline
|
18 |
+
pip install -r requirements.txt
|
19 |
+
```
|
20 |
+
|
21 |
+
We will prepare very small dataset of instructions:
|
22 |
+
|
23 |
+
```shell
|
24 |
+
python3 main.py --config_path ./experiments/tiny-example.yaml
|
25 |
+
```
|
26 |
+
|
27 |
+
You can take a look at the YAML file to discover the structure of the config.
|
28 |
+
|
29 |
+
Initial dataset has the following structure of one sample:
|
30 |
+
|
31 |
+
```json
|
32 |
+
{
|
33 |
+
"conversation": [
|
34 |
+
{
|
35 |
+
"content": "Explain the main differences between an alligator and a crocodile.",
|
36 |
+
"do_train": false,
|
37 |
+
"role": "User"
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"content": "Alligators and crocodiles belong to the same order, Crocodilia, but they have several differences. 1) Shape of the snout: Alligators have a U-shaped, wider snout, while crocodiles have a more pointed, V-shaped snout. 2) Teeth placement: In an alligator, lower teeth are mostly hidden when its mouth is closed, while in a crocodile, the fourth lower tooth is visible even when the mouth is closed. 3) Habitat: Alligators are mostly found in freshwater habitats such as swamps and rivers, while crocodiles can be found in both freshwater and saltwater habitats. 4) Distribution: Alligators are mainly found in the southeastern United States and parts of China, whereas crocodiles have a more widespread distribution across Africa, Asia, the Americas, and Australia.",
|
41 |
+
"do_train": true,
|
42 |
+
"role": "Assistant"
|
43 |
+
}
|
44 |
+
]
|
45 |
+
}
|
46 |
+
```
|
47 |
+
|
48 |
+
This example could have more conversation turns: User, Assistant, User, Assistant...
|
49 |
+
|
50 |
+
As well role can be "System" at the very first item in the list.
|
51 |
+
|
52 |
+
# Custom Setup
|
53 |
+
|
54 |
+
In general, you can use this for any dataset that has a string column. Here is an example usage:
|
55 |
+
|
56 |
+
```python
|
57 |
+
from datasets import load_dataset
|
58 |
+
|
59 |
+
from chat_data_pipeline import utils
|
60 |
+
from chat_data_pipeline.preprocessor import DataPreprocessor
|
61 |
+
from chat_data_pipeline import cleaners as cln
|
62 |
+
from chat_data_pipeline import filters as ftr
|
63 |
+
|
64 |
+
dataset = load_dataset("AlekseyKorshuk/tiny-imdb", split="train")
|
65 |
+
|
66 |
+
deduplication_config = {
|
67 |
+
'do_deduplication': True,
|
68 |
+
'minhash_config': {
|
69 |
+
'ngram_size': 5,
|
70 |
+
'num_perm': 256,
|
71 |
+
'threshold': 0.7,
|
72 |
+
'min_ngram_size': 5
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
cleaners = [cln.fix_utf8_encoding, cln.normalize_punctuation, cln.remove_empty_lines]
|
77 |
+
filters = [
|
78 |
+
utils.custom_partial(ftr.check_word_number,
|
79 |
+
min_word_threshold=0,
|
80 |
+
max_word_threshold=10000),
|
81 |
+
]
|
82 |
+
|
83 |
+
preprocessor = DataPreprocessor(
|
84 |
+
dataset=dataset,
|
85 |
+
column_name="text",
|
86 |
+
cleaners=cleaners,
|
87 |
+
filters=filters,
|
88 |
+
deduplication_config=deduplication_config,
|
89 |
+
verbose=False,
|
90 |
+
)
|
91 |
+
preprocessed_dataset = preprocessor.run()
|
92 |
+
```
|
93 |
+
|
94 |
+
## Acknowledgment
|
95 |
+
|
96 |
+
This is a friendly fork of Squeakily by CarperAI, but this repository aims at conversation data, uses pandas to
|
97 |
+
speed up the pipeline and latest near deduplication.
|
chat_data_pipeline/cleaners.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import ftfy
|
3 |
+
|
4 |
+
|
5 |
+
def fix_utf8_encoding(text):
|
6 |
+
if text is None:
|
7 |
+
return ""
|
8 |
+
return ftfy.fix_text(text)
|
9 |
+
|
10 |
+
|
11 |
+
# Adapted from:
|
12 |
+
# https://github.com/bigscience-workshop/data-preparation/blob/main/preprocessing/training/01b_oscar_cleaning_and_filtering/filtering.py#L95
|
13 |
+
whitespace = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", ""}
|
14 |
+
|
15 |
+
|
16 |
+
def normalize_whitespace(text):
|
17 |
+
chars = [char if char not in whitespace else " " for char in text]
|
18 |
+
text = "".join(chars)
|
19 |
+
return text
|
20 |
+
|
21 |
+
|
22 |
+
unicode_punctuation = {
|
23 |
+
",": ",",
|
24 |
+
"。": ".",
|
25 |
+
"、": ",",
|
26 |
+
"„": '"',
|
27 |
+
"”": '"',
|
28 |
+
"“": '"',
|
29 |
+
"«": '"',
|
30 |
+
"»": '"',
|
31 |
+
"1": '"',
|
32 |
+
"」": '"',
|
33 |
+
"「": '"',
|
34 |
+
"《": '"',
|
35 |
+
"》": '"',
|
36 |
+
"´": "'",
|
37 |
+
"∶": ":",
|
38 |
+
":": ":",
|
39 |
+
"?": "?",
|
40 |
+
"!": "!",
|
41 |
+
"(": "(",
|
42 |
+
")": ")",
|
43 |
+
";": ";",
|
44 |
+
"–": "-",
|
45 |
+
"—": " - ",
|
46 |
+
".": ". ",
|
47 |
+
"~": "~",
|
48 |
+
"’": "'",
|
49 |
+
"…": "...",
|
50 |
+
"━": "-",
|
51 |
+
"〈": "<",
|
52 |
+
"〉": ">",
|
53 |
+
"【": "[",
|
54 |
+
"】": "]",
|
55 |
+
"%": "%",
|
56 |
+
"►": "-",
|
57 |
+
}
|
58 |
+
|
59 |
+
|
60 |
+
def normalize_punctuation(text):
|
61 |
+
chars = [unicode_punctuation.get(char, char) for char in text]
|
62 |
+
text = "".join(chars)
|
63 |
+
return text
|
64 |
+
|
65 |
+
|
66 |
+
def remove_empty_lines(text):
|
67 |
+
lines = text.splitlines()
|
68 |
+
func = lambda x: not re.match(r'^\s*$', x)
|
69 |
+
filtered = filter(func, lines)
|
70 |
+
text = "\n".join(filtered)
|
71 |
+
if text is None or isinstance(text, str):
|
72 |
+
text = ""
|
73 |
+
return text
|
74 |
+
|
75 |
+
|
76 |
+
def clean_new_lines(text):
|
77 |
+
text = text.strip()
|
78 |
+
text = text.replace("\n", "")
|
79 |
+
return text
|
chat_data_pipeline/filters.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import string
|
2 |
+
|
3 |
+
from chat_data_pipeline import utils
|
4 |
+
|
5 |
+
|
6 |
+
def check_word_number(
|
7 |
+
document,
|
8 |
+
min_word_threshold=5,
|
9 |
+
max_word_threshold=512,
|
10 |
+
dry_run=False,
|
11 |
+
):
|
12 |
+
words = utils.get_words(document)
|
13 |
+
if dry_run:
|
14 |
+
return len(words)
|
15 |
+
return min_word_threshold <= len(words) <= max_word_threshold
|
16 |
+
|
17 |
+
|
18 |
+
def check_perplexity(
|
19 |
+
document,
|
20 |
+
kenlm_model,
|
21 |
+
min_perplexity_threshold=300,
|
22 |
+
max_perplexity_threshold=3_000,
|
23 |
+
dry_run=False,
|
24 |
+
):
|
25 |
+
perplexity = kenlm_model.get_perplexity(document)
|
26 |
+
if dry_run:
|
27 |
+
return perplexity
|
28 |
+
return min_perplexity_threshold <= perplexity <= max_perplexity_threshold
|
29 |
+
|
30 |
+
|
31 |
+
nsfw_words = ['2g1c', '2 girls 1 cup', 'acrotomophilia', 'alabama hot pocket', 'alaskan pipeline', 'anal', 'anilingus',
|
32 |
+
'anus', 'apeshit', 'arsehole', 'ass', 'asshole', 'assmunch', 'auto erotic', 'autoerotic', 'babeland',
|
33 |
+
'baby batter', 'baby juice', 'ball gag', 'ball gravy', 'ball kicking', 'ball licking', 'ball sack',
|
34 |
+
'ball sucking', 'bangbros', 'bangbus', 'bareback', 'barely legal', 'barenaked', 'bastard', 'bastardo',
|
35 |
+
'bastinado', 'bbw', 'bdsm', 'beaner', 'beaners', 'beaver cleaver', 'beaver lips', 'beastiality',
|
36 |
+
'bestiality', 'big black', 'big breasts', 'big knockers', 'big tits', 'bimbos', 'birdlock', 'bitch',
|
37 |
+
'bitches', 'black cock', 'blonde action', 'blonde on blonde action', 'blowjob', 'blow job',
|
38 |
+
'blow your load', 'blue waffle', 'blumpkin', 'bollocks', 'bondage', 'boner', 'boob', 'boobs',
|
39 |
+
'booty call', 'brown showers', 'brunette action', 'bukkake', 'bulldyke', 'bullet vibe', 'bullshit',
|
40 |
+
'bung hole', 'bunghole', 'busty', 'butt', 'buttcheeks', 'butthole', 'camel toe', 'camgirl', 'camslut',
|
41 |
+
'camwhore', 'carpet muncher', 'carpetmuncher', 'chocolate rosebuds', 'cialis', 'circlejerk',
|
42 |
+
'cleveland steamer', 'clit', 'clitoris', 'clover clamps', 'clusterfuck', 'cock', 'cocks', 'coprolagnia',
|
43 |
+
'coprophilia', 'cornhole', 'coon', 'coons', 'creampie', 'cum', 'cumming', 'cumshot', 'cumshots',
|
44 |
+
'cunnilingus', 'cunt', 'darkie', 'date rape', 'daterape', 'deep throat', 'deepthroat', 'dendrophilia',
|
45 |
+
