File size: 40,703 Bytes
6d870c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
"""
The :mod:`sklearn.utils` module includes various utilities.
"""

import math
import numbers
import platform
import struct
import timeit
import warnings
from collections.abc import Sequence
from contextlib import contextmanager, suppress
from itertools import compress, islice

import numpy as np
from scipy.sparse import issparse

from .. import get_config
from ..exceptions import DataConversionWarning
from . import _joblib, metadata_routing
from ._bunch import Bunch
from ._estimator_html_repr import estimator_html_repr
from ._param_validation import Integral, Interval, validate_params
from .class_weight import compute_class_weight, compute_sample_weight
from .deprecation import deprecated
from .discovery import all_estimators
from .fixes import parse_version, threadpool_info
from .murmurhash import murmurhash3_32
from .validation import (
    _is_arraylike_not_scalar,
    _is_pandas_df,
    _is_polars_df,
    _use_interchange_protocol,
    as_float_array,
    assert_all_finite,
    check_array,
    check_consistent_length,
    check_random_state,
    check_scalar,
    check_symmetric,
    check_X_y,
    column_or_1d,
    indexable,
)

# Do not deprecate parallel_backend and register_parallel_backend as they are
# needed to tune `scikit-learn` behavior and have different effect if called
# from the vendored version or or the site-package version. The other are
# utilities that are independent of scikit-learn so they are not part of
# scikit-learn public API.
parallel_backend = _joblib.parallel_backend
register_parallel_backend = _joblib.register_parallel_backend

__all__ = [
    "murmurhash3_32",
    "as_float_array",
    "assert_all_finite",
    "check_array",
    "check_random_state",
    "compute_class_weight",
    "compute_sample_weight",
    "column_or_1d",
    "check_consistent_length",
    "check_X_y",
    "check_scalar",
    "indexable",
    "check_symmetric",
    "indices_to_mask",
    "deprecated",
    "parallel_backend",
    "register_parallel_backend",
    "resample",
    "shuffle",
    "check_matplotlib_support",
    "all_estimators",
    "DataConversionWarning",
    "estimator_html_repr",
    "Bunch",
    "metadata_routing",
]

IS_PYPY = platform.python_implementation() == "PyPy"
_IS_32BIT = 8 * struct.calcsize("P") == 32
_IS_WASM = platform.machine() in ["wasm32", "wasm64"]


def _in_unstable_openblas_configuration():
    """Return True if in an unstable configuration for OpenBLAS"""

    # Import libraries which might load OpenBLAS.
    import numpy  # noqa
    import scipy  # noqa

    modules_info = threadpool_info()

    open_blas_used = any(info["internal_api"] == "openblas" for info in modules_info)
    if not open_blas_used:
        return False

    # OpenBLAS 0.3.16 fixed instability for arm64, see:
    # https://github.com/xianyi/OpenBLAS/blob/1b6db3dbba672b4f8af935bd43a1ff6cff4d20b7/Changelog.txt#L56-L58 # noqa
    openblas_arm64_stable_version = parse_version("0.3.16")
    for info in modules_info:
        if info["internal_api"] != "openblas":
            continue
        openblas_version = info.get("version")
        openblas_architecture = info.get("architecture")
        if openblas_version is None or openblas_architecture is None:
            # Cannot be sure that OpenBLAS is good enough. Assume unstable:
            return True
        if (
            openblas_architecture == "neoversen1"
            and parse_version(openblas_version) < openblas_arm64_stable_version
        ):
            # See discussions in https://github.com/numpy/numpy/issues/19411
            return True
    return False


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "mask": ["array-like"],
    },
    prefer_skip_nested_validation=True,
)
def safe_mask(X, mask):
    """Return a mask which is safe to use on X.

    Parameters
    ----------
    X : {array-like, sparse matrix}
        Data on which to apply mask.

    mask : array-like
        Mask to be used on X.

    Returns
    -------
    mask : ndarray
        Array that is safe to use on X.

    Examples
    --------
    >>> from sklearn.utils import safe_mask
    >>> from scipy.sparse import csr_matrix
    >>> data = csr_matrix([[1], [2], [3], [4], [5]])
    >>> condition = [False, True, True, False, True]
    >>> mask = safe_mask(data, condition)
    >>> data[mask].toarray()
    array([[2],
           [3],
           [5]])
    """
    mask = np.asarray(mask)
    if np.issubdtype(mask.dtype, np.signedinteger):
        return mask

    if hasattr(X, "toarray"):
        ind = np.arange(mask.shape[0])
        mask = ind[mask]
    return mask


def axis0_safe_slice(X, mask, len_mask):
    """Return a mask which is safer to use on X than safe_mask.

