File size: 15,731 Bytes
6cf19f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
from numpy import (asarray, pi, zeros_like,
array, arctan2, tan, ones, arange, floor,
r_, atleast_1d, sqrt, exp, greater, cos, add, sin)
# From splinemodule.c
from ._spline import cspline2d, sepfir2d
from ._signaltools import lfilter, sosfilt, lfiltic
from scipy.interpolate import BSpline
__all__ = ['spline_filter', 'gauss_spline',
'cspline1d', 'qspline1d', 'cspline1d_eval', 'qspline1d_eval']
def spline_filter(Iin, lmbda=5.0):
"""Smoothing spline (cubic) filtering of a rank-2 array.
Filter an input data set, `Iin`, using a (cubic) smoothing spline of
fall-off `lmbda`.
Parameters
----------
Iin : array_like
input data set
lmbda : float, optional
spline smooghing fall-off value, default is `5.0`.
Returns
-------
res : ndarray
filtered input data
Examples
--------
We can filter an multi dimensional signal (ex: 2D image) using cubic
B-spline filter:
>>> import numpy as np
>>> from scipy.signal import spline_filter
>>> import matplotlib.pyplot as plt
>>> orig_img = np.eye(20) # create an image
>>> orig_img[10, :] = 1.0
>>> sp_filter = spline_filter(orig_img, lmbda=0.1)
>>> f, ax = plt.subplots(1, 2, sharex=True)
>>> for ind, data in enumerate([[orig_img, "original image"],
... [sp_filter, "spline filter"]]):
... ax[ind].imshow(data[0], cmap='gray_r')
... ax[ind].set_title(data[1])
>>> plt.tight_layout()
>>> plt.show()
"""
intype = Iin.dtype.char
hcol = array([1.0, 4.0, 1.0], 'f') / 6.0
if intype in ['F', 'D']:
Iin = Iin.astype('F')
ckr = cspline2d(Iin.real, lmbda)
cki = cspline2d(Iin.imag, lmbda)
outr = sepfir2d(ckr, hcol, hcol)
outi = sepfir2d(cki, hcol, hcol)
out = (outr + 1j * outi).astype(intype)
elif intype in ['f', 'd']:
ckr = cspline2d(Iin, lmbda)
out = sepfir2d(ckr, hcol, hcol)
out = out.astype(intype)
else:
raise TypeError("Invalid data type for Iin")
return out
_splinefunc_cache = {}
def gauss_spline(x, n):
r"""Gaussian approximation to B-spline basis function of order n.
Parameters
----------
x : array_like
a knot vector
n : int
The order of the spline. Must be non-negative, i.e., n >= 0
Returns
-------
res : ndarray
B-spline basis function values approximated by a zero-mean Gaussian
function.
Notes
-----
The B-spline basis function can be approximated well by a zero-mean
Gaussian function with standard-deviation equal to :math:`\sigma=(n+1)/12`
for large `n` :
.. math:: \frac{1}{\sqrt {2\pi\sigma^2}}exp(-\frac{x^2}{2\sigma})
References
----------
.. [1] Bouma H., Vilanova A., Bescos J.O., ter Haar Romeny B.M., Gerritsen
F.A. (2007) Fast and Accurate Gaussian Derivatives Based on B-Splines. In:
Sgallari F., Murli A., Paragios N. (eds) Scale Space and Variational
Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer
Science, vol 4485. Springer, Berlin, Heidelberg
.. [2] http://folk.uio.no/inf3330/scripting/doc/python/SciPy/tutorial/old/node24.html
Examples
--------
We can calculate B-Spline basis functions approximated by a gaussian
distribution:
>>> import numpy as np
>>> from scipy.signal import gauss_spline
>>> knots = np.array([-1.0, 0.0, -1.0])
>>> gauss_spline(knots, 3)
array([0.15418033, 0.6909883, 0.15418033]) # may vary
"""
x = asarray(x)
signsq = (n + 1) / 12.0
return 1 / sqrt(2 * pi * signsq) * exp(-x ** 2 / 2 / signsq)
def _cubic(x):
