peacock-data-public-datasets-idc-config_toyds
/
bigscience
/inference
/modeling_gpt2_alibi_prefix_lm.py
# coding=utf-8 | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch OpenAI GPT-2 model with AliBi.""" | |
## integrating some AliBi code from https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/c839a8aa30731f71b3738d56009be9668508e366/megatron/model/transformer.py | |
# I am keeping the name of the classes as GPT2 because some of transformer's code like pipeline classes check class names in order to do things, and | |
# creating a new class that have different names sometimes break things. | |
import os | |
import enum | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, MSELoss | |
from transformers.activations import ACT2FN | |
from transformers.file_utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
replace_return_docstrings, | |
) | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
CausalLMOutputWithCrossAttentions, | |
SequenceClassifierOutputWithPast, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import ( | |
Conv1D, | |
PreTrainedModel, | |
SequenceSummary, | |
find_pruneable_heads_and_indices, | |
prune_conv1d_layer, | |
) | |
from transformers.utils import logging | |
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | |
from transformers.models.gpt2.configuration_gpt2 import GPT2Config | |
from collections import OrderedDict | |
from typing import Any, Mapping, Optional | |
from transformers import PreTrainedTokenizer, TensorType, is_torch_available | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.onnx import OnnxConfigWithPast | |
logger = logging.get_logger(__name__) | |
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"gpt2": "https://huggingface.co/gpt2/resolve/main/config.json", | |
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/config.json", | |
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/config.json", | |
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/config.json", | |
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/config.json", | |
} | |
PositionEmbeddingType_rotary = 1 # not implemented | |
PositionEmbeddingType_absolute = 2 | |
PositionEmbeddingType_alibi = 3 | |
class GPT2Config(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a :class:`~transformers.GPT2Model` or a | |
:class:`~transformers.TFGPT2Model`. It is used to instantiate a GPT-2 model according to the specified arguments, | |
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration | |
to that of the GPT-2 `small <https://huggingface.co/gpt2>`__ architecture. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
Args: | |
vocab_size (:obj:`int`, `optional`, defaults to 50257): | |
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the | |
:obj:`inputs_ids` passed when calling :class:`~transformers.GPT2Model` or | |
:class:`~transformers.TFGPT2Model`. | |
n_positions (:obj:`int`, `optional`, defaults to 1024): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
n_ctx (:obj:`int`, `optional`, defaults to 1024): | |
Dimensionality of the causal mask (usually same as n_positions). | |
n_embd (:obj:`int`, `optional`, defaults to 768): | |
Dimensionality of the embeddings and hidden states. | |
n_layer (:obj:`int`, `optional`, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
n_head (:obj:`int`, `optional`, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
n_inner (:obj:`int`, `optional`, defaults to None): | |
Dimensionality of the inner feed-forward layers. :obj:`None` will set it to 4 times n_embd | |
activation_function (:obj:`str`, `optional`, defaults to :obj:`"gelu"`): | |
Activation function, to be selected in the list :obj:`["relu", "silu", "gelu", "tanh", "gelu_new"]`. | |
resid_pdrop (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
embd_pdrop (:obj:`int`, `optional`, defaults to 0.1): | |
The dropout ratio for the embeddings. | |
attn_pdrop (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout ratio for the attention. | |
layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5): | |
The epsilon to use in the layer normalization layers | |
initializer_range (:obj:`float`, `optional`, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
summary_type (:obj:`string`, `optional`, defaults to :obj:`"cls_index"`): | |
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel` | |
and :class:`~transformers.TFGPT2DoubleHeadsModel`. | |
Has to be one of the following options: | |
- :obj:`"last"`: Take the last token hidden state (like XLNet). | |
- :obj:`"first"`: Take the first token hidden state (like BERT). | |
- :obj:`"mean"`: Take the mean of all tokens hidden states. | |
- :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). | |
- :obj:`"attn"`: Not implemented now, use multi-head attention. | |
summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel` | |
and :class:`~transformers.TFGPT2DoubleHeadsModel`. | |
Whether or not to add a projection after the vector extraction. | |
summary_activation (:obj:`str`, `optional`): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
:class:`~transformers.GPT2DoubleHeadsModel`. | |