    This mask is safer than safe_mask since it returns an
    empty array, when a sparse matrix is sliced with a boolean mask
    with all False, instead of raising an unhelpful error in older
    versions of SciPy.

    See: https://github.com/scipy/scipy/issues/5361

    Also note that we can avoid doing the dot product by checking if
    the len_mask is not zero in _huber_loss_and_gradient but this
    is not going to be the bottleneck, since the number of outliers
    and non_outliers are typically non-zero and it makes the code
    tougher to follow.

    Parameters
    ----------
    X : {array-like, sparse matrix}
        Data on which to apply mask.

    mask : ndarray
        Mask to be used on X.

    len_mask : int
        The length of the mask.

    Returns
    -------
    mask : ndarray
        Array that is safe to use on X.
    """
    if len_mask != 0:
        return X[safe_mask(X, mask), :]
    return np.zeros(shape=(0, X.shape[1]))


def _array_indexing(array, key, key_dtype, axis):
    """Index an array or scipy.sparse consistently across NumPy version."""
    if issparse(array) and key_dtype == "bool":
        key = np.asarray(key)
    if isinstance(key, tuple):
        key = list(key)
    return array[key, ...] if axis == 0 else array[:, key]


def _pandas_indexing(X, key, key_dtype, axis):
    """Index a pandas dataframe or a series."""
    if _is_arraylike_not_scalar(key):
        key = np.asarray(key)

    if key_dtype == "int" and not (isinstance(key, slice) or np.isscalar(key)):
        # using take() instead of iloc[] ensures the return value is a "proper"
        # copy that will not raise SettingWithCopyWarning
        return X.take(key, axis=axis)
    else:
        # check whether we should index with loc or iloc
        indexer = X.iloc if key_dtype == "int" else X.loc
        return indexer[:, key] if axis else indexer[key]


def _list_indexing(X, key, key_dtype):
    """Index a Python list."""
    if np.isscalar(key) or isinstance(key, slice):
        # key is a slice or a scalar
        return X[key]
    if key_dtype == "bool":
        # key is a boolean array-like
        return list(compress(X, key))
    # key is a integer array-like of key
    return [X[idx] for idx in key]


def _polars_indexing(X, key, key_dtype, axis):
    """Indexing X with polars interchange protocol."""
    # Polars behavior is more consistent with lists
    if isinstance(key, np.ndarray):
        key = key.tolist()

    if axis == 1:
        return X[:, key]
    else:
        return X[key]


def _determine_key_type(key, accept_slice=True):
    """Determine the data type of key.

    Parameters
    ----------
    key : scalar, slice or array-like
        The key from which we want to infer the data type.

    accept_slice : bool, default=True
        Whether or not to raise an error if the key is a slice.

    Returns
    -------
    dtype : {'int', 'str', 'bool', None}
        Returns the data type of key.
    """
    err_msg = (
        "No valid specification of the columns. Only a scalar, list or "
        "slice of all integers or all strings, or boolean mask is "
        "allowed"
    )

    dtype_to_str = {int: "int", str: "str", bool: "bool", np.bool_: "bool"}
    array_dtype_to_str = {
        "i": "int",
        "u": "int",
        "b": "bool",
        "O": "str",
        "U": "str",
        "S": "str",
    }

    if key is None:
        return None
    if isinstance(key, tuple(dtype_to_str.keys())):
        try:
            return dtype_to_str[type(key)]
        except KeyError:
            raise ValueError(err_msg)
    if isinstance(key, slice):
        if not accept_slice:
            raise TypeError(
                "Only array-like or scalar are supported. A Python slice was given."
            )
        if key.start is None and key.stop is None:
            return None
        key_start_type = _determine_key_type(key.start)
        key_stop_type = _determine_key_type(key.stop)
        if key_start_type is not None and key_stop_type is not None:
            if key_start_type != key_stop_type:
                raise ValueError(err_msg)
        if key_start_type is not None:
            return key_start_type
        return key_stop_type
    if isinstance(key, (list, tuple)):
        unique_key = set(key)
        key_type = {_determine_key_type(elt) for elt in unique_key}
        if not key_type:
            return None
        if len(key_type) != 1:
            raise ValueError(err_msg)
        return key_type.pop()
    if hasattr(key, "dtype"):
        try:
            return array_dtype_to_str[key.dtype.kind]
        except KeyError:
            raise ValueError(err_msg)
    raise ValueError(err_msg)


def _safe_indexing(X, indices, *, axis=0):
    """Return rows, items or columns of X using indices.

    .. warning::

        This utility is documented, but **private**. This means that
        backward compatibility might be broken without any deprecation
        cycle.