x = asarray(x, dtype=float)
b = BSpline.basis_element([-2, -1, 0, 1, 2], extrapolate=False)
out = b(x)
out[(x < -2) | (x > 2)] = 0
return out
def _quadratic(x):
x = abs(asarray(x, dtype=float))
b = BSpline.basis_element([-1.5, -0.5, 0.5, 1.5], extrapolate=False)
out = b(x)
out[(x < -1.5) | (x > 1.5)] = 0
return out
def _coeff_smooth(lam):
xi = 1 - 96 * lam + 24 * lam * sqrt(3 + 144 * lam)
omeg = arctan2(sqrt(144 * lam - 1), sqrt(xi))
rho = (24 * lam - 1 - sqrt(xi)) / (24 * lam)
rho = rho * sqrt((48 * lam + 24 * lam * sqrt(3 + 144 * lam)) / xi)
return rho, omeg
def _hc(k, cs, rho, omega):
return (cs / sin(omega) * (rho ** k) * sin(omega * (k + 1)) *
greater(k, -1))
def _hs(k, cs, rho, omega):
c0 = (cs * cs * (1 + rho * rho) / (1 - rho * rho) /
(1 - 2 * rho * rho * cos(2 * omega) + rho ** 4))
gamma = (1 - rho * rho) / (1 + rho * rho) / tan(omega)
ak = abs(k)
return c0 * rho ** ak * (cos(omega * ak) + gamma * sin(omega * ak))
def _cubic_smooth_coeff(signal, lamb):
rho, omega = _coeff_smooth(lamb)
cs = 1 - 2 * rho * cos(omega) + rho * rho
K = len(signal)
k = arange(K)
zi_2 = (_hc(0, cs, rho, omega) * signal[0] +
add.reduce(_hc(k + 1, cs, rho, omega) * signal))
zi_1 = (_hc(0, cs, rho, omega) * signal[0] +
_hc(1, cs, rho, omega) * signal[1] +
add.reduce(_hc(k + 2, cs, rho, omega) * signal))
# Forward filter:
# for n in range(2, K):
# yp[n] = (cs * signal[n] + 2 * rho * cos(omega) * yp[n - 1] -
# rho * rho * yp[n - 2])
zi = lfiltic(cs, r_[1, -2 * rho * cos(omega), rho * rho], r_[zi_1, zi_2])
zi = zi.reshape(1, -1)
sos = r_[cs, 0, 0, 1, -2 * rho * cos(omega), rho * rho]
sos = sos.reshape(1, -1)
yp, _ = sosfilt(sos, signal[2:], zi=zi)
yp = r_[zi_2, zi_1, yp]
# Reverse filter:
# for n in range(K - 3, -1, -1):
# y[n] = (cs * yp[n] + 2 * rho * cos(omega) * y[n + 1] -
# rho * rho * y[n + 2])
zi_2 = add.reduce((_hs(k, cs, rho, omega) +
_hs(k + 1, cs, rho, omega)) * signal[::-1])
zi_1 = add.reduce((_hs(k - 1, cs, rho, omega) +
_hs(k + 2, cs, rho, omega)) * signal[::-1])
zi = lfiltic(cs, r_[1, -2 * rho * cos(omega), rho * rho], r_[zi_1, zi_2])
zi = zi.reshape(1, -1)
y, _ = sosfilt(sos, yp[-3::-1], zi=zi)
y = r_[y[::-1], zi_1, zi_2]
return y
def _cubic_coeff(signal):
zi = -2 + sqrt(3)
K = len(signal)
powers = zi ** arange(K)
if K == 1:
yplus = signal[0] + zi * add.reduce(powers * signal)
output = zi / (zi - 1) * yplus
return atleast_1d(output)
# Forward filter:
# yplus[0] = signal[0] + zi * add.reduce(powers * signal)
# for k in range(1, K):
# yplus[k] = signal[k] + zi * yplus[k - 1]
state = lfiltic(1, r_[1, -zi], atleast_1d(add.reduce(powers * signal)))
b = ones(1)
a = r_[1, -zi]
yplus, _ = lfilter(b, a, signal, zi=state)
# Reverse filter:
# output[K - 1] = zi / (zi - 1) * yplus[K - 1]
# for k in range(K - 2, -1, -1):
# output[k] = zi * (output[k + 1] - yplus[k])
out_last = zi / (zi - 1) * yplus[K - 1]
state = lfiltic(-zi, r_[1, -zi], atleast_1d(out_last))
b = asarray([-zi])
output, _ = lfilter(b, a, yplus[-2::-1], zi=state)
output = r_[output[::-1], out_last]
return output * 6.0
def _quadratic_coeff(signal):
zi = -3 + 2 * sqrt(2.0)
K = len(signal)
powers = zi ** arange(K)
if K == 1:
yplus = signal[0] + zi * add.reduce(powers * signal)
output = zi / (zi - 1) * yplus
return atleast_1d(output)