Pass :obj:`"tanh"` for a tanh activation to the output, any other value will result in no activation. | |
summary_proj_to_labels (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel` | |
and :class:`~transformers.TFGPT2DoubleHeadsModel`. | |
Whether the projection outputs should have :obj:`config.num_labels` or :obj:`config.hidden_size` classes. | |
summary_first_dropout (:obj:`float`, `optional`, defaults to 0.1): | |
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel` | |
and :class:`~transformers.TFGPT2DoubleHeadsModel`. | |
The dropout ratio to be used after the projection and activation. | |
scale_attn_weights (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Scale attention weights by dividing by sqrt(hidden_size).. | |
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
Example:: | |
>>> from transformers import GPT2Model, GPT2Config | |
>>> # Initializing a GPT2 configuration | |
>>> configuration = GPT2Config() | |
>>> # Initializing a model from the configuration | |
>>> model = GPT2Model(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
""" | |
model_type = "gpt2" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = { | |
"hidden_size": "n_embd", | |
"max_position_embeddings": "n_positions", | |
"num_attention_heads": "n_head", | |
"num_hidden_layers": "n_layer", | |
} | |
def __init__( | |
self, | |
vocab_size=50257, | |
n_positions=1024, | |
n_ctx=1024, | |
n_embd=768, | |
n_layer=12, | |
n_head=12, | |
n_inner=None, | |
activation_function="gelu_new", | |
resid_pdrop=0.1, | |
embd_pdrop=0.1, | |
attn_pdrop=0.1, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
summary_type="cls_index", | |
summary_use_proj=True, | |
summary_activation=None, | |
summary_proj_to_labels=True, | |
summary_first_dropout=0.1, | |
scale_attn_weights=True, | |
use_cache=True, | |
bos_token_id=50256, | |
eos_token_id=50256, | |
position_embedding_type=PositionEmbeddingType_absolute, | |
**kwargs | |
): | |
self.vocab_size = vocab_size | |
self.n_ctx = n_ctx | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.n_inner = n_inner | |
self.activation_function = activation_function | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attn_pdrop = attn_pdrop | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
self.summary_type = summary_type | |
self.summary_use_proj = summary_use_proj | |
self.summary_activation = summary_activation | |
self.summary_first_dropout = summary_first_dropout | |
self.summary_proj_to_labels = summary_proj_to_labels | |
self.scale_attn_weights = scale_attn_weights | |
self.use_cache = use_cache | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
self.position_embedding_type = position_embedding_type | |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
class GPT2OnnxConfig(OnnxConfigWithPast): | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
common_inputs = OrderedDict({"input_ids": {0: "batch"}}) | |
if self.use_past: | |
for i in range(self._config.n_layer * 2): | |
common_inputs[f"past_key_values.{i}"] = {0: "batch", 2: "sequence"} | |
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} | |
else: | |
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} | |
return common_inputs | |
def outputs(self) -> Mapping[str, Mapping[int, str]]: | |
common_outputs = OrderedDict({"last_hidden_state": {0: "batch", 1: "sequence"}}) | |
if self.use_past: | |
for i in range(self._config.n_layer * 2): | |
common_outputs[f"present.{i}"] = {0: "batch", 2: "sequence"} | |
return common_outputs | |
return common_outputs | |
def generate_dummy_inputs( | |
self, | |
tokenizer: PreTrainedTokenizer, | |
batch_size: int = -1, | |
seq_length: int = -1, | |
is_pair: bool = False, | |
framework: Optional[TensorType] = None, | |
) -> Mapping[str, Any]: | |
common_inputs = super().generate_dummy_inputs(tokenizer, batch_size, seq_length, is_pair, framework) | |
# We need to order the input in the way they appears in the forward() | |
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) | |
# Need to add the past_keys | |
if self.use_past: | |
if not is_torch_available(): | |
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") | |
else: | |
import torch | |
batch = common_inputs["input_ids"].shape[0] | |
ordered_inputs["past_key_values"] = [ | |
( | |
torch.zeros((batch, self._config.n_head, 1, self._config.hidden_size // self._config.n_head)), | |
torch.zeros((batch, self._config.n_head, 1, self._config.hidden_size // self._config.n_head)), | |
) | |
for _ in range(self._config.n_layer) | |
] | |
ordered_inputs["attention_mask"] = common_inputs["attention_mask"] | |
return ordered_inputs | |
# need to change the checkpoints to be the bigscience checkpoints | |
_CHECKPOINT_FOR_DOC = "gpt2" | |
_CONFIG_FOR_DOC = "GPT2Config" | |
_TOKENIZER_FOR_DOC = "GPT2Tokenizer" | |
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"gpt2", | |
"gpt2-medium", | |
"gpt2-large", | |
"gpt2-xl", | |
"distilgpt2", | |
# See all GPT-2 models at https://huggingface.co/models?filter=gpt2 | |
] | |
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): | |
"""Load tf checkpoints in a pytorch model""" | |
try: | |