    Parameters
    ----------
    X : array-like, sparse-matrix, list, pandas.DataFrame, pandas.Series
        Data from which to sample rows, items or columns. `list` are only
        supported when `axis=0`.
    indices : bool, int, str, slice, array-like
        - If `axis=0`, boolean and integer array-like, integer slice,
          and scalar integer are supported.
        - If `axis=1`:
            - to select a single column, `indices` can be of `int` type for
              all `X` types and `str` only for dataframe. The selected subset
              will be 1D, unless `X` is a sparse matrix in which case it will
              be 2D.
            - to select multiples columns, `indices` can be one of the
              following: `list`, `array`, `slice`. The type used in
              these containers can be one of the following: `int`, 'bool' and
              `str`. However, `str` is only supported when `X` is a dataframe.
              The selected subset will be 2D.
    axis : int, default=0
        The axis along which `X` will be subsampled. `axis=0` will select
        rows while `axis=1` will select columns.

    Returns
    -------
    subset
        Subset of X on axis 0 or 1.

    Notes
    -----
    CSR, CSC, and LIL sparse matrices are supported. COO sparse matrices are
    not supported.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.utils import _safe_indexing
    >>> data = np.array([[1, 2], [3, 4], [5, 6]])
    >>> _safe_indexing(data, 0, axis=0)  # select the first row
    array([1, 2])
    >>> _safe_indexing(data, 0, axis=1)  # select the first column
    array([1, 3, 5])
    """
    if indices is None:
        return X

    if axis not in (0, 1):
        raise ValueError(
            "'axis' should be either 0 (to index rows) or 1 (to index "
            " column). Got {} instead.".format(axis)
        )

    indices_dtype = _determine_key_type(indices)

    if axis == 0 and indices_dtype == "str":
        raise ValueError("String indexing is not supported with 'axis=0'")

    if axis == 1 and isinstance(X, list):
        raise ValueError("axis=1 is not supported for lists")

    if axis == 1 and hasattr(X, "ndim") and X.ndim != 2:
        raise ValueError(
            "'X' should be a 2D NumPy array, 2D sparse matrix or pandas "
            "dataframe when indexing the columns (i.e. 'axis=1'). "
            "Got {} instead with {} dimension(s).".format(type(X), X.ndim)
        )

    if (
        axis == 1
        and indices_dtype == "str"
        and not (_is_pandas_df(X) or _use_interchange_protocol(X))
    ):
        raise ValueError(
            "Specifying the columns using strings is only supported for dataframes."
        )

    if hasattr(X, "iloc"):
        # TODO: we should probably use _is_pandas_df(X) instead but this would
        # require updating some tests such as test_train_test_split_mock_pandas.
        return _pandas_indexing(X, indices, indices_dtype, axis=axis)
    elif _is_polars_df(X):
        return _polars_indexing(X, indices, indices_dtype, axis=axis)
    elif hasattr(X, "shape"):
        return _array_indexing(X, indices, indices_dtype, axis=axis)
    else:
        return _list_indexing(X, indices, indices_dtype)


def _safe_assign(X, values, *, row_indexer=None, column_indexer=None):
    """Safe assignment to a numpy array, sparse matrix, or pandas dataframe.

    Parameters
    ----------
    X : {ndarray, sparse-matrix, dataframe}
        Array to be modified. It is expected to be 2-dimensional.

    values : ndarray
        The values to be assigned to `X`.

    row_indexer : array-like, dtype={int, bool}, default=None
        A 1-dimensional array to select the rows of interest. If `None`, all
        rows are selected.

    column_indexer : array-like, dtype={int, bool}, default=None
        A 1-dimensional array to select the columns of interest. If `None`, all
        columns are selected.
    """
    row_indexer = slice(None, None, None) if row_indexer is None else row_indexer
    column_indexer = (
        slice(None, None, None) if column_indexer is None else column_indexer
    )

    if hasattr(X, "iloc"):  # pandas dataframe
        with warnings.catch_warnings():
            # pandas >= 1.5 raises a warning when using iloc to set values in a column
            # that does not have the same type as the column being set. It happens
            # for instance when setting a categorical column with a string.
            # In the future the behavior won't change and the warning should disappear.
            # TODO(1.3): check if the warning is still raised or remove the filter.
            warnings.simplefilter("ignore", FutureWarning)
            X.iloc[row_indexer, column_indexer] = values
    else:  # numpy array or sparse matrix
        X[row_indexer, column_indexer] = values


def _get_column_indices_for_bool_or_int(key, n_columns):
    # Convert key into list of positive integer indexes
    try:
        idx = _safe_indexing(np.arange(n_columns), key)
    except IndexError as e:
        raise ValueError(
            f"all features must be in [0, {n_columns - 1}] or [-{n_columns}, 0]"
        ) from e
    return np.atleast_1d(idx).tolist()


def _get_column_indices(X, key):
    """Get feature column indices for input data X and key.

