import logging import numpy as np from datasets import Dataset, concatenate_datasets from rich.logging import RichHandler import tqdm tqdm.tqdm.pandas() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) logger.addHandler(RichHandler(rich_tracebacks=True)) # Turn off logging for datasets logging.getLogger("datasets").setLevel(logging.ERROR) class Pipeline: def __init__(self, datasources): self.datasources = datasources def run(self, dry_run=False): for i in range(len(self.datasources)): self.datasources[i]["dataset"] = self.datasources[i]["dataset"].to_pandas() column_name = self.datasources[i]["columns"][0] logger.info(f"Running datasource: {self.datasources[i]['name']}") for cleaner_func in self.datasources[i]["cleaners"]: self.datasources[i]["dataset"] = apply_cleaner( self.datasources[i]["dataset"], column_name, cleaner_func ) for filter_func in self.datasources[i]["filters"]: self.datasources[i]["dataset"] = apply_filter( self.datasources[i]["dataset"], column_name, filter_func, dry_run ) self.datasources[i]["dataset"] = smart_from_pandas(self.datasources[i]["dataset"]) def apply_cleaner(dataframe, column_name, cleaner_func): logger.info(f"Running cleaner: {cleaner_func.__name__} on {column_name}") func = lambda x: cleaner_func(x[column_name]) dataframe[column_name] = dataframe.progress_apply(func, axis=1) return dataframe def apply_filter(dataframe, column_name, filter_func, dry_run): logger.info(f"Running filter: {filter_func.__name__} on {column_name}") criteria_column_name = f"{column_name}_{filter_func.__name__}_criteria" func = lambda x: filter_func(x[column_name], dry_run=dry_run) dataframe[criteria_column_name] = dataframe.progress_apply(func, axis=1) logger.info(f"Criteria statistics:\n{dataframe[criteria_column_name].describe()}") if not dry_run: func = lambda x: x[criteria_column_name] dataframe = dataframe[dataframe.progress_apply(func, axis=1)] dataframe = dataframe.drop( [criteria_column_name, "__index_level_0__"], axis=1, errors='ignore' ) return dataframe def smart_from_pandas(df, chunk_size=200_000): datasets = [] for g, batch in df.groupby(np.arange(len(df)) // chunk_size): dataset = Dataset.from_pandas(batch, preserve_index=False) datasets.append(dataset) return concatenate_datasets(datasets)