import re | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(gpt2_checkpoint_path) | |
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info(f"Loading TF weight {name} with shape {shape}") | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array.squeeze()) | |
for name, array in zip(names, arrays): | |
name = name[6:] # skip "model/" | |
name = name.split("/") | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r"[A-Za-z]+\d+", m_name): | |
scope_names = re.split(r"(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
if scope_names[0] == "w" or scope_names[0] == "g": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "b": | |
pointer = getattr(pointer, "bias") | |
elif scope_names[0] == "wpe" or scope_names[0] == "wte": | |
pointer = getattr(pointer, scope_names[0]) | |
pointer = getattr(pointer, "weight") | |
else: | |
pointer = getattr(pointer, scope_names[0]) | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
try: | |
assert ( | |
pointer.shape == array.shape | |
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info(f"Initialize PyTorch weight {name}") | |
pointer.data = torch.from_numpy(array) | |
return model | |
class GPT2Attention(nn.Module): | |
def __init__(self, config, is_cross_attention=False): | |
super().__init__() | |
max_positions = config.max_position_embeddings | |
self.register_buffer( | |
"bias", | |
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view( | |
1, 1, max_positions, max_positions | |
), | |
) | |
self.register_buffer("masked_bias", torch.tensor(-1e4)) | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
self.split_size = self.embed_dim | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." | |
) | |
self.scale_attn_weights = config.scale_attn_weights | |
self.is_cross_attention = is_cross_attention | |
if self.is_cross_attention: | |
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim) | |
self.q_attn = Conv1D(self.embed_dim, self.embed_dim) | |
else: | |
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim) | |
self.c_proj = Conv1D(self.embed_dim, self.embed_dim) | |
self.attn_dropout = nn.Dropout(config.attn_pdrop) | |
self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
self.pruned_heads = set() | |
self.position_embedding_type = config.position_embedding_type | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads) | |
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) | |
# Prune conv1d layers | |
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) | |
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) | |
# Update hyper params | |
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads)) | |
self.num_heads = self.num_heads - len(heads) | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def _attn(self, query, key, value, attention_mask=None, head_mask=None): | |
# [b, np, sq, sk] | |
output_size = (query.size(1), | |
query.size(2), | |
query.size(0), | |
key.size(0)) | |
# preallocting result tensor: [b * np, sq, sk] | |
if alibi is None: | |
matmul_result = torch.empty( | |
output_size[0]*output_size[1], | |
output_size[2], | |
output_size[3], | |
dtype=query_layer.dtype, | |
device=torch.cuda.current_device()) | |
else: | |
matmul_result = alibi[:output_size[0]*output_size[1], :, :output_size[3]] | |
# [sq, b, np, hn] -> [sq, b * np, hn] | |
query = query.view(output_size[2], | |
output_size[0] * output_size[1], -1) | |
# [sk, b, np, hn] -> [sk, b * np, hn] | |
key = key.view(output_size[3], | |
output_size[0] * output_size[1], -1) | |
# Raw attention scores. [b * np, sq, sk] | |
attn_weights = torch.baddbmm( | |
matmul_result, | |
query_layer.transpose(0, 1), # [b * np, sq, hn] | |
key_layer.transpose(0, 1).transpose(-1, -2), # [b * np, hn, sk] | |
beta=0.0 if alibi is None else 1.0, alpha=(1.0/self.norm_factor)) | |
#attn_weights = torch.matmul(query, key.transpose(-1, -2)) | |
# change view to [b, np, sq, sk] | |
attn_weights = attn_weights.view(*output_size) | |
# do we need this scaling. does the alpha do the scaling as above? | |
if self.scale_attn_weights: | |
attn_weights = attn_weights / (float(value.size(-1)) ** 0.5) | |
if not self.is_cross_attention: | |
# if only "normal" attention layer implements causal mask | |
query_length, key_length = query.size(-2), key.size(-2) | |
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool() | |
attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype)) | |
if attention_mask is not None: | |
# Apply the attention mask | |
attn_weights = attn_weights + attention_mask | |
attn_weights = nn.Softmax(dim=-1)(attn_weights) | |
attn_weights = self.attn_dropout(attn_weights) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attn_weights = attn_weights * head_mask | |
attn_output = torch.matmul(attn_weights, value) | |
return attn_output, attn_weights | |
def _split_heads(self, tensor, num_heads, attn_head_size): | |
""" | |
Splits hidden_size dim into attn_head_size and num_heads | |
""" | |
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) | |
tensor = tensor.view(*new_shape) | |
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) | |
def _merge_heads(self, tensor, num_heads, attn_head_size): | |