    For accepted values of `key`, see the docstring of
    :func:`_safe_indexing`.
    """
    key_dtype = _determine_key_type(key)
    if _use_interchange_protocol(X):
        return _get_column_indices_interchange(X.__dataframe__(), key, key_dtype)

    n_columns = X.shape[1]
    if isinstance(key, (list, tuple)) and not key:
        # we get an empty list
        return []
    elif key_dtype in ("bool", "int"):
        return _get_column_indices_for_bool_or_int(key, n_columns)
    else:
        try:
            all_columns = X.columns
        except AttributeError:
            raise ValueError(
                "Specifying the columns using strings is only supported for dataframes."
            )
        if isinstance(key, str):
            columns = [key]
        elif isinstance(key, slice):
            start, stop = key.start, key.stop
            if start is not None:
                start = all_columns.get_loc(start)
            if stop is not None:
                # pandas indexing with strings is endpoint included
                stop = all_columns.get_loc(stop) + 1
            else:
                stop = n_columns + 1
            return list(islice(range(n_columns), start, stop))
        else:
            columns = list(key)

        try:
            column_indices = []
            for col in columns:
                col_idx = all_columns.get_loc(col)
                if not isinstance(col_idx, numbers.Integral):
                    raise ValueError(
                        f"Selected columns, {columns}, are not unique in dataframe"
                    )
                column_indices.append(col_idx)

        except KeyError as e:
            raise ValueError("A given column is not a column of the dataframe") from e

        return column_indices


def _get_column_indices_interchange(X_interchange, key, key_dtype):
    """Same as _get_column_indices but for X with __dataframe__ protocol."""

    n_columns = X_interchange.num_columns()

    if isinstance(key, (list, tuple)) and not key:
        # we get an empty list
        return []
    elif key_dtype in ("bool", "int"):
        return _get_column_indices_for_bool_or_int(key, n_columns)
    else:
        column_names = list(X_interchange.column_names())

        if isinstance(key, slice):
            if key.step not in [1, None]:
                raise NotImplementedError("key.step must be 1 or None")
            start, stop = key.start, key.stop
            if start is not None:
                start = column_names.index(start)

            if stop is not None:
                stop = column_names.index(stop) + 1
            else:
                stop = n_columns + 1
            return list(islice(range(n_columns), start, stop))

        selected_columns = [key] if np.isscalar(key) else key

        try:
            return [column_names.index(col) for col in selected_columns]
        except ValueError as e:
            raise ValueError("A given column is not a column of the dataframe") from e


@validate_params(
    {
        "replace": ["boolean"],
        "n_samples": [Interval(numbers.Integral, 1, None, closed="left"), None],
        "random_state": ["random_state"],
        "stratify": ["array-like", None],
    },
    prefer_skip_nested_validation=True,
)
def resample(*arrays, replace=True, n_samples=None, random_state=None, stratify=None):
    """Resample arrays or sparse matrices in a consistent way.

    The default strategy implements one step of the bootstrapping
    procedure.

    Parameters
    ----------
    *arrays : sequence of array-like of shape (n_samples,) or \
            (n_samples, n_outputs)
        Indexable data-structures can be arrays, lists, dataframes or scipy
        sparse matrices with consistent first dimension.

    replace : bool, default=True
        Implements resampling with replacement. If False, this will implement
        (sliced) random permutations.

    n_samples : int, default=None
        Number of samples to generate. If left to None this is
        automatically set to the first dimension of the arrays.
        If replace is False it should not be larger than the length of
        arrays.

    random_state : int, RandomState instance or None, default=None
        Determines random number generation for shuffling
        the data.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    stratify : array-like of shape (n_samples,) or (n_samples, n_outputs), \
            default=None
        If not None, data is split in a stratified fashion, using this as
        the class labels.

    Returns
    -------
    resampled_arrays : sequence of array-like of shape (n_samples,) or \
            (n_samples, n_outputs)
        Sequence of resampled copies of the collections. The original arrays
        are not impacted.

    See Also
    --------
    shuffle : Shuffle arrays or sparse matrices in a consistent way.

    Examples
    --------
    It is possible to mix sparse and dense arrays in the same run::

      >>> import numpy as np
      >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
      >>> y = np.array([0, 1, 2])

      >>> from scipy.sparse import coo_matrix
      >>> X_sparse = coo_matrix(X)

      >>> from sklearn.utils import resample
      >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0)
      >>> X
      array([[1., 0.],
             [2., 1.],
             [1., 0.]])