# Forward filter:
# yplus[0] = signal[0] + zi * add.reduce(powers * signal)
# for k in range(1, K):
# yplus[k] = signal[k] + zi * yplus[k - 1]
state = lfiltic(1, r_[1, -zi], atleast_1d(add.reduce(powers * signal)))
b = ones(1)
a = r_[1, -zi]
yplus, _ = lfilter(b, a, signal, zi=state)
# Reverse filter:
# output[K - 1] = zi / (zi - 1) * yplus[K - 1]
# for k in range(K - 2, -1, -1):
# output[k] = zi * (output[k + 1] - yplus[k])
out_last = zi / (zi - 1) * yplus[K - 1]
state = lfiltic(-zi, r_[1, -zi], atleast_1d(out_last))
b = asarray([-zi])
output, _ = lfilter(b, a, yplus[-2::-1], zi=state)
output = r_[output[::-1], out_last]
return output * 8.0
def cspline1d(signal, lamb=0.0):
"""
Compute cubic spline coefficients for rank-1 array.
Find the cubic spline coefficients for a 1-D signal assuming
mirror-symmetric boundary conditions. To obtain the signal back from the
spline representation mirror-symmetric-convolve these coefficients with a
length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 .
Parameters
----------
signal : ndarray
A rank-1 array representing samples of a signal.
lamb : float, optional
Smoothing coefficient, default is 0.0.
Returns
-------
c : ndarray
Cubic spline coefficients.
See Also
--------
cspline1d_eval : Evaluate a cubic spline at the new set of points.
Examples
--------
We can filter a signal to reduce and smooth out high-frequency noise with
a cubic spline:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import cspline1d, cspline1d_eval
>>> rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 0.], 100)
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise
>>> time = np.linspace(0, len(sig))
>>> filtered = cspline1d_eval(cspline1d(sig), time)
>>> plt.plot(sig, label="signal")
>>> plt.plot(time, filtered, label="filtered")
>>> plt.legend()
>>> plt.show()
"""
if lamb != 0.0:
return _cubic_smooth_coeff(signal, lamb)
else:
return _cubic_coeff(signal)
def qspline1d(signal, lamb=0.0):
"""Compute quadratic spline coefficients for rank-1 array.
Parameters
----------
signal : ndarray
A rank-1 array representing samples of a signal.
lamb : float, optional
Smoothing coefficient (must be zero for now).
Returns
-------
c : ndarray
Quadratic spline coefficients.
See Also
--------
qspline1d_eval : Evaluate a quadratic spline at the new set of points.
Notes
-----
Find the quadratic spline coefficients for a 1-D signal assuming
mirror-symmetric boundary conditions. To obtain the signal back from the
spline representation mirror-symmetric-convolve these coefficients with a
length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 .
Examples
--------
We can filter a signal to reduce and smooth out high-frequency noise with
a quadratic spline:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import qspline1d, qspline1d_eval
>>> rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 0.], 100)
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise
>>> time = np.linspace(0, len(sig))
>>> filtered = qspline1d_eval(qspline1d(sig), time)
>>> plt.plot(sig, label="signal")
>>> plt.plot(time, filtered, label="filtered")
>>> plt.legend()
>>> plt.show()
"""
if lamb != 0.0:
raise ValueError("Smoothing quadratic splines not supported yet.")
else:
return _quadratic_coeff(signal)
def cspline1d_eval(cj, newx, dx=1.0, x0=0):
"""Evaluate a cubic spline at the new set of points.