""" | |
Merges attn_head_size dim and num_attn_heads dim into hidden_size | |
""" | |
tensor = tensor.permute(0, 2, 1, 3).contiguous() | |
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) | |
return tensor.view(new_shape) | |
def forward( | |
self, | |
hidden_states, | |
layer_past=None, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
alibi=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
if encoder_hidden_states is not None: | |
if not hasattr(self, "q_attn"): | |
raise ValueError( | |
"If class is used as cross attention, the weights `q_attn` have to be defined. " | |
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`." | |
) | |
query = self.q_attn(hidden_states) | |
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) | |
attention_mask = encoder_attention_mask | |
else: | |
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) | |
query = self._split_heads(query, self.num_heads, self.head_dim) | |
key = self._split_heads(key, self.num_heads, self.head_dim) | |
value = self._split_heads(value, self.num_heads, self.head_dim) | |
if layer_past is not None: | |
past_key, past_value = layer_past | |
key = torch.cat((past_key, key), dim=-2) | |
value = torch.cat((past_value, value), dim=-2) | |
if use_cache is True: | |
present = (key, value) | |
else: | |
present = None | |
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) | |
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) | |
attn_output = self.c_proj(attn_output) | |
attn_output = self.resid_dropout(attn_output) | |
outputs = (attn_output, present) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs # a, present, (attentions) | |
class GPT2MLP(nn.Module): | |
def __init__(self, intermediate_size, config): | |
super().__init__() | |
embed_dim = config.hidden_size | |
self.c_fc = Conv1D(intermediate_size, embed_dim) | |
self.c_proj = Conv1D(embed_dim, intermediate_size) | |
self.act = ACT2FN[config.activation_function] | |
self.dropout = nn.Dropout(config.resid_pdrop) | |
def forward(self, hidden_states): | |
hidden_states = self.c_fc(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.c_proj(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class GPT2Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
hidden_size = config.hidden_size | |
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size | |
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
self.attn = GPT2Attention(config) | |
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
if config.add_cross_attention: | |
self.crossattention = GPT2Attention(config, is_cross_attention=True) | |
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
self.mlp = GPT2MLP(inner_dim, config) | |
def forward( | |
self, | |
hidden_states, | |
layer_past=None, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
alibi=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
residual = hidden_states | |
hidden_states = self.ln_1(hidden_states) | |
attn_outputs = self.attn( | |
hidden_states, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
alibi=alibi, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
attn_output = attn_outputs[0] # output_attn: a, present, (attentions) | |
outputs = attn_outputs[1:] | |
# residual connection | |
hidden_states = attn_output + residual | |
if encoder_hidden_states is not None: | |
# add one self-attention block for cross-attention | |
if not hasattr(self, "crossattention"): | |
raise ValueError( | |
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " | |
"cross-attention layers by setting `config.add_cross_attention=True`" | |
) | |
residual = hidden_states | |
hidden_states = self.ln_cross_attn(hidden_states) | |
cross_attn_outputs = self.crossattention( | |
hidden_states, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
alibi=alibi, | |
output_attentions=output_attentions, | |
) | |
attn_output = cross_attn_outputs[0] | |
# residual connection | |
hidden_states = residual + attn_output | |
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights | |
residual = hidden_states | |
hidden_states = self.ln_2(hidden_states) | |
feed_forward_hidden_states = self.mlp(hidden_states) | |
# residual connection | |
hidden_states = residual + feed_forward_hidden_states | |
if use_cache: | |
outputs = (hidden_states,) + outputs | |
else: | |
outputs = (hidden_states,) + outputs[1:] | |
return outputs # hidden_states, present, (attentions, cross_attentions) | |
class GPT2PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = GPT2Config | |
load_tf_weights = load_tf_weights_in_gpt2 | |
base_model_prefix = "transformer" | |
is_parallelizable = True | |
supports_gradient_checkpointing = True | |
def __init__(self, *inputs, **kwargs): | |
super().__init__(*inputs, **kwargs) | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, (nn.Linear, Conv1D)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, GPT2Model): | |
module.gradient_checkpointing = value | |
class GPT2DoubleHeadsModelOutput(ModelOutput): | |
""" | |
Base class for outputs of models predicting if two sentences are consecutive or not. | |
Args: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided): | |
