import random import re from functools import partial from collections import Counter from datasets import load_dataset, Dataset, concatenate_datasets import numpy as np import pandas as pd import tqdm import yaml from chat_data_pipeline.pipeline import Pipeline, logger from chat_data_pipeline import cleaners as cln from chat_data_pipeline import filters as ftr from chat_data_pipeline.kenlm_model import KenlmModel def load_yaml(config_path): with open(config_path, "r") as f: return yaml.safe_load(f) def get_cleaners_from_config(config): cleaner_funcs = [] cleaners = {} if config.get("cleaners") is not None: cleaners = config.get("cleaners", {}) for cleaner, do_clean in cleaners.items(): if do_clean: cleaner_funcs.append( getattr(cln, cleaner) ) return cleaner_funcs def get_filters_from_config(config): filter_funcs = [] filters = {} if config.get("filters") is not None: filters = config.get("filters", {}) for filter, value in filters.items(): args = {} if value is not None: args = value.get("args", {}) filter_func = custom_partial( getattr(ftr, filter), **args ) filter_funcs.append(filter_func) return filter_funcs def get_output_text_cleaners(): cleaners = [ cln.normalize_whitespace, cln.normalize_punctuation, cln.fix_utf8_encoding, cln.remove_empty_lines ] return cleaners def get_input_text_cleaners(): cleaners = [ cln.normalize_whitespace, cln.remove_empty_lines ] return cleaners def get_output_text_filters(filter_nsfw, filter_perplexity): filters = [ custom_partial( ftr.check_word_number, min_word_threshold=5, max_word_threshold=128, ), custom_partial( ftr.check_completion, ), custom_partial( ftr.check_char_repetition, char_repetition_len=10, char_repetition_threshold=0.2, ), custom_partial( ftr.check_lowercase_ratio, lowercase_threshold=0.75, ), ] if filter_nsfw: filters.append( custom_partial( ftr.check_nsfw_words, flagged_words_threshold=0.025, ), ) if filter_perplexity: filters.append( custom_partial( ftr.check_perplexity, kenlm_model=_get_kenlm_model(), min_perplexity_threshold=300, max_perplexity_threshold=10_000 ) ) return filters def _get_kenlm_model(): kenlm_model = KenlmModel.from_pretrained( model_dataset="wikipedia", language="en", lower_case=True, remove_accents=True, normalize_numbers=True, punctuation=1, ) return kenlm_model def get_input_text_filters(): filters = [ custom_partial( ftr.check_lowercase_ratio, lowercase_threshold=0.55, ), ] return filters def get_truncation_filters(splitter_token): filters = [ custom_partial( ftr.check_truncation, splitter_token=splitter_token ), ] return filters def custom_partial(func, **args): partial_func = partial(func, **args) partial_func.__name__ = func.__name__ partial_func.__module__ = func.__module__ return partial_func def print_sample_dropped_examples(dataset, new_dataset, num_samples=5): original_ids = dataset["ids"] new_ids = new_dataset["ids"] dropped_ids = set(original_ids) - set(new_ids) num_samples = min(len(dropped_ids), num_samples) ids_to_show = random.sample(list(dropped_ids), num_samples) for id in ids_to_show: logger.info(f"Dropped sample: {dataset[id]}") # Pipeline does not add column_name to newly added column with scores def rename_dry_run_columns(dataset, filter_column_name): column_names = set(dataset.column_names) column_names = column_names - {"output_text", "input_text", "summary", "user_id"} columns_mapping = dict() for column_name in column_names: # Check if column already renamed by previous call of this function if "__" not in column_name: columns_mapping[column_name] = filter_column_name + "__" + column_name dataset = dataset.rename_columns(columns_mapping) return dataset def get_edit_dataset(dataset_path): dataset = load_dataset(dataset_path, split="train", keep_in_memory=False) dataset = prepare_edit_dataset(dataset) return dataset def prepare_edit_dataset(dataset): columns_mapping = { "model_input": "input_text", "edited_response": "output_text", } dataset = dataset.rename_columns(columns_mapping) columns_to_keep = list(columns_mapping.values()) + ["user_id", "response"] columns_to_remove = set(dataset.column_names) - set(columns_to_keep) dataset = dataset.remove_columns(columns_to_remove) return dataset def remove_unused_columns(dataset): columns_to_keep = ["user_id", "input_text", "output_text"] columns_to_remove = set(dataset.column_names) - set(columns_to_keep) dataset = dataset.remove_columns(columns_to_remove) return dataset def post_process_output_text(dataset): df = dataset.to_pandas() func = lambda x: " " + cln.clean_new_lines(x["output_text"]) + "\n" df["output_text"] = df.progress_apply(func, axis=1) dataset = Dataset.from_pandas(df) return dataset def sample_datasets(datasets, proportions, target_size): target_size = min( [target_size] + [len(dataset) / proportion for proportion, dataset in zip(proportions, datasets)] ) sampled_datasets = [] for proportion, dataset in zip(proportions, datasets): sample_proportion = (target_size * proportion) / len(dataset) sampled_dataset = sample_dataset(dataset, sample_proportion) sampled_datasets.append(sampled_dataset) merged_dataset = concatenate_datasets(sampled_datasets) return merged_dataset def sample_dataset(dataset, size): df = dataset.to_pandas() grouped = df.groupby('user_id') sample_groups = [] for _, sub_group in tqdm.tqdm(grouped): sample_groups.append(_get_sample_group(sub_group, size=size)) df_subset = pd.concat(sample_groups) df_subset = df_subset.drop(['__index_level_0__'], axis=1, errors='ignore') dataset_subset = Dataset.from_pandas(df_subset) return dataset_subset def _get_sample_group(group, size): # helps with sampling superusers and do not touch small groups if len(group) >= 5: num_samples = int(len(group) * size) group = group.sample(num_samples) return group def split_dataset_by_filter(dataset, column_name, filter_func): dataset_length = len(dataset) ids = range(dataset_length) dataset = dataset.add_column("ids", ids) filtered_dataset = run_filter(dataset, column_name, filter_func, dry_run=False) difference_dataset = _dataset_subtraction(dataset, filtered_dataset) filtered_dataset = filtered_dataset.remove_columns("ids") difference_dataset = difference_dataset.remove_columns("ids") return filtered_dataset, difference_dataset def run_filter(dataset, column_name, filter_func, dry_run): datasources = [ { "dataset": dataset, "name": "dataset", "columns": [column_name], "filters": [filter_func], "cleaners": [], }, ] pipeline = Pipeline(datasources) pipeline.run(dry_run=dry_run) filtered_dataset = pipeline.datasources[0]["dataset"] return filtered_dataset def run_cleaner(dataset, column_name, cleaners): datasources = [ { "dataset": dataset, "name": "dataset", "columns": [column_name], "filters": [], "cleaners": cleaners, }, ] pipeline = Pipeline(datasources) pipeline.run(dry_run=True) dataset = pipeline.datasources[0]["dataset"] return dataset def _dataset_subtraction(minuend_dataset, subtrahend_dataset): original_ids = minuend_dataset["ids"] filtered_ids = subtrahend_dataset["ids"] dropped_ids = set(original_ids) - set(filtered_ids) original_df = minuend_dataset.to_pandas() difference_df = original_df[original_df.ids.isin(dropped_ids)] difference_df = difference_df.drop(['__index_level_0__'], axis=1, errors='ignore') difference_dataset = Dataset.from_pandas(difference_df) return difference_dataset def add_concatenated_column(dataset, column_name, special_token): dataframe = dataset.to_pandas() func = lambda x: x["response"] + special_token + x["output_text"] dataframe[column_name] = dataframe.progress_apply(func, axis=1) dataset = Dataset.from_pandas(dataframe) return dataset def get_words(text): return re.findall(r'\w+', text.lower()) # Adapted from: # https://github.com/CarperAI/squeakily/blob/ba81f6e11fab424794d46cbf06d398ea2ad4a7f1/squeakily/filter.py#L81 def get_char_repetition_ratio(doc, char_rep_len): freq_char_ngrams = _get_frequency_ngrams( doc, char_rep_len ) if len(freq_char_ngrams) == 0: return 0 char_rep_ratio = _calculate_char_repetition_ratio(freq_char_ngrams) return char_rep_ratio def _calculate_char_repetition_ratio(freq_char_ngrams): freq_char_ngrams = list(freq_char_ngrams.values()) freq_char_ngrams = sorted(freq_char_ngrams, reverse=True) val_one = len([el for el in freq_char_ngrams if el == 1]) num_rep_char_ngrams = min( int(np.sqrt(len(freq_char_ngrams))), len(freq_char_ngrams) - val_one, ) char_rep_ratio = sum( freq_char_ngrams[:num_rep_char_ngrams] ) / sum(freq_char_ngrams) return char_rep_ratio def _get_frequency_ngrams(doc, n): char_ngrams = [ doc[i: i + n] for i in range(len(doc) - n + 1) ] freq_char_ngrams = Counter(char_ngrams) return freq_char_ngrams