File size: 11,914 Bytes
2792309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Authors: Andreas Mueller <[email protected]>
#          Guillaume Lemaitre <[email protected]>
# License: BSD 3 clause

import warnings

import numpy as np

from ..base import BaseEstimator, RegressorMixin, _fit_context, clone
from ..exceptions import NotFittedError
from ..preprocessing import FunctionTransformer
from ..utils import _safe_indexing, check_array
from ..utils._param_validation import HasMethods
from ..utils._tags import _safe_tags
from ..utils.metadata_routing import (
    _raise_for_unsupported_routing,
    _RoutingNotSupportedMixin,
)
from ..utils.validation import check_is_fitted

__all__ = ["TransformedTargetRegressor"]


class TransformedTargetRegressor(
    _RoutingNotSupportedMixin, RegressorMixin, BaseEstimator
):
    """Meta-estimator to regress on a transformed target.

    Useful for applying a non-linear transformation to the target `y` in
    regression problems. This transformation can be given as a Transformer
    such as the :class:`~sklearn.preprocessing.QuantileTransformer` or as a
    function and its inverse such as `np.log` and `np.exp`.

    The computation during :meth:`fit` is::

        regressor.fit(X, func(y))

    or::

        regressor.fit(X, transformer.transform(y))

    The computation during :meth:`predict` is::

        inverse_func(regressor.predict(X))

    or::

        transformer.inverse_transform(regressor.predict(X))

    Read more in the :ref:`User Guide <transformed_target_regressor>`.

    .. versionadded:: 0.20

    Parameters
    ----------
    regressor : object, default=None
        Regressor object such as derived from
        :class:`~sklearn.base.RegressorMixin`. This regressor will
        automatically be cloned each time prior to fitting. If `regressor is
        None`, :class:`~sklearn.linear_model.LinearRegression` is created and used.

    transformer : object, default=None
        Estimator object such as derived from
        :class:`~sklearn.base.TransformerMixin`. Cannot be set at the same time
        as `func` and `inverse_func`. If `transformer is None` as well as
        `func` and `inverse_func`, the transformer will be an identity
        transformer. Note that the transformer will be cloned during fitting.
        Also, the transformer is restricting `y` to be a numpy array.

    func : function, default=None
        Function to apply to `y` before passing to :meth:`fit`. Cannot be set
        at the same time as `transformer`. The function needs to return a
        2-dimensional array. If `func is None`, the function used will be the
        identity function.

    inverse_func : function, default=None
        Function to apply to the prediction of the regressor. Cannot be set at
        the same time as `transformer`. The function needs to return a
        2-dimensional array. The inverse function is used to return
        predictions to the same space of the original training labels.

    check_inverse : bool, default=True
        Whether to check that `transform` followed by `inverse_transform`
        or `func` followed by `inverse_func` leads to the original targets.

    Attributes
    ----------
    regressor_ : object
        Fitted regressor.

    transformer_ : object
        Transformer used in :meth:`fit` and :meth:`predict`.

    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying regressor exposes such an attribute when fit.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    sklearn.preprocessing.FunctionTransformer : Construct a transformer from an
        arbitrary callable.

    Notes
    -----
    Internally, the target `y` is always converted into a 2-dimensional array
    to be used by scikit-learn transformers. At the time of prediction, the
    output will be reshaped to a have the same number of dimensions as `y`.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.linear_model import LinearRegression
    >>> from sklearn.compose import TransformedTargetRegressor
    >>> tt = TransformedTargetRegressor(regressor=LinearRegression(),
    ...                                 func=np.log, inverse_func=np.exp)
    >>> X = np.arange(4).reshape(-1, 1)
    >>> y = np.exp(2 * X).ravel()
    >>> tt.fit(X, y)
    TransformedTargetRegressor(...)
    >>> tt.score(X, y)
    1.0
    >>> tt.regressor_.coef_
    array([2.])

    For a more detailed example use case refer to
    :ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py`.
    """

    _parameter_constraints: dict = {
        "regressor": [HasMethods(["fit", "predict"]), None],
        "transformer": [HasMethods("transform"), None],
        "func": [callable, None],
        "inverse_func": [callable, None],
        "check_inverse": ["boolean"],
    }

    def __init__(
        self,
        regressor=None,
        *,
        transformer=None,
        func=None,
        inverse_func=None,
        check_inverse=True,
    ):
        self.regressor = regressor
        self.transformer = transformer
        self.func = func
        self.inverse_func = inverse_func
        self.check_inverse = check_inverse

    def _fit_transformer(self, y):
        """Check transformer and fit transformer.

        Create the default transformer, fit it and make additional inverse
        check on a subset (optional).

        """
        if self.transformer is not None and (
            self.func is not None or self.inverse_func is not None
        ):
            raise ValueError(
                "'transformer' and functions 'func'/'inverse_func' cannot both be set."
            )
        elif self.transformer is not None:
            self.transformer_ = clone(self.transformer)
        else:
            if self.func is not None and self.inverse_func is None:
                raise ValueError(
                    "When 'func' is provided, 'inverse_func' must also be provided"
                )
            self.transformer_ = FunctionTransformer(
                func=self.func,
                inverse_func=self.inverse_func,
                validate=True,
                check_inverse=self.check_inverse,
            )
        # XXX: sample_weight is not currently passed to the
        # transformer. However, if transformer starts using sample_weight, the
        # code should be modified accordingly. At the time to consider the
        # sample_prop feature, it is also a good use case to be considered.
        self.transformer_.fit(y)
        if self.check_inverse:
            idx_selected = slice(None, None, max(1, y.shape[0] // 10))
            y_sel = _safe_indexing(y, idx_selected)
            y_sel_t = self.transformer_.transform(y_sel)
            if not np.allclose(y_sel, self.transformer_.inverse_transform(y_sel_t)):
                warnings.warn(
                    (
                        "The provided functions or transformer are"
                        " not strictly inverse of each other. If"
                        " you are sure you want to proceed regardless"
                        ", set 'check_inverse=False'"
                    ),
                    UserWarning,
                )

    @_fit_context(
        # TransformedTargetRegressor.regressor/transformer are not validated yet.
        prefer_skip_nested_validation=False
    )
    def fit(self, X, y, **fit_params):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : array-like of shape (n_samples,)
            Target values.

        **fit_params : dict
            Parameters passed to the `fit` method of the underlying
            regressor.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        _raise_for_unsupported_routing(self, "fit", **fit_params)
        if y is None:
            raise ValueError(
                f"This {self.__class__.__name__} estimator "
                "requires y to be passed, but the target y is None."
            )
        y = check_array(
            y,
            input_name="y",
            accept_sparse=False,
            force_all_finite=True,
            ensure_2d=False,
            dtype="numeric",
            allow_nd=True,
        )

        # store the number of dimension of the target to predict an array of
        # similar shape at predict
        self._training_dim = y.ndim

        # transformers are designed to modify X which is 2d dimensional, we
        # need to modify y accordingly.
        if y.ndim == 1:
            y_2d = y.reshape(-1, 1)
        else:
            y_2d = y
        self._fit_transformer(y_2d)

        # transform y and convert back to 1d array if needed
        y_trans = self.transformer_.transform(y_2d)
        # FIXME: a FunctionTransformer can return a 1D array even when validate
        # is set to True. Therefore, we need to check the number of dimension
        # first.
        if y_trans.ndim == 2 and y_trans.shape[1] == 1:
            y_trans = y_trans.squeeze(axis=1)

        if self.regressor is None:
            from ..linear_model import LinearRegression

            self.regressor_ = LinearRegression()
        else:
            self.regressor_ = clone(self.regressor)

        self.regressor_.fit(X, y_trans, **fit_params)

        if hasattr(self.regressor_, "feature_names_in_"):
            self.feature_names_in_ = self.regressor_.feature_names_in_

        return self

    def predict(self, X, **predict_params):
        """Predict using the base regressor, applying inverse.

        The regressor is used to predict and the `inverse_func` or
        `inverse_transform` is applied before returning the prediction.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Samples.

        **predict_params : dict of str -> object
            Parameters passed to the `predict` method of the underlying
            regressor.

        Returns
        -------
        y_hat : ndarray of shape (n_samples,)
            Predicted values.
        """
        check_is_fitted(self)
        pred = self.regressor_.predict(X, **predict_params)
        if pred.ndim == 1:
            pred_trans = self.transformer_.inverse_transform(pred.reshape(-1, 1))
        else:
            pred_trans = self.transformer_.inverse_transform(pred)
        if (
            self._training_dim == 1
            and pred_trans.ndim == 2
            and pred_trans.shape[1] == 1
        ):
            pred_trans = pred_trans.squeeze(axis=1)

        return pred_trans

    def _more_tags(self):
        regressor = self.regressor
        if regressor is None:
            from ..linear_model import LinearRegression

            regressor = LinearRegression()

        return {
            "poor_score": True,
            "multioutput": _safe_tags(regressor, key="multioutput"),
        }

    @property
    def n_features_in_(self):
        """Number of features seen during :term:`fit`."""
        # For consistency with other estimators we raise a AttributeError so
        # that hasattr() returns False the estimator isn't fitted.
        try:
            check_is_fitted(self)
        except NotFittedError as nfe:
            raise AttributeError(
                "{} object has no n_features_in_ attribute.".format(
                    self.__class__.__name__
                )
            ) from nfe

        return self.regressor_.n_features_in_