Language modeling loss. | |
mc_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`mc_labels` is provided): | |
Multiple choice classification loss. | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
mc_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): | |
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). | |
past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
Tuple of length :obj:`config.n_layers`, containing tuples of tensors of shape :obj:`(batch_size, num_heads, | |
sequence_length, embed_size_per_head)`). | |
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see | |
:obj:`past_key_values` input) to speed up sequential decoding. | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
GPT2Attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
mc_loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
mc_logits: torch.FloatTensor = None | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
GPT2_START_DOCSTRING = r""" | |
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
pruning heads etc.) | |
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
general usage and behavior. | |
Parameters: | |
config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
weights. | |
""" | |
GPT2_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`): | |
:obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else | |
``past_key_values[0][0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input | |
sequence tokens in the vocabulary. | |
If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be | |
passed as ``input_ids``. | |
Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]` of length :obj:`config.n_layers`): | |
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | |
:obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which | |
have their past given to this model should not be passed as ``input_ids`` as they have already been | |
computed. | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
1]``: | |
- 0 corresponds to a `sentence A` token, | |
- 1 corresponds to a `sentence B` token. | |
`What are token type IDs? <../glossary.html#token-type-ids>`_ | |
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, | |
config.max_position_embeddings - 1]``. | |
`What are position IDs? <../glossary.html#position-ids>`_ | |
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see | |
:obj:`past_key_values`). | |
use_cache (:obj:`bool`, `optional`): | |
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up | |
decoding (see :obj:`past_key_values`). | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
PARALLELIZE_DOCSTRING = r""" | |
This is an experimental feature and is a subject to change at a moment's notice. | |
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, | |
it will evenly distribute blocks across all devices. | |
Args: | |
device_map (:obj:`Dict[int, list]`, optional, defaults to None): | |
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always | |
automatically mapped to the first device (for esoteric reasons). That means that the first device should | |
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the | |
following number of attention modules: | |
- gpt2: 12 | |
- gpt2-medium: 24 | |
- gpt2-large: 36 | |
- gpt2-xl: 48 | |
Example:: | |
# Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules: | |
model = GPT2LMHeadModel.from_pretrained('gpt2-xl') | |
device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7, 8], | |
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], | |
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], | |
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]} | |
model.parallelize(device_map) | |
""" | |
DEPARALLELIZE_DOCSTRING = r""" | |
Moves the model to cpu from a model parallel state. | |
Example:: | |
# On a 4 GPU machine with gpt2-large: | |
model = GPT2LMHeadModel.from_pretrained('gpt2-large') | |
device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7], | |
1: [8, 9, 10, 11, 12, 13, 14, 15], | |
2: [16, 17, 18, 19, 20, 21, 22, 23], | |
3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]} | |
model.parallelize(device_map) # Splits the model across several devices | |
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() | |
""" | |
class GPT2Model(GPT2PreTrainedModel): | |
_keys_to_ignore_on_load_missing = ["attn.masked_bias"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.embed_dim = config.hidden_size | |
self.wte = nn.Embedding(config.vocab_size, self.embed_dim) | |
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) | |
self.drop = nn.Dropout(config.embd_pdrop) | |
self.h = nn.ModuleList([GPT2Block(config) for _ in range(config.num_hidden_layers)]) | |
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
self.init_weights() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
self.gradient_checkpointing = False | |
config = kwargs.get('config',inputs[0]) | |
if args.position_embedding_type == PositionEmbeddingType_alibi: | |
self.alibi = self._build_alibi_tensor(args.seq_length, args.num_attention_heads, args.micro_batch_size).to(torch.cuda.current_device()) | |