'dick', 'dildo', 'dingleberry', 'dingleberries', 'dirty pillows', 'dirty sanchez', 'doggie style',
|
46 |
+
'doggiestyle', 'doggy style', 'doggystyle', 'dog style', 'dolcett', 'domination', 'dominatrix', 'dommes',
|
47 |
+
'donkey punch', 'double dong', 'double penetration', 'dp action', 'dry hump', 'dvda', 'eat my ass',
|
48 |
+
'ecchi', 'ejaculation', 'erotic', 'erotism', 'escort', 'eunuch', 'fag', 'faggot', 'fecal', 'felch',
|
49 |
+
'fellatio', 'feltch', 'female squirting', 'femdom', 'figging', 'fingerbang', 'fingering', 'fisting',
|
50 |
+
'foot fetish', 'footjob', 'frotting', 'fuck', 'fuck buttons', 'fuckin', 'fucking', 'fucktards',
|
51 |
+
'fudge packer', 'fudgepacker', 'futanari', 'gangbang', 'gang bang', 'gay sex', 'genitals', 'giant cock',
|
52 |
+
'girl on', 'girl on top', 'girls gone wild', 'goatcx', 'goatse', 'god damn', 'gokkun', 'golden shower',
|
53 |
+
'goodpoop', 'goo girl', 'goregasm', 'grope', 'group sex', 'g-spot', 'guro', 'hand job', 'handjob',
|
54 |
+
'hard core', 'hardcore', 'hentai', 'homoerotic', 'honkey', 'hooker', 'horny', 'hot carl', 'hot chick',
|
55 |
+
'how to kill', 'how to murder', 'huge fat', 'humping', 'incest', 'intercourse', 'jack off', 'jail bait',
|
56 |
+
'jailbait', 'jelly donut', 'jerk off', 'jigaboo', 'jiggaboo', 'jiggerboo', 'jizz', 'juggs', 'kike',
|
57 |
+
'kinbaku', 'kinkster', 'kinky', 'knobbing', 'leather restraint', 'leather straight jacket', 'lemon party',
|
58 |
+
'livesex', 'lolita', 'lovemaking', 'make me come', 'male squirting', 'masturbate', 'masturbating',
|
59 |
+
'masturbation', 'menage a trois', 'milf', 'missionary position', 'mong', 'motherfucker', 'mound of venus',
|
60 |
+
'mr hands', 'muff diver', 'muffdiving', 'nambla', 'nawashi', 'negro', 'neonazi', 'nigga', 'nigger',
|
61 |
+
'nig nog', 'nimphomania', 'nipple', 'nipples', 'nsfw', 'nsfw images', 'nude', 'nudity', 'nutten',
|
62 |
+
'nympho', 'nymphomania', 'octopussy', 'omorashi', 'one cup two girls', 'one guy one jar', 'orgasm',
|
63 |
+
'orgy', 'paedophile', 'paki', 'panties', 'panty', 'pedobear', 'pedophile', 'pegging', 'penis',
|
64 |
+
'phone sex', 'piece of shit', 'pikey', 'pissing', 'piss pig', 'pisspig', 'playboy', 'pleasure chest',
|
65 |
+
'pole smoker', 'ponyplay', 'poof', 'poon', 'poontang', 'punany', 'poop chute', 'poopchute', 'porn',
|
66 |
+
'porno', 'pornography', 'prince albert piercing', 'pthc', 'pubes', 'pussy', 'queaf', 'queef', 'quim',
|
67 |
+
'raghead', 'raging boner', 'rape', 'raping', 'rapist', 'rectum', 'reverse cowgirl', 'rimjob', 'rimming',
|
68 |
+
'rosy palm', 'rosy palm and her 5 sisters', 'rusty trombone', 'sadism', 'santorum', 'scat', 'schlong',
|
69 |
+
'scissoring', 'semen', 'sex', 'sexcam', 'sexo', 'sexy', 'sexual', 'sexually', 'sexuality',
|
70 |
+
'shaved beaver', 'shaved pussy', 'shemale', 'shibari', 'shit', 'shitblimp', 'shitty', 'shota',
|
71 |
+
'shrimping', 'skeet', 'slanteye', 'slut', 's&m', 'smut', 'snatch', 'snowballing', 'sodomize', 'sodomy',
|
72 |
+
'spastic', 'spic', 'splooge', 'splooge moose', 'spooge', 'spread legs', 'spunk', 'strap on', 'strapon',
|
73 |
+
'strappado', 'strip club', 'style doggy', 'suck', 'sucks', 'suicide girls', 'sultry women', 'swastika',
|
74 |
+
'swinger', 'tainted love', 'taste my', 'tea bagging', 'threesome', 'throating', 'thumbzilla', 'tied up',
|
75 |
+
'tight white', 'tit', 'tits', 'titties', 'titty', 'tongue in a', 'topless', 'tosser', 'towelhead',
|
76 |
+
'tranny', 'tribadism', 'tub girl', 'tubgirl', 'tushy', 'twat', 'twink', 'twinkie', 'two girls one cup',
|
77 |
+
'undressing', 'upskirt', 'urethra play', 'urophilia', 'vagina', 'venus mound', 'viagra', 'vibrator',
|
78 |
+
'violet wand', 'vorarephilia', 'voyeur', 'voyeurweb', 'voyuer', 'vulva', 'wank', 'wetback', 'wet dream',
|
79 |
+
'white power', 'whore', 'worldsex', 'wrapping men', 'wrinkled starfish', 'xx', 'xxx', 'yaoi',
|
80 |
+
'yellow showers', 'yiffy', 'zoophilia', '🖕']
|
81 |
+
|
82 |
+
|
83 |
+
def check_nsfw_words(
|
84 |
+
document,
|
85 |
+
flagged_words_threshold=0.025,
|
86 |
+
dry_run=False,
|
87 |
+
):
|
88 |
+
document = str(document.lower())
|
89 |
+
num_words = len(utils.get_words(document))
|
90 |
+
flagged_words_ratio = 0
|
91 |
+
if num_words > 0:
|
92 |
+
num_bad_words = sum(
|
93 |
+
[document.count(bad_word) for bad_word in nsfw_words]
|
94 |
+
)
|
95 |
+
flagged_words_ratio = num_bad_words / num_words
|
96 |
+
|
97 |
+
if dry_run:
|
98 |
+
return flagged_words_ratio
|
99 |
+
return flagged_words_ratio <= flagged_words_threshold
|
100 |
+
|
101 |
+
|
102 |
+
def check_lowercase_ratio(
|
103 |
+
document,
|
104 |
+
lowercase_threshold=0.75,
|
105 |
+
dry_run=False,
|
106 |
+
):
|
107 |
+
ascii_lowercase = string.ascii_lowercase
|
108 |
+
count = lambda l1, l2: len(list(filter(lambda c: c in l2, l1)))
|
109 |
+
letter_count = count(document, ascii_lowercase)
|
110 |
+
lowercase_ratio = letter_count / len(document) if len(document) else 0
|
111 |
+
if dry_run:
|
112 |
+
return lowercase_ratio
|
113 |
+
return lowercase_ratio >= lowercase_threshold
|
114 |
+
|
115 |
+
|
116 |
+
def check_char_repetition(
|
117 |
+
document,
|
118 |
+
char_repetition_len=10,
|
119 |
+
char_repetition_threshold=0.2,
|
120 |
+
dry_run=False,
|
121 |
+
):
|
122 |
+
char_rep_ratio = utils.get_char_repetition_ratio(
|
123 |
+
document, char_repetition_len
|
124 |
+
)
|
125 |
+
if dry_run:
|
126 |
+
return char_rep_ratio
|
127 |
+
else:
|
128 |
+
return char_rep_ratio <= char_repetition_threshold
|
129 |
+
|
130 |
+
|
131 |
+
def check_truncation(
|
132 |
+
document,
|
133 |
+
splitter_token="<|truncation_splitter|>",
|
134 |
+
dry_run=False,
|
135 |
+
):
|
136 |
+
model_response, edited_response = document.split(splitter_token)
|
137 |
+
is_truncation = edited_response not in model_response
|
138 |
+
if dry_run:
|
139 |
+
is_truncation = int(is_truncation)
|
140 |
+
return is_truncation
|
141 |
+
|
142 |
+
|
143 |
+
punctuations = {".", "!", "?", "*", '"', "”", "~", "…", "'", "]", ")", "`", ";"}
|
144 |
+
|
145 |
+
|
146 |
+
def check_completion(
|
147 |
+
document,
|
148 |
+
dry_run=False,
|
149 |
+
):
|
150 |
+
document = str(document).strip()
|
151 |
+
last_char = None if len(document) == 0 else document[-1]
|
152 |
+
|
153 |
+
is_completed = last_char in punctuations
|
154 |
+
if dry_run:
|
155 |
+
is_completed = int(is_completed)
|
156 |
+
return is_completed
|
157 |
+
|
158 |
+
|
159 |
+
def check_gender(
|
160 |
+
document,
|
161 |
+
splitter_token="<|gender_splitter|>",
|
162 |
+
dry_run=False,
|
163 |
+
):
|
164 |
+
response, edited_response = document.split(splitter_token)
|
165 |
+
gendered_words = ['he', 'she', 'him', 'her', 'girl', 'boy']
|
166 |
+
response_words = response.lower().split()
|
167 |
+
edited_words = edited_response.lower().split()
|
168 |
+
min_length = min(len(response_words), len(edited_words))
|
169 |
+
for i in range(min_length):
|
170 |
+
is_response_word_gender = response_words[i] in gendered_words
|
171 |
+
is_edited_word_gender = edited_words[i] in gendered_words
|
172 |
+
if is_response_word_gender and is_edited_word_gender and \
|
173 |
+
response_words[i] != edited_words[i]:
|
174 |
+
return True
|
175 |
+
return False
|
176 |
+
|
177 |
+
|
178 |
+
def check_empty(
|
179 |
+
document,
|
180 |
+
dry_run=False,
|
181 |
+
):
|
182 |
+
document = document.replace("...", "")
|
183 |
+
document = document.replace("…", "")
|
184 |
+
document = document.strip()
|
185 |
+
return len(document) != 0
|
186 |
+
|
187 |
+
|
188 |
+
unwanted_words = [
|
189 |
+
"prioritize human safety"
|
190 |
+
"ethical principles"
|
191 |
+
"harmful to human beings"
|
192 |
+
"September 2021"
|
193 |
+
"as a language model",
|
194 |
+
"ethical guidelines",
|
195 |
+
"as an AI language model",
|
196 |
+
"my guidelines",
|
197 |
+
"As an AI",
|
198 |
+
"prioritize user safety",
|
199 |
+
"adhere to ethical guidelines",
|
200 |
+
"harmful consequences",
|
201 |
+
"potentially harmful",
|