      >>> X_sparse
      <3x2 sparse matrix of type '<... 'numpy.float64'>'
          with 4 stored elements in Compressed Sparse Row format>

      >>> X_sparse.toarray()
      array([[1., 0.],
             [2., 1.],
             [1., 0.]])

      >>> y
      array([0, 1, 0])

      >>> resample(y, n_samples=2, random_state=0)
      array([0, 1])

    Example using stratification::

      >>> y = [0, 0, 1, 1, 1, 1, 1, 1, 1]
      >>> resample(y, n_samples=5, replace=False, stratify=y,
      ...          random_state=0)
      [1, 1, 1, 0, 1]
    """
    max_n_samples = n_samples
    random_state = check_random_state(random_state)

    if len(arrays) == 0:
        return None

    first = arrays[0]
    n_samples = first.shape[0] if hasattr(first, "shape") else len(first)

    if max_n_samples is None:
        max_n_samples = n_samples
    elif (max_n_samples > n_samples) and (not replace):
        raise ValueError(
            "Cannot sample %d out of arrays with dim %d when replace is False"
            % (max_n_samples, n_samples)
        )

    check_consistent_length(*arrays)

    if stratify is None:
        if replace:
            indices = random_state.randint(0, n_samples, size=(max_n_samples,))
        else:
            indices = np.arange(n_samples)
            random_state.shuffle(indices)
            indices = indices[:max_n_samples]
    else:
        # Code adapted from StratifiedShuffleSplit()
        y = check_array(stratify, ensure_2d=False, dtype=None)
        if y.ndim == 2:
            # for multi-label y, map each distinct row to a string repr
            # using join because str(row) uses an ellipsis if len(row) > 1000
            y = np.array([" ".join(row.astype("str")) for row in y])

        classes, y_indices = np.unique(y, return_inverse=True)
        n_classes = classes.shape[0]

        class_counts = np.bincount(y_indices)

        # Find the sorted list of instances for each class:
        # (np.unique above performs a sort, so code is O(n logn) already)
        class_indices = np.split(
            np.argsort(y_indices, kind="mergesort"), np.cumsum(class_counts)[:-1]
        )

        n_i = _approximate_mode(class_counts, max_n_samples, random_state)

        indices = []

        for i in range(n_classes):
            indices_i = random_state.choice(class_indices[i], n_i[i], replace=replace)
            indices.extend(indices_i)

        indices = random_state.permutation(indices)

    # convert sparse matrices to CSR for row-based indexing
    arrays = [a.tocsr() if issparse(a) else a for a in arrays]
    resampled_arrays = [_safe_indexing(a, indices) for a in arrays]
    if len(resampled_arrays) == 1:
        # syntactic sugar for the unit argument case
        return resampled_arrays[0]
    else:
        return resampled_arrays


def shuffle(*arrays, random_state=None, n_samples=None):
    """Shuffle arrays or sparse matrices in a consistent way.

    This is a convenience alias to ``resample(*arrays, replace=False)`` to do
    random permutations of the collections.

    Parameters
    ----------
    *arrays : sequence of indexable data-structures
        Indexable data-structures can be arrays, lists, dataframes or scipy
        sparse matrices with consistent first dimension.

    random_state : int, RandomState instance or None, default=None
        Determines random number generation for shuffling
        the data.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

    n_samples : int, default=None
        Number of samples to generate. If left to None this is
        automatically set to the first dimension of the arrays.  It should
        not be larger than the length of arrays.

    Returns
    -------
    shuffled_arrays : sequence of indexable data-structures
        Sequence of shuffled copies of the collections. The original arrays
        are not impacted.

    See Also
    --------
    resample : Resample arrays or sparse matrices in a consistent way.

    Examples
    --------
    It is possible to mix sparse and dense arrays in the same run::

      >>> import numpy as np
      >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
      >>> y = np.array([0, 1, 2])

      >>> from scipy.sparse import coo_matrix
      >>> X_sparse = coo_matrix(X)

      >>> from sklearn.utils import shuffle
      >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0)
      >>> X
      array([[0., 0.],
             [2., 1.],
             [1., 0.]])

      >>> X_sparse
      <3x2 sparse matrix of type '<... 'numpy.float64'>'
          with 3 stored elements in Compressed Sparse Row format>

      >>> X_sparse.toarray()
      array([[0., 0.],
             [2., 1.],
             [1., 0.]])

      >>> y
      array([2, 1, 0])

      >>> shuffle(y, n_samples=2, random_state=0)
      array([0, 1])
    """
    return resample(
        *arrays, replace=False, n_samples=n_samples, random_state=random_state
    )


def safe_sqr(X, *, copy=True):
    """Element wise squaring of array-likes and sparse matrices.

    Parameters
    ----------
    X : {array-like, ndarray, sparse matrix}

    copy : bool, default=True
        Whether to create a copy of X and operate on it or to perform
        inplace computation (default behaviour).

    Returns
    -------
    X ** 2 : element wise square
         Return the element-wise square of the input.

    Examples
    --------
    >>> from sklearn.utils import safe_sqr
    >>> safe_sqr([1, 2, 3])
    array([1, 4, 9])
    """
    X = check_array(X, accept_sparse=["csr", "csc", "coo"], ensure_2d=False)
    if issparse(X):
        if copy:
            X = X.copy()
        X.data **= 2
    else:
        if copy:
            X = X**2
        else:
            X **= 2
    return X


def _chunk_generator(gen, chunksize):
    """Chunk generator, ``gen`` into lists of length ``chunksize``. The last
    chunk may have a length less than ``chunksize``."""
    while True:
        chunk = list(islice(gen, chunksize))
        if chunk:
            yield chunk
        else:
            return


@validate_params(
    {
        "n": [Interval(numbers.Integral, 1, None, closed="left")],
        "batch_size": [Interval(numbers.Integral, 1, None, closed="left")],
        "min_batch_size": [Interval(numbers.Integral, 0, None, closed="left")],
    },
    prefer_skip_nested_validation=True,
)
def gen_batches(n, batch_size, *, min_batch_size=0):
    """Generator to create slices containing `batch_size` elements from 0 to `n`.

    The last slice may contain less than `batch_size` elements, when
    `batch_size` does not divide `n`.

    Parameters
    ----------
    n : int
        Size of the sequence.
    batch_size : int
        Number of elements in each batch.
    min_batch_size : int, default=0
        Minimum number of elements in each batch.

    Yields
    ------
    slice of `batch_size` elements

    See Also
    --------
    gen_even_slices: Generator to create n_packs slices going up to n.

    Examples
    --------
    >>> from sklearn.utils import gen_batches
    >>> list(gen_batches(7, 3))
    [slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)]
    >>> list(gen_batches(6, 3))
    [slice(0, 3, None), slice(3, 6, None)]
    >>> list(gen_batches(2, 3))
    [slice(0, 2, None)]
    >>> list(gen_batches(7, 3, min_batch_size=0))
    [slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)]
    >>> list(gen_batches(7, 3, min_batch_size=2))
    [slice(0, 3, None), slice(3, 7, None)]
    """
    start = 0
    for _ in range(int(n // batch_size)):
        end = start + batch_size
        if end + min_batch_size > n:
            continue
        yield slice(start, end)
        start = end
    if start < n:
        yield slice(start, n)


@validate_params(
    {
        "n": [Interval(Integral, 1, None, closed="left")],
        "n_packs": [Interval(Integral, 1, None, closed="left")],
        "n_samples": [Interval(Integral, 1, None, closed="left"), None],
    },
    prefer_skip_nested_validation=True,
)
def gen_even_slices(n, n_packs, *, n_samples=None):
    """Generator to create `n_packs` evenly spaced slices going up to `n`.

    If `n_packs` does not divide `n`, except for the first `n % n_packs`
    slices, remaining slices may contain fewer elements.

    Parameters
    ----------
    n : int
        Size of the sequence.
    n_packs : int
        Number of slices to generate.
    n_samples : int, default=None
        Number of samples. Pass `n_samples` when the slices are to be used for
        sparse matrix indexing; slicing off-the-end raises an exception, while
        it works for NumPy arrays.

    Yields
    ------
    `slice` representing a set of indices from 0 to n.

    See Also
    --------
    gen_batches: Generator to create slices containing batch_size elements
        from 0 to n.

    Examples
    --------
    >>> from sklearn.utils import gen_even_slices
    >>> list(gen_even_slices(10, 1))
    [slice(0, 10, None)]
    >>> list(gen_even_slices(10, 10))
    [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)]
    >>> list(gen_even_slices(10, 5))
    [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)]
    >>> list(gen_even_slices(10, 3))
    [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)]
    """
    start = 0
    for pack_num in range(n_packs):
        this_n = n // n_packs
        if pack_num < n % n_packs:
            this_n += 1
        if this_n > 0:
            end = start + this_n
            if n_samples is not None:
                end = min(n_samples, end)
            yield slice(start, end, None)
            start = end


def tosequence(x):
    """Cast iterable x to a Sequence, avoiding a copy if possible.

    Parameters
    ----------
    x : iterable
        The iterable to be converted.

    Returns
    -------
    x : Sequence
        If `x` is a NumPy array, it returns it as a `ndarray`. If `x`
        is a `Sequence`, `x` is returned as-is. If `x` is from any other
        type, `x` is returned casted as a list.
    """
    if isinstance(x, np.ndarray):
        return np.asarray(x)
    elif isinstance(x, Sequence):
        return x
    else:
        return list(x)


def _to_object_array(sequence):
    """Convert sequence to a 1-D NumPy array of object dtype.

    numpy.array constructor has a similar use but it's output
    is ambiguous. It can be 1-D NumPy array of object dtype if
    the input is a ragged array, but if the input is a list of
    equal length arrays, then the output is a 2D numpy.array.
    _to_object_array solves this ambiguity by guarantying that
    the output is a 1-D NumPy array of objects for any input.

    Parameters
    ----------
    sequence : array-like of shape (n_elements,)
        The sequence to be converted.

    Returns
    -------
    out : ndarray of shape (n_elements,), dtype=object
        The converted sequence into a 1-D NumPy array of object dtype.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.utils import _to_object_array
    >>> _to_object_array([np.array([0]), np.array([1])])
    array([array([0]), array([1])], dtype=object)
    >>> _to_object_array([np.array([0]), np.array([1, 2])])
    array([array([0]), array([1, 2])], dtype=object)
    >>> _to_object_array([np.array([0]), np.array([1, 2])])
    array([array([0]), array([1, 2])], dtype=object)
    """
    out = np.empty(len(sequence), dtype=object)
    out[:] = sequence
    return out


def indices_to_mask(indices, mask_length):
    """Convert list of indices to boolean mask.

    Parameters
    ----------
    indices : list-like
        List of integers treated as indices.
    mask_length : int
        Length of boolean mask to be generated.
        This parameter must be greater than max(indices).

    Returns
    -------
    mask : 1d boolean nd-array
        Boolean array that is True where indices are present, else False.

    Examples
    --------
    >>> from sklearn.utils import indices_to_mask
    >>> indices = [1, 2 , 3, 4]
    >>> indices_to_mask(indices, 5)
    array([False,  True,  True,  True,  True])
    """
    if mask_length <= np.max(indices):
        raise ValueError("mask_length must be greater than max(indices)")

    mask = np.zeros(mask_length, dtype=bool)
    mask[indices] = True

    return mask


def _message_with_time(source, message, time):
    """Create one line message for logging purposes.

    Parameters
    ----------
    source : str
        String indicating the source or the reference of the message.

    message : str
        Short message.

    time : int
        Time in seconds.
    """
    start_message = "[%s] " % source

    # adapted from joblib.logger.short_format_time without the Windows -.1s
    # adjustment
    if time > 60:
        time_str = "%4.1fmin" % (time / 60)
    else:
        time_str = " %5.1fs" % time
    end_message = " %s, total=%s" % (message, time_str)
    dots_len = 70 - len(start_message) - len(end_message)
    return "%s%s%s" % (start_message, dots_len * ".", end_message)


@contextmanager
def _print_elapsed_time(source, message=None):
    """Log elapsed time to stdout when the context is exited.

    Parameters
    ----------
    source : str
        String indicating the source or the reference of the message.

    message : str, default=None
        Short message. If None, nothing will be printed.

    Returns
    -------
    context_manager
        Prints elapsed time upon exit if verbose.
    """
    if message is None:
        yield
    else:
        start = timeit.default_timer()
        yield
        print(_message_with_time(source, message, timeit.default_timer() - start))


def get_chunk_n_rows(row_bytes, *, max_n_rows=None, working_memory=None):
    """Calculate how many rows can be processed within `working_memory`.

    Parameters
    ----------
    row_bytes : int
        The expected number of bytes of memory that will be consumed
        during the processing of each row.
    max_n_rows : int, default=None
        The maximum return value.
    working_memory : int or float, default=None
        The number of rows to fit inside this number of MiB will be
        returned. When None (default), the value of
        ``sklearn.get_config()['working_memory']`` is used.

    Returns
    -------
    int
        The number of rows which can be processed within `working_memory`.

    Warns
    -----
    Issues a UserWarning if `row_bytes exceeds `working_memory` MiB.
    """

    if working_memory is None:
        working_memory = get_config()["working_memory"]

    chunk_n_rows = int(working_memory * (2**20) // row_bytes)
    if max_n_rows is not None:
        chunk_n_rows = min(chunk_n_rows, max_n_rows)
    if chunk_n_rows < 1:
        warnings.warn(
            "Could not adhere to working_memory config. "
            "Currently %.0fMiB, %.0fMiB required."
            % (working_memory, np.ceil(row_bytes * 2**-20))
        )
        chunk_n_rows = 1
    return chunk_n_rows


def _is_pandas_na(x):
    """Test if x is pandas.NA.

    We intentionally do not use this function to return `True` for `pd.NA` in
    `is_scalar_nan`, because estimators that support `pd.NA` are the exception
    rather than the rule at the moment. When `pd.NA` is more universally
    supported, we may reconsider this decision.

    Parameters
    ----------
    x : any type

    Returns
    -------
    boolean
    """
    with suppress(ImportError):
        from pandas import NA

        return x is NA

    return False


def is_scalar_nan(x):
    """Test if x is NaN.

    This function is meant to overcome the issue that np.isnan does not allow
    non-numerical types as input, and that np.nan is not float('nan').

    Parameters
    ----------
    x : any type
        Any scalar value.

    Returns
    -------
    bool
        Returns true if x is NaN, and false otherwise.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.utils import is_scalar_nan
    >>> is_scalar_nan(np.nan)
    True
    >>> is_scalar_nan(float("nan"))
    True
    >>> is_scalar_nan(None)
    False
    >>> is_scalar_nan("")
    False
    >>> is_scalar_nan([np.nan])
    False
    """
    return (
        not isinstance(x, numbers.Integral)
        and isinstance(x, numbers.Real)
        and math.isnan(x)
    )


def _approximate_mode(class_counts, n_draws, rng):
    """Computes approximate mode of multivariate hypergeometric.

    This is an approximation to the mode of the multivariate
    hypergeometric given by class_counts and n_draws.
    It shouldn't be off by more than one.

    It is the mostly likely outcome of drawing n_draws many
    samples from the population given by class_counts.

    Parameters
    ----------
    class_counts : ndarray of int
        Population per class.
    n_draws : int
        Number of draws (samples to draw) from the overall population.
    rng : random state
        Used to break ties.

    Returns
    -------
    sampled_classes : ndarray of int
        Number of samples drawn from each class.
        np.sum(sampled_classes) == n_draws

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.utils import _approximate_mode
    >>> _approximate_mode(class_counts=np.array([4, 2]), n_draws=3, rng=0)
    array([2, 1])
    >>> _approximate_mode(class_counts=np.array([5, 2]), n_draws=4, rng=0)
    array([3, 1])
    >>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]),
    ...                   n_draws=2, rng=0)
    array([0, 1, 1, 0])
    >>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]),
    ...                   n_draws=2, rng=42)
    array([1, 1, 0, 0])
    """
    rng = check_random_state(rng)
    # this computes a bad approximation to the mode of the
    # multivariate hypergeometric given by class_counts and n_draws
    continuous = class_counts / class_counts.sum() * n_draws
    # floored means we don't overshoot n_samples, but probably undershoot
    floored = np.floor(continuous)
    # we add samples according to how much "left over" probability
    # they had, until we arrive at n_samples
    need_to_add = int(n_draws - floored.sum())
    if need_to_add > 0:
        remainder = continuous - floored
        values = np.sort(np.unique(remainder))[::-1]
        # add according to remainder, but break ties
        # randomly to avoid biases
        for value in values:
            (inds,) = np.where(remainder == value)
            # if we need_to_add less than what's in inds
            # we draw randomly from them.
            # if we need to add more, we add them all and
            # go to the next value
            add_now = min(len(inds), need_to_add)
            inds = rng.choice(inds, size=add_now, replace=False)
            floored[inds] += 1
            need_to_add -= add_now
            if need_to_add == 0:
                break
    return floored.astype(int)


def check_matplotlib_support(caller_name):
    """Raise ImportError with detailed error message if mpl is not installed.

    Plot utilities like any of the Display's plotting functions should lazily import
    matplotlib and call this helper before any computation.

    Parameters
    ----------
    caller_name : str
        The name of the caller that requires matplotlib.
    """
    try:
        import matplotlib  # noqa
    except ImportError as e:
        raise ImportError(
            "{} requires matplotlib. You can install matplotlib with "
            "`pip install matplotlib`".format(caller_name)
        ) from e


def check_pandas_support(caller_name):
    """Raise ImportError with detailed error message if pandas is not installed.

    Plot utilities like :func:`fetch_openml` should lazily import
    pandas and call this helper before any computation.

    Parameters
    ----------
    caller_name : str
        The name of the caller that requires pandas.

    Returns
    -------
    pandas
        The pandas package.
    """
    try:
        import pandas  # noqa

        return pandas
    except ImportError as e:
        raise ImportError("{} requires pandas.".format(caller_name)) from e