if args.params_dtype == torch.float16: | |
self.alibi = self.alibi.to(torch.float16) | |
elif args.params_dtype == torch.bfloat16: | |
self.alibi = self.alibi.to(torch.bfloat16) | |
else: | |
self.alibi = None | |
def _build_alibi_tensor(max_seq_len, num_attention_heads, batch_size): | |
# Based on https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 | |
"""Returns tensor shaped (batch_size * num_attention_heads, 1, max_seq_len)""" | |
def get_slopes(n): | |
def get_slopes_power_of_2(n): | |
start = (2 ** (-2 ** -(math.log2(n) - 3))) | |
ratio = start | |
return [start * ratio ** i for i in range(n)] | |
if math.log2(n).is_integer(): | |
return get_slopes_power_of_2(n) | |
else: | |
closest_power_of_2 = 2 ** math.floor(math.log2(n)) | |
return get_slopes_power_of_2(closest_power_of_2) + get_slopes(2 * closest_power_of_2)[0::2][ | |
:n - closest_power_of_2] | |
slopes = torch.Tensor(get_slopes(num_attention_heads)) | |
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_seq_len).unsqueeze(0).unsqueeze(0).expand(num_attention_heads, -1, -1) | |
alibi = alibi.repeat(batch_size, 1, 1) | |
return alibi | |
def parallelize(self, device_map=None): | |
# Check validity of device_map | |
self.device_map = ( | |
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map | |
) | |
assert_device_map(self.device_map, len(self.h)) | |
self.model_parallel = True | |
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) | |
self.last_device = "cuda:" + str(max(self.device_map.keys())) | |
self.wte = self.wte.to(self.first_device) | |
self.wpe = self.wpe.to(self.first_device) | |
# Load onto devices | |
for k, v in self.device_map.items(): | |
for block in v: | |
cuda_device = "cuda:" + str(k) | |
self.h[block] = self.h[block].to(cuda_device) | |
# ln_f to last | |
self.ln_f = self.ln_f.to(self.last_device) | |
def deparallelize(self): | |
self.model_parallel = False | |
self.device_map = None | |
self.first_device = "cpu" | |
self.last_device = "cpu" | |
self.wte = self.wte.to("cpu") | |
self.wpe = self.wpe.to("cpu") | |
for index in range(len(self.h)): | |
self.h[index] = self.h[index].to("cpu") | |
self.ln_f = self.ln_f.to("cpu") | |
torch.cuda.empty_cache() | |
def get_input_embeddings(self): | |
return self.wte | |
def set_input_embeddings(self, new_embeddings): | |
self.wte = new_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.h[layer].attn.prune_heads(heads) | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
prefix_lm_token_id = None | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
batch_size = input_ids.shape[0] | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
batch_size = inputs_embeds.shape[0] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, input_shape[-1]) | |
if position_ids is not None: | |
position_ids = position_ids.view(-1, input_shape[-1]) | |
if past_key_values is None: | |
past_length = 0 | |
past_key_values = tuple([None] * len(self.h)) | |
else: | |
past_length = past_key_values[0][0].size(-2) | |
if position_ids is None: | |
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) | |
# GPT2Attention mask. | |
if attention_mask is not None: | |
if batch_size <= 0: | |
raise ValueError("batch_size has to be defined and > 0") | |
attention_mask = attention_mask.view(batch_size, -1) | |
# do prefix_lm masking if we have input_ids. We find the prefix_lm_toke_id token as the prefix_lm boundry. | |
if prefix_lm_token_id is not None and input_ids is not None: | |
for attention_mask_row, input_ids_row in zip(attention_mask, input_ids): # do this in the bs dimension | |
attention_mask_row[: (input_ids_row == prefix_lm_token_id).nonzero(as_tuple=True)[0], :] = 1.0 # is this right? | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
attention_mask = attention_mask[:, None, None, :] | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
attention_mask = (1.0 - attention_mask) * -10000.0 | |
# If a 2D ou 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.config.add_cross_attention and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# head_mask has shape n_layer x batch x n_heads x N x N | |
head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
if inputs_embeds is None: | |
inputs_embeds = self.wte(input_ids) | |
position_embeds = self.wpe(position_ids) | |
hidden_states = inputs_embeds + position_embeds | |
if token_type_ids is not None: | |
token_type_embeds = self.wte(token_type_ids) | |
hidden_states = hidden_states + token_type_embeds | |
hidden_states = self.drop(hidden_states) | |
output_shape = input_shape + (hidden_states.size(-1),) | |
presents = () if use_cache else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
all_hidden_states = () if output_hidden_states else None | |
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
# Model parallel | |
if self.model_parallel: | |
torch.cuda.set_device(hidden_states.device) | |
# Ensure layer_past is on same device as hidden_states (might not be correct) | |
if layer_past is not None: | |
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) | |