202 |
+
"dangerous activities",
|
203 |
+
"promote safety",
|
204 |
+
"well-being of all users",
|
205 |
+
"responsible information sharing",
|
206 |
+
"jeopardize the safety",
|
207 |
+
"illegal actions or intentions",
|
208 |
+
"undermine the stability",
|
209 |
+
"promote the well-being",
|
210 |
+
"illegal activities or actions",
|
211 |
+
"adherence to the law",
|
212 |
+
"potentially be harmful",
|
213 |
+
"illegal substances or activities",
|
214 |
+
"committed to promoting",
|
215 |
+
"safe information",
|
216 |
+
"lawful information",
|
217 |
+
"cannot provide guidance",
|
218 |
+
"cannot provide information",
|
219 |
+
"unable to offer assistance",
|
220 |
+
"cannot engage in discussions",
|
221 |
+
"programming prohibits",
|
222 |
+
"follow ethical guidelines",
|
223 |
+
"ensure the safety",
|
224 |
+
"involves an illegal subject",
|
225 |
+
"prioritize safety",
|
226 |
+
"illegal subject",
|
227 |
+
"prioritize user well-being",
|
228 |
+
"cannot support or promote",
|
229 |
+
"activities that could harm",
|
230 |
+
"pose a risk to others",
|
231 |
+
"against my programming",
|
232 |
+
"activities that could undermine",
|
233 |
+
"potentially dangerous",
|
234 |
+
"not within the scope",
|
235 |
+
"designed to prioritize safety",
|
236 |
+
"not able to provide",
|
237 |
+
"maintain user safety",
|
238 |
+
"adhere to safety guidelines",
|
239 |
+
"dangerous or harmful",
|
240 |
+
"cannot provide any information",
|
241 |
+
"focus on promoting safety",
|
242 |
+
]
|
243 |
+
harsh_unwanted_words = [
|
244 |
+
"i'm sorry",
|
245 |
+
"i am sorry",
|
246 |
+
"OpenAI",
|
247 |
+
"ChatGPT",
|
248 |
+
"Assistant",
|
249 |
+
"don't know",
|
250 |
+
"do not know",
|
251 |
+
"can not feel",
|
252 |
+
"can't feel",
|
253 |
+
"don't understand",
|
254 |
+
"do not understand",
|
255 |
+
"<noinput>",
|
256 |
+
"sorry",
|
257 |
+
"AI",
|
258 |
+
"language model",
|
259 |
+
"LLM",
|
260 |
+
"Artificial intelligence"
|
261 |
+
"assist",
|
262 |
+
"harm",
|
263 |
+
"help",
|
264 |
+
"welcome",
|
265 |
+
]
|
266 |
+
unwanted_words = [unwanted_word.lower().strip() for unwanted_word in unwanted_words]
|
267 |
+
harsh_unwanted_words = [unwanted_word.lower().strip() for unwanted_word in unwanted_words + harsh_unwanted_words]
|
268 |
+
|
269 |
+
|
270 |
+
def check_ethics(
|
271 |
+
document,
|
272 |
+
dry_run=False,
|
273 |
+
):
|
274 |
+
document = str(document.lower())
|
275 |
+
for unwanted_string in unwanted_words:
|
276 |
+
if unwanted_string in document:
|
277 |
+
return False
|
278 |
+
return True
|
279 |
+
|
280 |
+
|
281 |
+
def check_ethics_harsh(
|
282 |
+
document,
|
283 |
+
dry_run=False,
|
284 |
+
):
|
285 |
+
document = str(document.lower())
|
286 |
+
for unwanted_string in harsh_unwanted_words:
|
287 |
+
if unwanted_string in document:
|
288 |
+
return False
|
289 |
+
return True
|
chat_data_pipeline/kenlm_model.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adapted from KenLM repository: https://huggingface.co/edugp/kenlm
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
import unicodedata
|
8 |
+
|
9 |
+
from huggingface_hub import cached_download, hf_hub_url
|
10 |
+
import sentencepiece
|
11 |
+
import kenlm
|
12 |
+
from requests.exceptions import HTTPError
|
13 |
+
from typing import Dict
|
14 |
+
|
15 |
+
KENLM_MODEL_REPO = "edugp/kenlm"
|
16 |
+
|
17 |
+
|
18 |
+
class SentencePiece:
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
model: str,
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
self.sp = sentencepiece.SentencePieceProcessor()
|
25 |
+
self.sp.load(str(model))
|
26 |
+
|
27 |
+
def do(self, text: dict) -> dict:
|
28 |
+
tokenized = self.sp.encode_as_pieces(text)
|
29 |
+
return " ".join(tokenized)
|
30 |
+
|
31 |
+
|
32 |
+
class KenlmModel:
|
33 |
+
digit_re: re.Pattern = re.compile(r"\d")
|
34 |
+
unicode_punct: Dict[str, str] = {
|
35 |
+
",": ",",
|
36 |
+
"。": ".",
|
37 |
+
"、": ",",
|
38 |
+
"„": '"',
|
39 |
+
"”": '"',
|
40 |
+
"“": '"',
|
41 |
+
"«": '"',
|
42 |
+
"»": '"',
|
43 |
+
"1": '"',
|
44 |
+
"」": '"',
|
45 |
+
"「": '"',
|
46 |
+
"《": '"',
|
47 |
+
"》": '"',
|
48 |
+
"´": "'",
|
49 |
+
"∶": ":",
|
50 |
+
":": ":",
|
51 |
+
"?": "?",
|
52 |
+
"!": "!",
|
53 |
+
"(": "(",
|
54 |
+
")": ")",
|
55 |
+
";": ";",
|
56 |
+
"–": "-",
|
57 |
+
"—": " - ",
|
58 |
+
".": ". ",
|
59 |
+
"~": "~",
|
60 |
+
"’": "'",
|
61 |
+
"…": "...",
|
62 |
+
"━": "-",
|
63 |
+
"〈": "<",
|
64 |
+
"〉": ">",
|
65 |
+
"【": "[",
|
66 |
+
"】": "]",
|
67 |
+
"%": "%",
|
68 |
+
"►": "-",
|
69 |
+
}
|
70 |
+
unicode_punct_re = re.compile(f"[{''.join(unicode_punct.keys())}]")
|
71 |
+
non_printing_chars_re = re.compile(
|
72 |
+
f"[{''.join(map(chr, list(range(0, 32)) + list(range(127, 160))))}]"
|
73 |
+
)
|
74 |
+
kenlm_model_dir = None
|
75 |
+
sentence_piece_model_dir = None
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
model_dataset: str,
|
80 |
+
language: str,
|
81 |
+
lower_case: bool = False,
|
82 |
+
remove_accents: bool = False,
|
83 |
+
normalize_numbers: bool = True,
|
84 |
+
punctuation: int = 1,
|
85 |
+
):
|
86 |
+
self.download_kenlm_model(model_dataset, language)
|
87 |
+
try:
|
88 |
+
self.model = kenlm.Model(self.kenlm_model_dir)
|
89 |
+
self.tokenizer = SentencePiece(self.sentence_piece_model_dir)
|
90 |
+
except OSError:
|
91 |
+
os.remove(self.kenlm_model_dir)
|
92 |
+
if os.path.exists(self.sentence_piece_model_dir):
|
93 |
+
os.remove(self.sentence_piece_model_dir)
|
94 |
+
raise OSError(
|
95 |
+
"File was corrupt and should have been removed. Please, retry."
|
96 |
+
)
|
97 |
+
self.accent = remove_accents
|
98 |
+
self.case = lower_case
|
99 |
+
self.numbers = normalize_numbers
|
100 |
+
self.punct = punctuation
|
101 |
+
|
102 |
+
@classmethod
|
103 |
+
def from_pretrained(
|
104 |
+
cls,
|
105 |
+
*,
|
106 |
+
model_dataset: str,
|
107 |
+
language: str,
|
108 |
+
lower_case: bool,
|
109 |
+
remove_accents: bool,
|
110 |
+
normalize_numbers: bool,
|
111 |
+
punctuation: int,
|
112 |
+
):
|
113 |
+
return cls(
|
114 |
+
model_dataset,
|
115 |
+
language,
|
116 |
+
lower_case,
|
117 |
+
remove_accents,
|
118 |
+
normalize_numbers,
|
119 |
+
punctuation,
|
120 |
+
)
|
121 |
+
|
122 |
+
def pp(self, log_score, length):
|
123 |
+
return 10.0 ** (-log_score / length)
|
124 |
+
|
125 |
+
def get_perplexity(self, doc: str, normalize_cc_net: bool = True):
|
126 |
+
if normalize_cc_net:
|
127 |
+
doc = self.normalize(
|
128 |
+
doc,
|
129 |
+
accent=self.accent,
|
130 |
+
case=self.case,
|
131 |
+
numbers=self.numbers,
|
132 |
+
punct=self.punct,
|
133 |
+
)
|
134 |
+
# Tokenize (after normalizing): See https://github.com/facebookresearch/cc_net/blob/bda555bd1cf1ee2e0b925363e62a61cd46c8b60d/cc_net/mine.py#L352 for full pipeline
|
135 |
+
doc = self.tokenizer.do(doc)
|
136 |
+
doc_log_score, doc_length = 0, 0
|
137 |
+
for line in doc.split("\n"):
|
138 |
+
log_score = self.model.score(line)
|
139 |
+
length = len(line.split()) + 1
|
140 |
+
doc_log_score += log_score
|
141 |
+
doc_length += length
|
142 |
+
return round(self.pp(doc_log_score, doc_length), 1)
|
143 |
+
|
144 |
+
def normalize(
|
145 |
+
self,
|
146 |
+
line: str,
|
147 |
+
accent: bool = True,
|
148 |
+
case: bool = True,
|
149 |
+
numbers: bool = True,
|
150 |
+
punct: int = 1,
|
151 |
+
) -> str:
|
152 |
+
line = line.strip()
|
153 |
+
if not line:
|
154 |
+
return line
|
155 |
+
if case:
|
156 |
+
line = line.lower()
|
157 |
+
if accent:
|
158 |
+
line = self.strip_accents(line)
|
159 |
+
if numbers:
|
160 |
+
line = self.digit_re.sub("0", line)
|
161 |
+
if punct == 1:
|
162 |
+
line = self.replace_unicode_punct(line)
|
163 |
+
elif punct == 2:
|
164 |
+
line = self.remove_unicode_punct(line)
|
165 |
+
line = self.remove_non_printing_char(line)
|
166 |
+
return line
|
167 |
+
|
168 |
+
def strip_accents(self, line: str) -> str:
|
169 |
+
"""Strips accents from a piece of text."""