`dx` is the old sample-spacing while `x0` was the old origin. In
other-words the old-sample points (knot-points) for which the `cj`
represent spline coefficients were at equally-spaced points of:
oldx = x0 + j*dx j=0...N-1, with N=len(cj)
Edges are handled using mirror-symmetric boundary conditions.
Parameters
----------
cj : ndarray
cublic spline coefficients
newx : ndarray
New set of points.
dx : float, optional
Old sample-spacing, the default value is 1.0.
x0 : int, optional
Old origin, the default value is 0.
Returns
-------
res : ndarray
Evaluated a cubic spline points.
See Also
--------
cspline1d : Compute cubic spline coefficients for rank-1 array.
Examples
--------
We can filter a signal to reduce and smooth out high-frequency noise with
a cubic spline:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import cspline1d, cspline1d_eval
>>> rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 0.], 100)
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise
>>> time = np.linspace(0, len(sig))
>>> filtered = cspline1d_eval(cspline1d(sig), time)
>>> plt.plot(sig, label="signal")
>>> plt.plot(time, filtered, label="filtered")
>>> plt.legend()
>>> plt.show()
"""
newx = (asarray(newx) - x0) / float(dx)
res = zeros_like(newx, dtype=cj.dtype)
if res.size == 0:
return res
N = len(cj)
cond1 = newx < 0
cond2 = newx > (N - 1)
cond3 = ~(cond1 | cond2)
# handle general mirror-symmetry
res[cond1] = cspline1d_eval(cj, -newx[cond1])
res[cond2] = cspline1d_eval(cj, 2 * (N - 1) - newx[cond2])
newx = newx[cond3]
if newx.size == 0:
return res
result = zeros_like(newx, dtype=cj.dtype)
jlower = floor(newx - 2).astype(int) + 1
for i in range(4):
thisj = jlower + i
indj = thisj.clip(0, N - 1) # handle edge cases
result += cj[indj] * _cubic(newx - thisj)
res[cond3] = result
return res
def qspline1d_eval(cj, newx, dx=1.0, x0=0):
"""Evaluate a quadratic spline at the new set of points.
Parameters
----------
cj : ndarray
Quadratic spline coefficients
newx : ndarray
New set of points.
dx : float, optional
Old sample-spacing, the default value is 1.0.
x0 : int, optional
Old origin, the default value is 0.
Returns
-------
res : ndarray
Evaluated a quadratic spline points.
See Also
--------
qspline1d : Compute quadratic spline coefficients for rank-1 array.
Notes
-----
`dx` is the old sample-spacing while `x0` was the old origin. In
other-words the old-sample points (knot-points) for which the `cj`
represent spline coefficients were at equally-spaced points of::
oldx = x0 + j*dx j=0...N-1, with N=len(cj)
Edges are handled using mirror-symmetric boundary conditions.
Examples
--------
We can filter a signal to reduce and smooth out high-frequency noise with
a quadratic spline:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import qspline1d, qspline1d_eval
>>> rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 0.], 100)
>>> sig += rng.standard_normal(len(sig))*0.05 # add noise
>>> time = np.linspace(0, len(sig))
>>> filtered = qspline1d_eval(qspline1d(sig), time)
>>> plt.plot(sig, label="signal")
>>> plt.plot(time, filtered, label="filtered")
>>> plt.legend()
>>> plt.show()
"""
newx = (asarray(newx) - x0) / dx
res = zeros_like(newx)
if res.size == 0:
return res
N = len(cj)
cond1 = newx < 0
cond2 = newx > (N - 1)
cond3 = ~(cond1 | cond2)
# handle general mirror-symmetry
res[cond1] = qspline1d_eval(cj, -newx[cond1])
res[cond2] = qspline1d_eval(cj, 2 * (N - 1) - newx[cond2])
newx = newx[cond3]
if newx.size == 0:
return res
result = zeros_like(newx)
jlower = floor(newx - 1.5).astype(int) + 1
for i in range(3):
thisj = jlower + i
indj = thisj.clip(0, N - 1) # handle edge cases
result += cj[indj] * _quadratic(newx - thisj)
res[cond3] = result
return res
|