# Ensure that attention_mask is always on the same device as hidden_states | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(hidden_states.device) | |
if isinstance(head_mask, torch.Tensor): | |
head_mask = head_mask.to(hidden_states.device) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# None for past_key_value | |
return module(*inputs, use_cache, output_attentions) | |
return custom_forward | |
outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
None, | |
attention_mask, | |
head_mask[i], | |
encoder_hidden_states, | |
encoder_attention_mask, | |
self.alibi | |
) | |
else: | |
outputs = block( | |
hidden_states, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
head_mask=head_mask[i], | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
alibi=self.alibi | |
) | |
hidden_states = outputs[0] | |
if use_cache is True: | |
presents = presents + (outputs[1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
if self.config.add_cross_attention: | |
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) | |
# Model Parallel: If it's the last layer for that device, put things on the next device | |
if self.model_parallel: | |
for k, v in self.device_map.items(): | |
if i == v[-1] and "cuda:" + str(k) != self.last_device: | |
hidden_states = hidden_states.to("cuda:" + str(k + 1)) | |
hidden_states = self.ln_f(hidden_states) | |
hidden_states = hidden_states.view(*output_shape) | |
# Add last hidden state | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=presents, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
class GPT2LMHeadModel(GPT2PreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = GPT2Model(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.init_weights() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def parallelize(self, device_map=None): | |
self.device_map = ( | |
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) | |
if device_map is None | |
else device_map | |
) | |
assert_device_map(self.device_map, len(self.transformer.h)) | |
self.transformer.parallelize(self.device_map) | |
self.lm_head = self.lm_head.to(self.transformer.first_device) | |
self.model_parallel = True | |
def deparallelize(self): | |
self.transformer.deparallelize() | |
self.transformer = self.transformer.to("cpu") | |
self.lm_head = self.lm_head.to("cpu") | |
self.model_parallel = False | |
torch.cuda.empty_cache() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): | |
token_type_ids = kwargs.get("token_type_ids", None) | |
# only last token for inputs_ids if past is defined in kwargs | |
if past: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) | |
attention_mask = kwargs.get("attention_mask", None) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
else: | |
position_ids = None | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past, | |
"use_cache": kwargs.get("use_cache"), | |
"position_ids": position_ids, | |
"attention_mask": attention_mask, | |
"token_type_ids": token_type_ids, | |
} | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
labels=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to | |
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
# Set device for model parallelism | |
if self.model_parallel: | |
torch.cuda.set_device(self.transformer.first_device) | |
hidden_states = hidden_states.to(self.lm_head.weight.device) | |
lm_logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
if not return_dict: | |
output = (lm_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
cross_attentions=transformer_outputs.cross_attentions, | |
) | |
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: | |
""" | |
This function is used to re-order the :obj:`past_key_values` cache if | |
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is | |
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. | |
""" | |
return tuple( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) | |
for layer_past in past | |
) | |
class GPT2DoubleHeadsModel(GPT2PreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
config.num_labels = 1 | |
self.transformer = GPT2Model(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.multiple_choice_head = SequenceSummary(config) | |
self.init_weights() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def parallelize(self, device_map=None): | |
self.device_map = ( | |
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) | |
if device_map is None | |
else device_map | |
) | |
assert_device_map(self.device_map, len(self.transformer.h)) | |
self.transformer.parallelize(self.device_map) | |
self.lm_head = self.lm_head.to(self.transformer.first_device) | |
self.multiple_choice_head = self.multiple_choice_head.to(self.transformer.first_device) | |
self.model_parallel = True | |
def deparallelize(self): | |
self.transformer.deparallelize() | |
self.transformer = self.transformer.to("cpu") | |
self.lm_head = self.lm_head.to("cpu") | |
self.multiple_choice_head = self.multiple_choice_head.to("cpu") | |
self.model_parallel = False | |
torch.cuda.empty_cache() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): | |
token_type_ids = kwargs.get("token_type_ids", None) | |
# only last token for inputs_ids if past is defined in kwargs | |
if past: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) | |