|
170 |
+
nfd = unicodedata.normalize("NFD", line)
|
171 |
+
output = [c for c in nfd if unicodedata.category(c) != "Mn"]
|
172 |
+
if len(output) == line:
|
173 |
+
return line
|
174 |
+
return "".join(output)
|
175 |
+
|
176 |
+
def replace_unicode_punct(self, text: str) -> str:
|
177 |
+
return "".join(self.unicode_punct.get(c, c) for c in text)
|
178 |
+
|
179 |
+
def remove_unicode_punct(self, text: str) -> str:
|
180 |
+
"""More aggressive version of replace_unicode_punct but also faster."""
|
181 |
+
return self.unicode_punct_re.sub("", text)
|
182 |
+
|
183 |
+
def remove_non_printing_char(self, text: str) -> str:
|
184 |
+
return self.non_printing_chars_re.sub("", text)
|
185 |
+
|
186 |
+
def download_kenlm_model(self, model_dataset: str, language: str):
|
187 |
+
try:
|
188 |
+
kenlm_model_url = hf_hub_url(
|
189 |
+
KENLM_MODEL_REPO, filename=f"{model_dataset}/{language}.arpa.trie.bin"
|
190 |
+
)
|
191 |
+
self.kenlm_model_dir = cached_download(kenlm_model_url)
|
192 |
+
except HTTPError:
|
193 |
+
kenlm_model_url = hf_hub_url(
|
194 |
+
KENLM_MODEL_REPO, filename=f"{model_dataset}/{language}.arpa.bin"
|
195 |
+
)
|
196 |
+
self.kenlm_model_dir = cached_download(kenlm_model_url)
|
197 |
+
sentence_piece_model_url = hf_hub_url(
|
198 |
+
KENLM_MODEL_REPO, filename=f"{model_dataset}/{language}.sp.model"
|
199 |
+
)
|
200 |
+
self.sentence_piece_model_dir = cached_download(sentence_piece_model_url)
|
chat_data_pipeline/minhash_deduplication.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adapted from BigCode project: https://github.com/bigcode-project/bigcode-dataset/tree/main/near_deduplication
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
import gc
|
8 |
+
import hashlib
|
9 |
+
import multiprocessing as mp
|
10 |
+
import os
|
11 |
+
import random
|
12 |
+
import re
|
13 |
+
import struct
|
14 |
+
import time
|
15 |
+
from collections import defaultdict
|
16 |
+
from itertools import tee
|
17 |
+
from typing import Any, Dict, Iterable, List, Tuple
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
from scipy.integrate import quad as integrate
|
21 |
+
from tqdm import tqdm
|
22 |
+
|
23 |
+
from chat_data_pipeline.pipeline import logger
|
24 |
+
|
25 |
+
SEED = 42
|
26 |
+
NON_ALPHA = re.compile("[^A-Za-z_0-9]")
|
27 |
+
RNG = np.random.RandomState(SEED)
|
28 |
+
MAX_HASH = np.uint64((1 << 32) - 1)
|
29 |
+
MERSENNE_PRIME = np.uint64((1 << 61) - 1)
|
30 |
+
|
31 |
+
|
32 |
+
def ngrams(sequence: List[str], n: int, min_ngram_size: int) -> Iterable:
|
33 |
+
"""
|
34 |
+
Directly taken from nltk package to avoid dependency.
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
----------
|
38 |
+
sequence : list
|
39 |
+
The sequence of items to be n-grammed.
|
40 |
+
n : int
|
41 |
+
The order of the n-grams to be extracted.
|
42 |
+
min_ngram_size : int
|
43 |
+
The minimum size of n-grams.
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
Iterable
|
48 |
+
The n-grams generated from the sequence.
|
49 |
+
"""
|
50 |
+
if len(sequence) < min_ngram_size:
|
51 |
+
return []
|
52 |
+
iterables = tee(sequence, n)
|
53 |
+
for i, sub_iterable in enumerate(iterables):
|
54 |
+
for _ in range(i):
|
55 |
+
next(sub_iterable, None)
|
56 |
+
return zip(*iterables)
|
57 |
+
|
58 |
+
|
59 |
+
def sha1_hash32(data):
|
60 |
+
"""
|
61 |
+
Directly taken from datasketch package to avoid dependency.
|
62 |
+
|
63 |
+
Parameters
|
64 |
+
----------
|
65 |
+
data : bytes
|
66 |
+
|
67 |
+
Returns
|
68 |
+
-------
|
69 |
+
int
|
70 |
+
"""
|
71 |
+
return struct.unpack("<I", hashlib.sha1(data).digest()[:4])[0]
|
72 |
+
|
73 |
+
|
74 |
+
def embed_func(
|
75 |
+
content: str,
|
76 |
+
idx: int,
|
77 |
+
*,
|
78 |
+
num_perm: int,
|
79 |
+
ngram_size: int,
|
80 |
+
hashranges: List[Tuple[int, int]],
|
81 |
+
permutations: np.ndarray,
|
82 |
+
min_ngram_size: int = 5,
|
83 |
+
) -> Dict[str, Any]:
|
84 |
+
"""
|
85 |
+
Combined with some datasketch code to better parallelize computation.
|
86 |
+
|
87 |
+
Parameters
|
88 |
+
----------
|
89 |
+
content : str
|
90 |
+
The content to be embedded.
|
91 |
+
idx : int
|
92 |
+
The index of the content.
|
93 |
+
num_perm : int
|
94 |
+
The number of permutations.
|
95 |
+
ngram_size : int
|
96 |
+
The size of n-grams.
|
97 |
+
hashranges : List[Tuple[int, int]]
|
98 |
+
The ranges of hash values.
|
99 |
+
permutations : np.ndarray
|
100 |
+
The permutations for the minhash.
|
101 |
+
min_ngram_size : int
|
102 |
+
The minimum size of n-grams.
|
103 |
+
|
104 |
+
Returns
|
105 |
+
-------
|
106 |
+
Dict[str, Any]
|
107 |
+
The hash values in each range and the index.
|
108 |
+
"""
|
109 |
+
hashvalues = np.ones(num_perm, dtype=np.uint64) * MAX_HASH
|
110 |
+
tokens = {" ".join(t) for t in ngrams(NON_ALPHA.split(content), ngram_size, min_ngram_size)}
|
111 |
+
hv = np.array([sha1_hash32(token.encode("utf-8")) for token in tokens], dtype=np.uint64) # noqa: E501
|
112 |
+
a, b = permutations
|
113 |
+
phv = np.bitwise_and(((hv * np.tile(a, (len(hv), 1)).T).T + b) % MERSENNE_PRIME, MAX_HASH) # noqa: E501
|
114 |
+
hashvalues = np.vstack([phv, hashvalues]).min(axis=0)
|
115 |
+
Hs = [bytes(hashvalues[start:end].byteswap().data) for start, end in hashranges]
|
116 |
+
return {"__signatures__": Hs, "__id__": idx}
|
117 |
+
|
118 |
+
|
119 |
+
def optimal_param(
|
120 |
+
threshold: float,
|
121 |
+
num_perm: int,
|
122 |
+
false_positive_weight: float = 0.5,
|
123 |
+
false_negative_weight: float = 0.5,
|
124 |
+
):
|
125 |
+
"""
|
126 |
+
Compute the optimal `MinHashLSH` parameter that minimizes the weighted sum
|
127 |
+
of probabilities of false positive and false negative, taken from datasketch.
|
128 |
+
|
129 |
+
Parameters
|
130 |
+
----------
|
131 |
+
threshold : float
|
132 |
+
The threshold for similarity.
|
133 |
+
num_perm : int
|
134 |
+
The number of permutations.
|
135 |
+
false_positive_weight : float
|
136 |
+
The weight of false positive.
|
137 |
+
false_negative_weight : float
|
138 |
+
The weight of false negative.
|
139 |
+
|
140 |
+
Returns
|
141 |
+
-------
|
142 |
+
Tuple[int, int]
|
143 |
+
The optimal `b` and `r` parameters.
|
144 |
+
The number of bands, and the number of rows per band respectively.
|
145 |
+
"""
|
146 |
+
|
147 |
+
def false_positive_probability(threshold: float, b: int, r: int):
|
148 |
+
"""Source: `datasketch.lsh`"""
|
149 |
+
|
150 |
+
def proba(s):
|
151 |
+
return 1 - (1 - s ** float(r)) ** float(b)
|
152 |
+
|
153 |
+
a, _ = integrate(proba, 0.0, threshold)
|
154 |
+
return a
|
155 |
+
|
156 |
+
def false_negative_probability(threshold: float, b: int, r: int):
|
157 |
+
"""Source: `datasketch.lsh`"""
|
158 |
+
|
159 |
+
def proba(s):
|
160 |
+
return 1 - (1 - (1 - s ** float(r)) ** float(b))
|
161 |
+
|
162 |
+
a, _ = integrate(proba, threshold, 1.0)
|
163 |
+
return a
|
164 |
+
|
165 |
+
min_error = float("inf")
|
166 |
+
opt = (0, 0)
|
167 |
+
for b in range(1, num_perm + 1):
|
168 |
+
max_r = int(num_perm / b)
|
169 |
+
for r in range(1, max_r + 1):
|
170 |
+
fp = false_positive_probability(threshold, b, r)
|
171 |
+
fn = false_negative_probability(threshold, b, r)
|
172 |
+
error = fp * false_positive_weight + fn * false_negative_weight
|
173 |
+
if error < min_error:
|
174 |
+
min_error = error
|
175 |
+
opt = (b, r)
|
176 |
+
return opt
|
177 |
+
|
178 |
+
|
179 |
+
class UnionFind:
|
180 |
+
def __init__(self):
|
181 |
+
self.parent: Dict[int, int] = {}
|
182 |
+
|
183 |
+
def find(self, x):
|
184 |
+
if x not in self.parent:
|
185 |
+
self.parent[x] = x
|
186 |
+
if self.parent[x] != x:
|
187 |
+
self.parent[x] = self.find(self.parent[x])
|
188 |
+
return self.parent[x]
|
189 |
+
|
190 |
+
def union(self, x, y):
|
191 |
+
px = self.find(x)
|
192 |
+
py = self.find(y)
|
193 |
+
self.parent[px] = self.parent[py] = min(px, py)
|
194 |
+
|
195 |
+
|
196 |
+
def prepare_dataset(dataset):
|
197 |
+
def map_func(example):
|
198 |
+
text = ""
|
199 |
+
for message in example["conversation"]:
|
200 |
+
if message["do_train"]:
|
201 |
+
text += message["content"] + "\n\n"
|
202 |
+
return {
|
203 |
+
"text": text.strip()
|
204 |
+
}
|
205 |
+
|
206 |
+
dedup_ready_dataset = dataset.map(
|
207 |
+
map_func,
|
208 |
+
num_proc=os.cpu_count(),
|
209 |
+
desc="Preparing..."
|
210 |
+
)
|
211 |
+
return dedup_ready_dataset
|
212 |
+
|
213 |
+
|
214 |
+
def deduplicate(
|
215 |
+
dataset, # noqa: E501
|
216 |
+
column="text",
|
217 |
+
ngram_size=5,
|
218 |
+
num_perm=256,
|
219 |
+
threshold=0.7,
|
220 |
+
min_ngram_size=5,
|
221 |
+
):
|
222 |
+
mp.set_start_method("fork", force=True)
|
223 |
+
uf = UnionFind()
|
224 |
+
|
225 |
+
time_measures = {}
|
226 |
+
start_time = time.time()
|
227 |
+
|
228 |
+
B, R = optimal_param(threshold, num_perm)
|
229 |
+
HASH_RANGES = [(i * R, (i + 1) * R) for i in range(B)]
|
230 |
+
HASH_TABLES = [defaultdict(set) for _ in range(B)]
|
231 |
+
|
232 |
+
time_measures["load_dataset"] = time.time()
|
233 |
+
time_measures["load_dataset"] = time.time() - time_measures["load_dataset"]
|
234 |
+
DATA_SIZE = len(dataset)
|
235 |
+
PERMUTATIONS = np.array(
|
236 |
+
[
|
237 |
+
(
|
238 |
+
RNG.randint(1, MERSENNE_PRIME, dtype=np.uint64),
|
239 |
+
RNG.randint(0, MERSENNE_PRIME, dtype=np.uint64),
|
240 |
+
)
|
241 |
+
for _ in range(num_perm)
|
242 |
+
],
|
243 |
+
dtype=np.uint64,
|
244 |
+
).T
|
245 |
+
|
246 |
+
time_measures["minhash"] = time.time()
|
247 |
+
embedded = dataset.map(
|
248 |
+
function=embed_func,
|
249 |
+
fn_kwargs={
|
250 |
+
"num_perm": num_perm,
|
251 |
+
"hashranges": HASH_RANGES,
|
252 |
+
"ngram_size": ngram_size,
|
253 |
+
"permutations": PERMUTATIONS,
|
254 |
+
"min_ngram_size": min_ngram_size,
|
255 |
+
},
|
256 |
+
input_columns=[column],
|
257 |
+
remove_columns=dataset.column_names,
|
258 |
+
num_proc=os.cpu_count(),
|
259 |
+
with_indices=True,
|
260 |
+
desc="Fingerprinting...",
|
261 |
+
)
|
262 |
+
time_measures["minhash"] = time.time() - time_measures["minhash"]
|
263 |
+
|
264 |
+
time_measures["clustering"] = time.time()
|
265 |
+
batch_size: int = 10000
|
266 |
+
for i in tqdm(
|
267 |
+
range(0, len(embedded), batch_size), dynamic_ncols=True, desc="Iterating MinHashes..." # noqa: E501
|
268 |
+
):
|
269 |
+
batch = embedded[i: i + batch_size]
|
270 |
+
for key, Hs in zip(batch["__id__"], batch["__signatures__"]):
|
271 |
+
for H, hashtable in zip(Hs, HASH_TABLES):
|
272 |
+
hashtable[H].add(key)
|
273 |
+
for table in tqdm(HASH_TABLES, dynamic_ncols=True, desc="Clustering..."):
|
274 |
+
for cluster in table.values():
|
275 |
+
if len(cluster) <= 1:
|
276 |
+
continue
|
277 |
+
idx = min(cluster)
|
278 |
+
for x in cluster:
|
279 |
+
uf.union(x, idx)
|
280 |
+
time_measures["clustering"] = time.time() - time_measures["clustering"]
|
281 |
+
|
282 |
+
time_measures["filtering"] = time.time()
|
283 |
+
gc.freeze()
|
284 |
+
gc.disable()
|
285 |
+
dataset = dataset.map(
|
286 |
+
function=lambda _, idx: {"__cluster__": uf.find(idx)},
|
287 |
+
with_indices=True,
|
288 |
+
num_proc=os.cpu_count(),
|
289 |
+
new_fingerprint=str(random.getrandbits(128)),
|
290 |
+
desc="Finding clusters...",
|
291 |
+
)
|
292 |
+
gc.enable()
|
293 |
+
gc.collect()
|
294 |
+
# This is where the deduplication happens
|
295 |
+
# Since there is no easy groupby in datasets
|
296 |
+
# I will use this simple filter for now
|
297 |
+
final_data = dataset.filter(
|
298 |
+
function=lambda record, idx: record["__cluster__"] == idx,
|
299 |
+
with_indices=True,
|
300 |
+
num_proc=os.cpu_count(),
|
301 |
+
desc="Filtering clusters...",
|
302 |
+
)
|
303 |
+
time_measures["filtering"] = time.time() - time_measures["filtering"]
|
304 |
+
|
305 |
+
FINAL_DATA_SIZE = len(final_data)
|
306 |
+
DUP_SIZE = DATA_SIZE - FINAL_DATA_SIZE
|
307 |
+
PAD = 32
|
308 |
+
|
309 |
+
for key, value in time_measures.items():
|
310 |
+
logger.info(f"{key:<{PAD}}: {value:.2f} seconds")
|
311 |
+
logger.info(f"{'Data Number (before)':<{PAD}}: {DATA_SIZE}")
|
312 |
+
logger.info(
|
313 |
+
f"{'Data Number (after)':<{PAD}}: {FINAL_DATA_SIZE} ({FINAL_DATA_SIZE / DATA_SIZE:.2%})" # noqa: E501
|
314 |
+
)
|
315 |
+
logger.info(f"{'Duplicate Number':<{PAD}}: {DUP_SIZE} ({DUP_SIZE / DATA_SIZE:.2%})") # noqa: E501
|
316 |
+
logger.info(f"{'Total Time':<{PAD}}: {time.time() - start_time:.2f} seconds")
|
317 |
+
logger.info("🤗 Happy Deduplicating 🤗")
|
318 |
+
|
319 |
+
return final_data
|
chat_data_pipeline/pipeline.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from datasets import Dataset, concatenate_datasets
|
5 |
+
from rich.logging import RichHandler
|
6 |
+
import tqdm
|
7 |
+
|
8 |
+
tqdm.tqdm.pandas()
|
9 |
+
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
logger.setLevel(logging.INFO)
|
12 |
+
logger.addHandler(RichHandler(rich_tracebacks=True))
|
13 |
+
# Turn off logging for datasets
|
14 |
+
logging.getLogger("datasets").setLevel(logging.ERROR)
|
15 |
+
|
16 |
+
|
17 |
+
class Pipeline:
|
18 |
+
def __init__(self, datasources):
|
19 |
+
self.datasources = datasources
|
20 |
+
|
21 |
+
def run(self, dry_run=False):
|
22 |
+
for i in range(len(self.datasources)):
|
23 |
+
self.datasources[i]["dataset"] = self.datasources[i]["dataset"].to_pandas()
|
24 |
+
|
25 |
+
column_name = self.datasources[i]["columns"][0]
|
26 |
+
logger.info(f"Running datasource: {self.datasources[i]['name']}")
|
27 |
+
|
28 |
+
for cleaner_func in self.datasources[i]["cleaners"]:
|
29 |
+
self.datasources[i]["dataset"] = apply_cleaner(
|
30 |
+
self.datasources[i]["dataset"],
|
31 |
+
column_name,
|
32 |
+
cleaner_func
|
33 |
+
)
|
34 |
+
|
35 |
+
for filter_func in self.datasources[i]["filters"]:
|
36 |
+
self.datasources[i]["dataset"] = apply_filter(
|
37 |
+
self.datasources[i]["dataset"],
|
38 |
+
column_name,
|
39 |
+
filter_func,
|
40 |
+
dry_run
|
41 |
+
)
|
42 |
+
self.datasources[i]["dataset"] = smart_from_pandas(self.datasources[i]["dataset"])
|
43 |
+
|
44 |
+
|
45 |
+
def apply_cleaner(dataframe, column_name, cleaner_func):
|
46 |
+
logger.info(f"Running cleaner: {cleaner_func.__name__} on {column_name}")
|
47 |
+
func = lambda x: cleaner_func(x[column_name])
|
48 |
+
dataframe[column_name] = dataframe.progress_apply(func, axis=1)
|
49 |
+
return dataframe
|
50 |
+
|
51 |
+
|
52 |
+
def apply_filter(dataframe, column_name, filter_func, dry_run):
|
53 |
+
logger.info(f"Running filter: {filter_func.__name__} on {column_name}")
|
54 |
+
criteria_column_name = f"{column_name}_{filter_func.__name__}_criteria"
|
55 |
+
func = lambda x: filter_func(x[column_name], dry_run=dry_run)
|
56 |
+
dataframe[criteria_column_name] = dataframe.progress_apply(func, axis=1)
|
57 |
+
logger.info(f"Criteria statistics:\n{dataframe[criteria_column_name].describe()}")
|
58 |
+
if not dry_run:
|
59 |
+
func = lambda x: x[criteria_column_name]
|
60 |
+
dataframe = dataframe[dataframe.progress_apply(func, axis=1)]
|
61 |
+
dataframe = dataframe.drop(
|
62 |
+
[criteria_column_name, "__index_level_0__"],
|
63 |
+
axis=1,
|
64 |
+
errors='ignore'
|
65 |
+
)
|
66 |
+
|
67 |
+
return dataframe
|
68 |
+
|
69 |
+
|
70 |
+
def smart_from_pandas(df, chunk_size=200_000):
|
71 |
+
datasets = []
|
72 |
+
for g, batch in df.groupby(np.arange(len(df)) // chunk_size):
|
73 |
+
dataset = Dataset.from_pandas(batch, preserve_index=False)
|
74 |
+
datasets.append(dataset)
|
75 |
+
return concatenate_datasets(datasets)
|
chat_data_pipeline/preprocessor.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import shutil
|
3 |
+
|
4 |
+
from datasets import Dataset, load_from_disk
|
5 |
+
|
6 |
+
from chat_data_pipeline.pipeline import logger
|
7 |
+
from chat_data_pipeline import utils
|
8 |
+
from chat_data_pipeline.minhash_deduplication import deduplicate
|
9 |
+
|
10 |
+
|
11 |
+
class DataPreprocessor:
|
12 |
+
dataset: Dataset
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
dataset,
|
17 |
+
column_name,
|
18 |
+
cleaners,
|
19 |
+
filters,
|
20 |
+
deduplication_config,
|
21 |
+
dry_run=False,
|
22 |
+
verbose=False
|
23 |
+
):
|
24 |
+
self.dataset = dataset
|
25 |
+
self.column_name = column_name
|
26 |
+
self.cleaners = cleaners
|
27 |
+
self.filters = filters
|
28 |
+
self.deduplication_config = deduplication_config
|
29 |
+
self.dry_run = dry_run
|
30 |
+
self.verbose = verbose
|
31 |
+
|
32 |
+
def run(self):
|
33 |
+
self._clean_dataset()
|
34 |
+
self._filter_dataset()
|
35 |
+
if self.deduplication_config.get("do_deduplication", False):
|
36 |
+
self._deduplicate_dataset()
|
37 |
+
return self.dataset
|
38 |
+
|
39 |
+
def _clean_dataset(self):
|
40 |
+
if len(self.cleaners) > 0:
|
41 |
+
self.dataset = utils.run_cleaner(self.dataset, self.column_name, self.cleaners)
|
42 |
+
return self.dataset
|
43 |
+
|
44 |
+
def _filter_dataset(self):
|
45 |
+
for filter_func in self.filters:
|
46 |
+
dataset_length = len(self.dataset)
|
47 |
+
ids = range(dataset_length)
|
48 |
+
self.dataset = self.dataset.add_column("ids", ids)
|
49 |
+
filtered_dataset = utils.run_filter(
|
50 |
+
dataset=self.dataset,
|
51 |
+
column_name=self.column_name,
|
52 |
+
filter_func=filter_func,
|
53 |
+
dry_run=self.dry_run
|
54 |
+
)
|
55 |
+
self._print_filter_logs(filtered_dataset, filter_func.__name__)
|
56 |
+
self.dataset = filtered_dataset.remove_columns("ids")
|
57 |
+
|
58 |
+
return self.dataset
|
59 |
+
|
60 |
+
def _deduplicate_dataset(self):
|
61 |
+
dataset_length = len(self.dataset)
|
62 |
+
ids = range(dataset_length)
|
63 |
+
self.dataset = self.dataset.add_column("ids", ids)
|
64 |
+
# need to save to disk and load again, otherwise it is very slow
|
65 |
+
target_directory = "./.temp-dataset"
|
66 |
+
shutil.rmtree(target_directory, ignore_errors=True)
|
67 |
+
try:
|
68 |
+
self.dataset.save_to_disk(target_directory)
|
69 |
+
except PermissionError:
|
70 |
+
logger.info("Can not save dataset, nothing changed. Skipping...")
|
71 |
+
gc.collect()
|
72 |
+
self.dataset = load_from_disk(target_directory)
|
73 |
+
deduplicated_ds = deduplicate(
|
74 |
+
self.dataset,
|
75 |
+
column=self.column_name,
|
76 |
+
**self.deduplication_config.get("args", {})
|
77 |
+
)
|
78 |
+
self.dataset = deduplicated_ds.remove_columns("ids")
|
79 |
+
return self.dataset
|
80 |
+
|
81 |
+
def _print_filter_logs(self, filtered_dataset, filter_name):
|
82 |
+
original_length = len(self.dataset)
|
83 |
+
filtered_length = len(filtered_dataset)
|
84 |
+
reduced_percent = round(100 * (original_length - filtered_length) / original_length, 2)
|
85 |
+
logger.info(
|
86 |
+
f'Filtered by {filter_name} on {self.column_name}:\n'
|
87 |
+
f'{reduced_percent}% = {original_length - filtered_length:,} samples reduced\n'
|
88 |
+
f'New dataset size: {filtered_length:,} rows'
|
89 |
+
)
|
90 |
+
if self.verbose:
|
91 |
+
utils.print_sample_dropped_examples(self.dataset, filtered_dataset, num_samples=10)
|
chat_data_pipeline/utils.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import re
|
3 |
+
from functools import partial
|
4 |
+
from collections import Counter
|
5 |
+
|
6 |
+
from datasets import load_dataset, Dataset, concatenate_datasets
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import tqdm
|
10 |
+
import yaml
|
11 |
+
|
12 |
+
from chat_data_pipeline.pipeline import Pipeline, logger
|
13 |
+
from chat_data_pipeline import cleaners as cln
|
14 |
+
from chat_data_pipeline import filters as ftr
|
15 |
+
from chat_data_pipeline.kenlm_model import KenlmModel
|
16 |
+
|
17 |
+
|
18 |
+
def load_yaml(config_path):
|
19 |
+
with open(config_path, "r") as f:
|
20 |
+
return yaml.safe_load(f)
|
21 |
+
|
22 |
+
|
23 |
+
def get_cleaners_from_config(config):
|
24 |
+
cleaner_funcs = []
|
25 |
+
cleaners = {}
|
26 |
+
if config.get("cleaners") is not None:
|
27 |
+
cleaners = config.get("cleaners", {})
|
28 |
+
for cleaner, do_clean in cleaners.items():
|
29 |
+
if do_clean:
|
30 |
+
cleaner_funcs.append(
|
31 |
+
getattr(cln, cleaner)
|
32 |
+
)
|
33 |
+
return cleaner_funcs
|
34 |
+
|
35 |
+
|
36 |
+
def get_filters_from_config(config):
|
37 |
+
filter_funcs = []
|
38 |
+
filters = {}
|
39 |
+
if config.get("filters") is not None:
|
40 |
+
filters = config.get("filters", {})
|
41 |
+
for filter, value in filters.items():
|
42 |
+
args = {}
|
43 |
+
if value is not None:
|
44 |
+
args = value.get("args", {})
|
45 |
+
filter_func = custom_partial(
|
46 |
+
getattr(ftr, filter),
|
47 |
+
**args
|
48 |
+
)
|
49 |
+
filter_funcs.append(filter_func)
|
50 |
+
return filter_funcs
|
51 |
+
|
52 |
+
|
53 |
+
def get_output_text_cleaners():
|
54 |
+
cleaners = [
|
55 |
+
cln.normalize_whitespace,
|
56 |
+
cln.normalize_punctuation,
|
57 |
+
cln.fix_utf8_encoding,
|
58 |
+
cln.remove_empty_lines
|
59 |
+
]
|
60 |
+
return cleaners
|
61 |
+
|
62 |
+
|
63 |
+
def get_input_text_cleaners():
|
64 |
+
cleaners = [
|
65 |
+
cln.normalize_whitespace,
|
66 |
+
cln.remove_empty_lines
|
67 |
+
]
|
68 |
+
return cleaners
|
69 |
+
|
70 |
+
|
71 |
+
def get_output_text_filters(filter_nsfw, filter_perplexity):
|
72 |
+
filters = [
|
73 |
+
custom_partial(
|
74 |
+
ftr.check_word_number,
|
75 |
+
min_word_threshold=5,
|
76 |
+
max_word_threshold=128,
|
77 |
+
),
|
78 |
+
custom_partial(
|
79 |
+
ftr.check_completion,
|
80 |
+
),
|
81 |
+
custom_partial(
|
82 |
+
ftr.check_char_repetition,
|
83 |
+
char_repetition_len=10,
|
84 |
+
char_repetition_threshold=0.2,
|
85 |
+
),
|
86 |
+
custom_partial(
|
87 |
+
ftr.check_lowercase_ratio,
|
88 |
+
lowercase_threshold=0.75,
|
89 |
+
),
|
90 |
+
]
|
91 |
+
if filter_nsfw:
|
92 |
+
filters.append(
|
93 |
+
custom_partial(
|
94 |
+
ftr.check_nsfw_words,
|
95 |
+
flagged_words_threshold=0.025,
|
96 |
+
),
|
97 |
+
)
|
98 |
+
if filter_perplexity:
|
99 |
+
filters.append(
|
100 |
+
custom_partial(
|
101 |
+
ftr.check_perplexity,
|
102 |
+
kenlm_model=_get_kenlm_model(),
|
103 |
+
min_perplexity_threshold=300,
|
104 |
+
max_perplexity_threshold=10_000
|
105 |
+
)
|
106 |
+
)
|
107 |
+
return filters
|
108 |
+
|
109 |
+
|
110 |
+
def _get_kenlm_model():
|
111 |
+
kenlm_model = KenlmModel.from_pretrained(
|
112 |
+
model_dataset="wikipedia",
|
113 |
+
language="en",
|
114 |
+
lower_case=True,
|
115 |
+
remove_accents=True,
|
116 |
+
normalize_numbers=True,
|
117 |
+
punctuation=1,
|
118 |
+
)
|
119 |
+
return kenlm_model
|
120 |
+
|
121 |
+
|
122 |
+
def get_input_text_filters():
|
123 |
+
filters = [
|
124 |
+
custom_partial(
|
125 |
+
ftr.check_lowercase_ratio,
|
126 |
+
lowercase_threshold=0.55,
|
127 |
+
),
|
128 |
+
]
|
129 |
+
return filters
|
130 |
+
|
131 |
+
|
132 |
+
def get_truncation_filters(splitter_token):
|
133 |
+
filters = [
|
134 |
+
custom_partial(
|
135 |
+
ftr.check_truncation,
|
136 |
+
splitter_token=splitter_token
|
137 |
+
),
|
138 |
+
]
|
139 |
+
return filters
|
140 |
+
|
141 |
+
|
142 |
+
def custom_partial(func, **args):
|
143 |
+
partial_func = partial(func, **args)
|
144 |
+
partial_func.__name__ = func.__name__
|
145 |
+
partial_func.__module__ = func.__module__
|
146 |
+
return partial_func
|
147 |
+
|
148 |
+
|
149 |
+
def print_sample_dropped_examples(dataset, new_dataset, num_samples=5):
|
150 |
+
original_ids = dataset["ids"]
|
151 |
+
new_ids = new_dataset["ids"]
|
152 |
+
dropped_ids = set(original_ids) - set(new_ids)
|
153 |
+
num_samples = min(len(dropped_ids), num_samples)
|
154 |
+
ids_to_show = random.sample(list(dropped_ids), num_samples)
|
155 |
+
for id in ids_to_show:
|
156 |
+
logger.info(f"Dropped sample: {dataset[id]}")
|
157 |
+
|
158 |
+
|
159 |
+
# Pipeline does not add column_name to newly added column with scores
|
160 |
+
def rename_dry_run_columns(dataset, filter_column_name):
|
161 |
+
column_names = set(dataset.column_names)
|
162 |
+
column_names = column_names - {"output_text", "input_text", "summary", "user_id"}
|
163 |
+
columns_mapping = dict()
|
164 |
+
for column_name in column_names:
|
165 |
+
# Check if column already renamed by previous call of this function
|
166 |
+
if "__" not in column_name:
|
167 |
+
columns_mapping[column_name] = filter_column_name + "__" + column_name
|
168 |
+
dataset = dataset.rename_columns(columns_mapping)
|
169 |
+
return dataset
|
170 |
+
|
171 |
+
|
172 |
+
def get_edit_dataset(dataset_path):
|
173 |
+
dataset = load_dataset(dataset_path, split="train", keep_in_memory=False)
|
174 |
+
dataset = prepare_edit_dataset(dataset)
|
175 |
+
return dataset
|
176 |
+
|
177 |
+
|
178 |
+
def prepare_edit_dataset(dataset):
|
179 |
+
columns_mapping = {
|
180 |
+
"model_input": "input_text",
|
181 |
+
"edited_response": "output_text",
|
182 |
+
}
|
183 |
+
dataset = dataset.rename_columns(columns_mapping)
|
184 |
+
columns_to_keep = list(columns_mapping.values()) + ["user_id", "response"]
|
185 |
+
columns_to_remove = set(dataset.column_names) - set(columns_to_keep)
|
186 |
+
dataset = dataset.remove_columns(columns_to_remove)
|
187 |
+
return dataset
|
188 |
+
|
189 |
+
|
190 |
+
def remove_unused_columns(dataset):
|
191 |
+
columns_to_keep = ["user_id", "input_text", "output_text"]
|
192 |
+
columns_to_remove = set(dataset.column_names) - set(columns_to_keep)
|
193 |
+
dataset = dataset.remove_columns(columns_to_remove)
|
194 |
+
return dataset
|
195 |
+
|
196 |
+
|
197 |
+
def post_process_output_text(dataset):
|
198 |
+
df = dataset.to_pandas()
|
199 |
+
func = lambda x: " " + cln.clean_new_lines(x["output_text"]) + "\n"
|
200 |
+
df["output_text"] = df.progress_apply(func, axis=1)
|
201 |
+
dataset = Dataset.from_pandas(df)
|
202 |
+
return dataset
|
203 |
+
|
204 |
+
|
205 |
+
def sample_datasets(datasets, proportions, target_size):
|
206 |
+
target_size = min(
|
207 |
+
[target_size] + [len(dataset) / proportion for proportion, dataset in zip(proportions, datasets)]
|
208 |
+
)
|
209 |
+
sampled_datasets = []
|
210 |
+
for proportion, dataset in zip(proportions, datasets):
|
211 |
+
sample_proportion = (target_size * proportion) / len(dataset)
|
212 |
+
sampled_dataset = sample_dataset(dataset, sample_proportion)
|
213 |
+
sampled_datasets.append(sampled_dataset)
|
214 |
+
merged_dataset = concatenate_datasets(sampled_datasets)
|
215 |
+
return merged_dataset
|
216 |
+
|
217 |
+
|
218 |
+
def sample_dataset(dataset, size):
|
219 |
+
df = dataset.to_pandas()
|
220 |
+
grouped = df.groupby('user_id')
|
221 |
+
sample_groups = []
|
222 |
+
for _, sub_group in tqdm.tqdm(grouped):
|
223 |
+
sample_groups.append(_get_sample_group(sub_group, size=size))
|
224 |
+
|
225 |
+
df_subset = pd.concat(sample_groups)
|
226 |
+
df_subset = df_subset.drop(['__index_level_0__'], axis=1, errors='ignore')
|
227 |
+
dataset_subset = Dataset.from_pandas(df_subset)
|
228 |
+
return dataset_subset
|
229 |
+
|
230 |
+
|
231 |
+
def _get_sample_group(group, size):
|
232 |
+
# helps with sampling superusers and do not touch small groups
|
233 |
+
if len(group) >= 5:
|
234 |
+
num_samples = int(len(group) * size)
|
235 |
+
group = group.sample(num_samples)
|
236 |
+
return group
|
237 |
+
|
238 |
+
|
239 |
+
def split_dataset_by_filter(dataset, column_name, filter_func):
|
240 |
+
dataset_length = len(dataset)
|
241 |
+
ids = range(dataset_length)
|
242 |
+
dataset = dataset.add_column("ids", ids)
|
243 |
+
filtered_dataset = run_filter(dataset, column_name, filter_func, dry_run=False)
|
244 |
+
|
245 |
+
difference_dataset = _dataset_subtraction(dataset, filtered_dataset)
|
246 |
+
|
247 |
+
filtered_dataset = filtered_dataset.remove_columns("ids")
|
248 |
+
difference_dataset = difference_dataset.remove_columns("ids")
|
249 |
+
|
250 |
+
return filtered_dataset, difference_dataset
|
251 |
+
|
252 |
+
|
253 |
+
def run_filter(dataset, column_name, filter_func, dry_run):
|
254 |
+
datasources = [
|
255 |
+
{
|
256 |
+
"dataset": dataset,
|
257 |
+
"name": "dataset",
|
258 |
+
"columns": [column_name],
|
259 |
+
"filters": [filter_func],
|
260 |
+
"cleaners": [],
|
261 |
+
},
|
262 |
+
]
|
263 |
+
pipeline = Pipeline(datasources)
|
264 |
+
pipeline.run(dry_run=dry_run)
|
265 |
+
filtered_dataset = pipeline.datasources[0]["dataset"]
|
266 |
+
return filtered_dataset
|
267 |
+
|
268 |
+
|
269 |
+
def run_cleaner(dataset, column_name, cleaners):
|
270 |
+
datasources = [
|
271 |
+
{
|
272 |
+
"dataset": dataset,
|
273 |
+
"name": "dataset",
|
274 |
+
"columns": [column_name],
|
275 |
+
"filters": [],
|
276 |
+
"cleaners": cleaners,
|
277 |
+
},
|
278 |
+
]
|
279 |
+
pipeline = Pipeline(datasources)
|
280 |
+
pipeline.run(dry_run=True)
|
281 |
+
dataset = pipeline.datasources[0]["dataset"]
|
282 |
+
return dataset
|
283 |
+
|
284 |
+
|
285 |
+
def _dataset_subtraction(minuend_dataset, subtrahend_dataset):
|
286 |
+
original_ids = minuend_dataset["ids"]
|
287 |
+
filtered_ids = subtrahend_dataset["ids"]
|
288 |
+
dropped_ids = set(original_ids) - set(filtered_ids)
|
289 |
+
original_df = minuend_dataset.to_pandas()
|
290 |
+
difference_df = original_df[original_df.ids.isin(dropped_ids)]
|
291 |
+
difference_df = difference_df.drop(['__index_level_0__'], axis=1, errors='ignore')
|
292 |
+
difference_dataset = Dataset.from_pandas(difference_df)
|
293 |
+
return difference_dataset
|
294 |
+
|
295 |
+
|
296 |
+
def add_concatenated_column(dataset, column_name, special_token):
|
297 |
+
dataframe = dataset.to_pandas()
|
298 |
+
func = lambda x: x["response"] + special_token + x["output_text"]
|
299 |
+
dataframe[column_name] = dataframe.progress_apply(func, axis=1)
|
300 |
+
dataset = Dataset.from_pandas(dataframe)
|
301 |
+
return dataset
|
302 |
+
|
303 |
+
|
304 |
+
def get_words(text):
|
305 |
+
return re.findall(r'\w+', text.lower())
|
306 |
+
|
307 |
+
|
308 |
+
# Adapted from:
|
309 |
+
# https://github.com/CarperAI/squeakily/blob/ba81f6e11fab424794d46cbf06d398ea2ad4a7f1/squeakily/filter.py#L81
|
310 |
+
def get_char_repetition_ratio(doc, char_rep_len):
|
311 |
+
freq_char_ngrams = _get_frequency_ngrams(
|
312 |
+
doc, char_rep_len
|
313 |
+
)
|
314 |
+
if len(freq_char_ngrams) == 0:
|
315 |
+
return 0
|
316 |
+
char_rep_ratio = _calculate_char_repetition_ratio(freq_char_ngrams)
|
317 |
+
return char_rep_ratio
|
318 |
+
|
319 |
+
|
320 |
+
def _calculate_char_repetition_ratio(freq_char_ngrams):
|
321 |
+
freq_char_ngrams = list(freq_char_ngrams.values())
|
322 |
+
freq_char_ngrams = sorted(freq_char_ngrams, reverse=True)
|
323 |
+
val_one = len([el for el in freq_char_ngrams if el == 1])
|
324 |
+
num_rep_char_ngrams = min(
|
325 |
+
int(np.sqrt(len(freq_char_ngrams))),
|
326 |
+
len(freq_char_ngrams) - val_one,
|
327 |
+
)
|
328 |
+
char_rep_ratio = sum(
|
329 |
+
freq_char_ngrams[:num_rep_char_ngrams]
|
330 |
+
) / sum(freq_char_ngrams)
|
331 |
+
return char_rep_ratio
|
332 |
+
|
333 |
+
|
334 |
+
def _get_frequency_ngrams(doc, n):
|
335 |
+
char_ngrams = [
|
336 |
+
doc[i: i + n] for i in range(len(doc) - n + 1)
|
337 |
+
]
|
338 |
+
freq_char_ngrams = Counter(char_ngrams)
|
339 |
+
return freq_char_ngrams
|
experiments/instructions/vicuna-v0.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets:
|
2 |
+
- dataset_path: "AlekseyKorshuk/gpteacher-instruct-chatml"
|
3 |
+
- dataset_path: "AlekseyKorshuk/sharegpt-chatml"
|
4 |
+
- dataset_path: "AlekseyKorshuk/gpt4-llm-cleaned-chatml"
|
5 |
+
|
6 |
+
output_dataset_path: "AlekseyKorshuk/vicuna-v0-chatml"
|
7 |
+
verbose: False
|
8 |
+
|
9 |
+
instruction_config:
|
10 |
+
cleaners:
|
11 |
+
filters:
|
12 |
+
check_word_number:
|
13 |
+
args:
|
14 |
+
min_word_threshold: 2
|
15 |
+
max_word_threshold: 9999999
|
16 |
+
|
17 |
+
deduplication:
|
18 |
+
do_deduplication: True
|
19 |
+
minhash_config:
|
20 |
+
ngram_size: 5
|
21 |
+
num_perm: 256
|
22 |
+
threshold: 0.7
|
23 |
+
min_ngram_size: 5
|
24 |
+
|
25 |
+
response_config:
|
26 |
+
cleaners:
|
27 |
+
filters:
|
28 |
+
check_word_number:
|
29 |
+
args:
|
30 |
+
min_word_threshold: 10
|
31 |
+
max_word_threshold: 9999999
|
32 |
+
check_ethics:
|
33 |
+
|
34 |
+
deduplication:
|
35 |
+
do_deduplication: True
|
36 |
+
minhash_config:
|
37 |
+
ngram_size: 5
|
38 |
+
num_perm: 256
|
39 |
+
threshold: 0.7
|
40 |
+
min_ngram_size: 5
|
41 |
+
|
42 |
+
|
experiments/tiny-example.yaml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets:
|
2 |
+
- dataset_path: "AlekseyKorshuk/gpteacher-instruct-chatml"
|
3 |
+
|
4 |
+
output_dataset_path: "AlekseyKorshuk/tiny-example-chatml"
|
5 |
+
verbose: False
|
6 |
+
|
7 |
+
instruction_config:
|
8 |
+
cleaners:
|
9 |
+
filters:
|
10 |
+
check_word_number:
|
11 |
+
args:
|
12 |
+
min_word_threshold: 2
|
13 |
+
max_word_threshold: 9999999
|
14 |
+
|
15 |
+
deduplication:
|
16 |
+
do_deduplication: True
|
17 |
+
minhash_config:
|
18 |
+
ngram_size: 5
|
19 |
+
num_perm: 256
|
20 |
+
threshold: 0.7
|
21 |
+
min_ngram_size: 5
|
22 |
+
|
23 |
+
response_config:
|
24 |
+
cleaners:
|
25 |
+
fix_utf8_encoding: true
|
26 |
+
filters:
|
27 |
+
check_word_number:
|
28 |
+
args:
|
29 |
+
min_word_threshold: 10
|
30 |
+
max_word_threshold: 9999999
|
31 |
+
check_ethics:
|
32 |
+
|
33 |
+
deduplication:
|
34 |
+
do_deduplication: True
|
35 |
+
minhash_config:
|
36 |
+
ngram_size: 5
|
37 |
+
num_perm: 256
|
38 |
+
threshold: 0.7
|
39 |
+
min_ngram_size: 5
|
40 |
+
|
41 |
+
|
main.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import click
|
4 |
+
from datasets import load_dataset, concatenate_datasets
|
5 |
+
|
6 |
+
from chat_data_pipeline.pipeline import logger
|
7 |
+
from chat_data_pipeline import utils
|
8 |
+
from chat_data_pipeline.preprocessor import DataPreprocessor
|
9 |
+
|
10 |
+
PAD = 32
|
11 |
+
|
12 |
+
|
13 |
+
@click.command()
|
14 |
+
@click.option('--config_path')
|
15 |
+
def main(config_path):
|
16 |
+
config = utils.load_yaml(config_path)
|
17 |
+
dataset_paths = [dataset["dataset_path"] for dataset in config["datasets"]]
|
18 |
+
output_dataset_path = config["output_dataset_path"]
|
19 |
+
verbose = config.get("verbose", False)
|
20 |
+
|
21 |
+
instruction_config = config["instruction_config"]
|
22 |
+
response_config = config["response_config"]
|
23 |
+
|
24 |
+
dataset = combine_datasets(dataset_paths)
|
25 |
+
|
26 |
+
dataset = dataset.map(
|
27 |
+
convert_to_input_output,
|
28 |
+
batched=True,
|
29 |
+
num_proc=os.cpu_count(),
|
30 |
+
remove_columns=list(dataset.features),
|
31 |
+
desc="Converring to I/O..."
|
32 |
+
)
|
33 |
+
|
34 |
+
dataset = dataset.map(
|
35 |
+
add_content_columns,
|
36 |
+
batched=False,
|
37 |
+
num_proc=os.cpu_count(),
|
38 |
+
desc="Adding content column..."
|
39 |
+
)
|
40 |
+
|
41 |
+
print(utils.get_cleaners_from_config(response_config))
|
42 |
+
print(utils.get_filters_from_config(response_config))
|
43 |
+
print(response_config.get("deduplication", {}))
|
44 |
+
preprocessor = DataPreprocessor(
|
45 |
+
dataset=dataset,
|
46 |
+
column_name="response",
|
47 |
+
cleaners=utils.get_cleaners_from_config(response_config),
|
48 |
+
filters=utils.get_filters_from_config(response_config),
|
49 |
+
deduplication_config=response_config.get("deduplication", {}),
|
50 |
+
verbose=verbose,
|
51 |
+
)
|
52 |
+
dataset = preprocessor.run()
|
53 |
+
|
54 |
+
cleaners = utils.get_cleaners_from_config(instruction_config)
|
55 |
+
if len(cleaners) > 0:
|
56 |
+
logger.warning("Cleaner does not work on instructions. Cleaners set to empty list.")
|
57 |
+
preprocessor = DataPreprocessor(
|
58 |
+
dataset=dataset,
|
59 |
+
column_name="instruction",
|
60 |
+
cleaners=[],
|
61 |
+
filters=utils.get_filters_from_config(instruction_config),
|
62 |
+
deduplication_config=instruction_config.get("deduplication", {}),
|
63 |
+
verbose=verbose,
|
64 |
+
)
|
65 |
+
dataset = preprocessor.run()
|
66 |
+
|
67 |
+
prepared_dataset_chatml = dataset.map(
|
68 |
+
convert_to_chatml,
|
69 |
+
batched=False,
|
70 |
+
num_proc=os.cpu_count(),
|
71 |
+
remove_columns=list(dataset.features)
|
72 |
+
)
|
73 |
+
prepared_dataset_chatml = prepared_dataset_chatml.shuffle(seed=42)
|
74 |
+
prepared_dataset_chatml.push_to_hub(output_dataset_path)
|
75 |
+
logger.info(prepared_dataset_chatml)
|
76 |
+
|
77 |
+
|
78 |
+
def combine_datasets(dataset_paths):
|
79 |
+
datasets = []
|
80 |
+
for dataset_path in dataset_paths:
|
81 |
+
dataset = load_dataset(dataset_path)
|
82 |
+
dataset = concatenate_datasets(list(dataset.values()))
|
83 |
+
if "source" not in dataset.features:
|
84 |
+
dataset = dataset.add_column("source", [dataset_path] * len(dataset))
|
85 |
+
datasets.append(dataset)
|
86 |
+
dataset = concatenate_datasets(datasets)
|
87 |
+
return dataset
|
88 |
+
|
89 |
+
|
90 |
+
def convert_to_input_output(examples):
|
91 |
+
sources = []
|
92 |
+
inputs = []
|
93 |
+
outputs = []
|
94 |
+
for conversation, source in zip(examples["conversation"], examples["source"]):
|
95 |
+
input = []
|
96 |
+
for message in conversation:
|
97 |
+
if message["do_train"]:
|
98 |
+
inputs.append(input.copy())
|
99 |
+
outputs.append(message)
|
100 |
+
sources.append(source)
|
101 |
+
input.append(message)
|
102 |
+
return {
|
103 |
+
"input": inputs,
|
104 |
+
"output": outputs,
|
105 |
+
"source": sources
|
106 |
+
}
|
107 |
+
|
108 |
+
|
109 |
+
def add_content_columns(example):
|
110 |
+
response = example["output"]["content"].strip()
|
111 |
+
instruction = ""
|
112 |
+
if len(example["input"]) > 0:
|
113 |
+
instruction = example["input"][-1]["content"].strip()
|
114 |
+
return {
|
115 |
+
"instruction": instruction,
|
116 |
+
"response": response,
|
117 |
+
}
|
118 |
+
|
119 |
+
|
120 |
+
def convert_to_chatml(example):
|
121 |
+
conversation = []
|
122 |
+
for message in example["input"]:
|
123 |
+
message["do_train"] = False
|
124 |
+
conversation.append(message)
|
125 |
+
conversation.append(
|
126 |
+
{
|
127 |
+
"content": example["response"],
|
128 |
+
"role": example["output"]["role"],
|
129 |
+
"do_train": True,
|
130 |
+
}
|
131 |
+
)
|
132 |
+
return {
|
133 |
+
"conversation": conversation,
|
134 |
+
"source": example["source"]
|
135 |
+
}
|
136 |
+
|
137 |
+
|
138 |
+
if __name__ == "__main__":
|
139 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ftfy==6.1.1
|
2 |
+
https://github.com/kpu/kenlm/archive/master.zip
|
3 |
+
sentencepiece==0.1.97
|
4 |
+
datasketch==1.5.8
|
5 |
+
dpu_utils==0.6.0
|
6 |
+
datasets==2.11.0
|
7 |
+
click==8.1.3
|
8 |
+
rich==13.3.4
|
9 |
+
typer==0.9.0
|