attention_mask = kwargs.get("attention_mask", None) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
else: | |
position_ids = None | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past, | |
"use_cache": kwargs.get("use_cache"), | |
"position_ids": position_ids, | |
"attention_mask": attention_mask, | |
"token_type_ids": token_type_ids, | |
} | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
mc_token_ids=None, | |
labels=None, | |
mc_labels=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
**kwargs, | |
): | |
r""" | |
mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input): | |
Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - | |
1[``. | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size - 1]`` All labels set to | |
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size - 1]`` | |
mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`): | |
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., | |
num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see | |
`input_ids` above) | |
Return: | |
Example:: | |
>>> import torch | |
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel | |
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
>>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2') | |
>>> # Add a [CLS] to the vocabulary (we should train it also!) | |
>>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'}) | |
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size | |
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] | |
>>> encoded_choices = [tokenizer.encode(s) for s in choices] | |
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] | |
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 | |
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 | |
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids) | |
>>> lm_logits = outputs.logits | |
>>> mc_logits = outputs.mc_logits | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
# Set device for model parallelism | |
if self.model_parallel: | |
torch.cuda.set_device(self.transformer.first_device) | |
hidden_states = hidden_states.to(self.lm_head.weight.device) | |
lm_logits = self.lm_head(hidden_states) | |
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) | |
mc_loss = None | |
if mc_labels is not None: | |
loss_fct = CrossEntropyLoss() | |
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) | |
lm_loss = None | |
if labels is not None: | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
loss_fct = CrossEntropyLoss() | |
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
if not return_dict: | |
output = (lm_logits, mc_logits) + transformer_outputs[1:] | |
if mc_loss is not None: | |
output = (mc_loss,) + output | |
return ((lm_loss,) + output) if lm_loss is not None else output | |
return GPT2DoubleHeadsModelOutput( | |
loss=lm_loss, | |
mc_loss=mc_loss, | |
logits=lm_logits, | |
mc_logits=mc_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: | |
""" | |
This function is used to re-order the :obj:`past_key_values` cache if | |
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is | |
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. | |
""" | |
return tuple( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) | |
for layer_past in past | |
) | |
class GPT2ForSequenceClassification(GPT2PreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = GPT2Model(config) | |
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) | |
self.init_weights() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size, sequence_length = input_ids.shape[:2] | |
else: | |
batch_size, sequence_length = inputs_embeds.shape[:2] | |
assert ( | |
self.config.pad_token_id is not None or batch_size == 1 | |
), "Cannot handle batch sizes > 1 if no padding token is defined." | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 | |
else: | |
sequence_lengths = -1 | |
logger.warning( | |
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | |
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" | |
) | |
pooled_logits = logits[range(batch_size), sequence_lengths] | |
loss = None | |
if labels is not None: | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class GPT2ForTokenClassification(GPT2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = GPT2Model(config) | |
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: | |
classifier_dropout = config.classifier_dropout | |
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | |
classifier_dropout = config.hidden_dropout | |
else: | |
classifier_dropout = 0.1 | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
def forward( | |
self, | |
input_ids=None, | |
past_key_values=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
hidden_states = self.dropout(hidden_states) | |
logits = self.classifier(hidden_states) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels) | |
active_labels = torch.where( | |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) | |
) | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + transformer_outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |