File size: 167,648 Bytes
6d870c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
"""
The :mod:`sklearn.utils.estimator_checks` module includes various utilities to
check the compatibility of estimators with the scikit-learn API.
"""

import pickle
import re
import warnings
from contextlib import nullcontext
from copy import deepcopy
from functools import partial, wraps
from inspect import signature
from numbers import Integral, Real

import joblib
import numpy as np
from scipy import sparse
from scipy.stats import rankdata

from .. import config_context
from ..base import (
    ClusterMixin,
    RegressorMixin,
    clone,
    is_classifier,
    is_outlier_detector,
    is_regressor,
)
from ..datasets import (
    load_iris,
    make_blobs,
    make_classification,
    make_multilabel_classification,
    make_regression,
)
from ..exceptions import DataConversionWarning, NotFittedError, SkipTestWarning
from ..feature_selection import SelectFromModel, SelectKBest
from ..linear_model import (
    LinearRegression,
    LogisticRegression,
    RANSACRegressor,
    Ridge,
    SGDRegressor,
)
from ..metrics import accuracy_score, adjusted_rand_score, f1_score
from ..metrics.pairwise import linear_kernel, pairwise_distances, rbf_kernel
from ..model_selection import ShuffleSplit, train_test_split
from ..model_selection._validation import _safe_split
from ..pipeline import make_pipeline
from ..preprocessing import StandardScaler, scale
from ..random_projection import BaseRandomProjection
from ..tree import DecisionTreeClassifier, DecisionTreeRegressor
from ..utils._array_api import (
    _convert_to_numpy,
    get_namespace,
    yield_namespace_device_dtype_combinations,
)
from ..utils._array_api import (
    device as array_device,
)
from ..utils._param_validation import (
    InvalidParameterError,
    generate_invalid_param_val,
    make_constraint,
)
from ..utils.fixes import parse_version, sp_version
from ..utils.validation import check_is_fitted
from . import IS_PYPY, is_scalar_nan, shuffle
from ._param_validation import Interval
from ._tags import (
    _DEFAULT_TAGS,
    _safe_tags,
)
from ._testing import (
    SkipTest,
    _array_api_for_tests,
    _get_args,
    assert_allclose,
    assert_allclose_dense_sparse,
    assert_array_almost_equal,
    assert_array_equal,
    assert_array_less,
    assert_raise_message,
    create_memmap_backed_data,
    ignore_warnings,
    raises,
    set_random_state,
)
from .validation import _num_samples, has_fit_parameter

REGRESSION_DATASET = None
CROSS_DECOMPOSITION = ["PLSCanonical", "PLSRegression", "CCA", "PLSSVD"]


def _yield_checks(estimator):
    name = estimator.__class__.__name__
    tags = _safe_tags(estimator)

    yield check_no_attributes_set_in_init
    yield check_estimators_dtypes
    yield check_fit_score_takes_y
    if has_fit_parameter(estimator, "sample_weight"):
        yield check_sample_weights_pandas_series
        yield check_sample_weights_not_an_array
        yield check_sample_weights_list
        if not tags["pairwise"]:
            # We skip pairwise because the data is not pairwise
            yield check_sample_weights_shape
            yield check_sample_weights_not_overwritten
            yield partial(check_sample_weights_invariance, kind="ones")
            yield partial(check_sample_weights_invariance, kind="zeros")
    yield check_estimators_fit_returns_self
    yield partial(check_estimators_fit_returns_self, readonly_memmap=True)

    # Check that all estimator yield informative messages when
    # trained on empty datasets
    if not tags["no_validation"]:
        yield check_complex_data
        yield check_dtype_object
        yield check_estimators_empty_data_messages

    if name not in CROSS_DECOMPOSITION:
        # cross-decomposition's "transform" returns X and Y
        yield check_pipeline_consistency

    if not tags["allow_nan"] and not tags["no_validation"]:
        # Test that all estimators check their input for NaN's and infs
        yield check_estimators_nan_inf

    if tags["pairwise"]:
        # Check that pairwise estimator throws error on non-square input
        yield check_nonsquare_error

    yield check_estimators_overwrite_params
    if hasattr(estimator, "sparsify"):
        yield check_sparsify_coefficients

    yield check_estimator_sparse_data

    # Test that estimators can be pickled, and once pickled
    # give the same answer as before.
    yield check_estimators_pickle
    yield partial(check_estimators_pickle, readonly_memmap=True)

    yield check_estimator_get_tags_default_keys

    if tags["array_api_support"]:
        for check in _yield_array_api_checks(estimator):
            yield check


def _yield_classifier_checks(classifier):
    tags = _safe_tags(classifier)

    # test classifiers can handle non-array data and pandas objects
    yield check_classifier_data_not_an_array
    # test classifiers trained on a single label always return this label
    yield check_classifiers_one_label
    yield check_classifiers_one_label_sample_weights
    yield check_classifiers_classes
    yield check_estimators_partial_fit_n_features
    if tags["multioutput"]:
        yield check_classifier_multioutput
    # basic consistency testing
    yield check_classifiers_train
    yield partial(check_classifiers_train, readonly_memmap=True)
    yield partial(check_classifiers_train, readonly_memmap=True, X_dtype="float32")
    yield check_classifiers_regression_target
    if tags["multilabel"]:
        yield check_classifiers_multilabel_representation_invariance
        yield check_classifiers_multilabel_output_format_predict
        yield check_classifiers_multilabel_output_format_predict_proba
        yield check_classifiers_multilabel_output_format_decision_function
    if not tags["no_validation"]:
        yield check_supervised_y_no_nan
        if not tags["multioutput_only"]:
            yield check_supervised_y_2d
    if tags["requires_fit"]:
        yield check_estimators_unfitted
    if "class_weight" in classifier.get_params().keys():
        yield check_class_weight_classifiers

    yield check_non_transformer_estimators_n_iter
    # test if predict_proba is a monotonic transformation of decision_function
    yield check_decision_proba_consistency


@ignore_warnings(category=FutureWarning)
def check_supervised_y_no_nan(name, estimator_orig):
    # Checks that the Estimator targets are not NaN.
    estimator = clone(estimator_orig)
    rng = np.random.RandomState(888)
    X = rng.standard_normal(size=(10, 5))

    for value in [np.nan, np.inf]:
        y = np.full(10, value)
        y = _enforce_estimator_tags_y(estimator, y)

        module_name = estimator.__module__
        if module_name.startswith("sklearn.") and not (
            "test_" in module_name or module_name.endswith("_testing")
        ):
            # In scikit-learn we want the error message to mention the input
            # name and be specific about the kind of unexpected value.
            if np.isinf(value):
                match = (
                    r"Input (y|Y) contains infinity or a value too large for"
                    r" dtype\('float64'\)."
                )
            else:
                match = r"Input (y|Y) contains NaN."
        else:
            # Do not impose a particular error message to third-party libraries.
            match = None
        err_msg = (
            f"Estimator {name} should have raised error on fitting array y with inf"
            " value."
        )
        with raises(ValueError, match=match, err_msg=err_msg):
            estimator.fit(X, y)


def _yield_regressor_checks(regressor):
    tags = _safe_tags(regressor)
    # TODO: test with intercept
    # TODO: test with multiple responses
    # basic testing
    yield check_regressors_train
    yield partial(check_regressors_train, readonly_memmap=True)
    yield partial(check_regressors_train, readonly_memmap=True, X_dtype="float32")
    yield check_regressor_data_not_an_array
    yield check_estimators_partial_fit_n_features
    if tags["multioutput"]:
        yield check_regressor_multioutput
    yield check_regressors_no_decision_function
    if not tags["no_validation"] and not tags["multioutput_only"]:
        yield check_supervised_y_2d
    yield check_supervised_y_no_nan
    name = regressor.__class__.__name__
    if name != "CCA":
        # check that the regressor handles int input
        yield check_regressors_int
    if tags["requires_fit"]:
        yield check_estimators_unfitted
    yield check_non_transformer_estimators_n_iter


def _yield_transformer_checks(transformer):
    tags = _safe_tags(transformer)
    # All transformers should either deal with sparse data or raise an
    # exception with type TypeError and an intelligible error message
    if not tags["no_validation"]:
        yield check_transformer_data_not_an_array
    # these don't actually fit the data, so don't raise errors
    yield check_transformer_general
    if tags["preserves_dtype"]:
        yield check_transformer_preserve_dtypes
    yield partial(check_transformer_general, readonly_memmap=True)
    if not _safe_tags(transformer, key="stateless"):
        yield check_transformers_unfitted
    else:
        yield check_transformers_unfitted_stateless
    # Dependent on external solvers and hence accessing the iter
    # param is non-trivial.
    external_solver = [
        "Isomap",
        "KernelPCA",
        "LocallyLinearEmbedding",
        "RandomizedLasso",
        "LogisticRegressionCV",
        "BisectingKMeans",
    ]

    name = transformer.__class__.__name__
    if name not in external_solver:
        yield check_transformer_n_iter


def _yield_clustering_checks(clusterer):
    yield check_clusterer_compute_labels_predict
    name = clusterer.__class__.__name__
    if name not in ("WardAgglomeration", "FeatureAgglomeration"):
        # this is clustering on the features
        # let's not test that here.
        yield check_clustering
        yield partial(check_clustering, readonly_memmap=True)
        yield check_estimators_partial_fit_n_features
    if not hasattr(clusterer, "transform"):
        yield check_non_transformer_estimators_n_iter


def _yield_outliers_checks(estimator):
    # checks for the contamination parameter
    if hasattr(estimator, "contamination"):
        yield check_outlier_contamination

    # checks for outlier detectors that have a fit_predict method
    if hasattr(estimator, "fit_predict"):
        yield check_outliers_fit_predict

    # checks for estimators that can be used on a test set
    if hasattr(estimator, "predict"):
        yield check_outliers_train
        yield partial(check_outliers_train, readonly_memmap=True)
        # test outlier detectors can handle non-array data
        yield check_classifier_data_not_an_array
        # test if NotFittedError is raised
        if _safe_tags(estimator, key="requires_fit"):
            yield check_estimators_unfitted
    yield check_non_transformer_estimators_n_iter


def _yield_array_api_checks(estimator):
    for (
        array_namespace,
        device,
        dtype_name,
    ) in yield_namespace_device_dtype_combinations():
        yield partial(
            check_array_api_input,
            array_namespace=array_namespace,
            dtype_name=dtype_name,
            device=device,
        )


def _yield_all_checks(estimator):
    name = estimator.__class__.__name__
    tags = _safe_tags(estimator)
    if "2darray" not in tags["X_types"]:
        warnings.warn(
            "Can't test estimator {} which requires input  of type {}".format(
                name, tags["X_types"]
            ),
            SkipTestWarning,
        )
        return
    if tags["_skip_test"]:
        warnings.warn(
            "Explicit SKIP via _skip_test tag for estimator {}.".format(name),
            SkipTestWarning,
        )
        return

    for check in _yield_checks(estimator):
        yield check
    if is_classifier(estimator):
        for check in _yield_classifier_checks(estimator):
            yield check
    if is_regressor(estimator):
        for check in _yield_regressor_checks(estimator):
            yield check
    if hasattr(estimator, "transform"):
        for check in _yield_transformer_checks(estimator):
            yield check
    if isinstance(estimator, ClusterMixin):
        for check in _yield_clustering_checks(estimator):
            yield check
    if is_outlier_detector(estimator):
        for check in _yield_outliers_checks(estimator):
            yield check
    yield check_parameters_default_constructible
    if not tags["non_deterministic"]:
        yield check_methods_sample_order_invariance
        yield check_methods_subset_invariance
    yield check_fit2d_1sample
    yield check_fit2d_1feature
    yield check_get_params_invariance
    yield check_set_params
    yield check_dict_unchanged
    yield check_dont_overwrite_parameters
    yield check_fit_idempotent
    yield check_fit_check_is_fitted
    if not tags["no_validation"]:
        yield check_n_features_in
        yield check_fit1d
        yield check_fit2d_predict1d
        if tags["requires_y"]:
            yield check_requires_y_none
    if tags["requires_positive_X"]:
        yield check_fit_non_negative


def _get_check_estimator_ids(obj):
    """Create pytest ids for checks.

    When `obj` is an estimator, this returns the pprint version of the
    estimator (with `print_changed_only=True`). When `obj` is a function, the
    name of the function is returned with its keyword arguments.

    `_get_check_estimator_ids` is designed to be used as the `id` in
    `pytest.mark.parametrize` where `check_estimator(..., generate_only=True)`
    is yielding estimators and checks.

    Parameters
    ----------
    obj : estimator or function
        Items generated by `check_estimator`.

    Returns
    -------
    id : str or None

    See Also
    --------
    check_estimator
    """
    if callable(obj):
        if not isinstance(obj, partial):
            return obj.__name__

        if not obj.keywords:
            return obj.func.__name__

        kwstring = ",".join(["{}={}".format(k, v) for k, v in obj.keywords.items()])
        return "{}({})".format(obj.func.__name__, kwstring)
    if hasattr(obj, "get_params"):
        with config_context(print_changed_only=True):
            return re.sub(r"\s", "", str(obj))


def _construct_instance(Estimator):
    """Construct Estimator instance if possible."""
    required_parameters = getattr(Estimator, "_required_parameters", [])
    if len(required_parameters):
        if required_parameters in (["estimator"], ["base_estimator"]):
            # `RANSACRegressor` will raise an error with any model other
            # than `LinearRegression` if we don't fix `min_samples` parameter.
            # For common test, we can enforce using `LinearRegression` that
            # is the default estimator in `RANSACRegressor` instead of `Ridge`.
            if issubclass(Estimator, RANSACRegressor):
                estimator = Estimator(LinearRegression())
            elif issubclass(Estimator, RegressorMixin):
                estimator = Estimator(Ridge())
            elif issubclass(Estimator, SelectFromModel):
                # Increases coverage because SGDRegressor has partial_fit
                estimator = Estimator(SGDRegressor(random_state=0))
            else:
                estimator = Estimator(LogisticRegression(C=1))
        elif required_parameters in (["estimators"],):
            # Heterogeneous ensemble classes (i.e. stacking, voting)
            if issubclass(Estimator, RegressorMixin):
                estimator = Estimator(
                    estimators=[
                        ("est1", DecisionTreeRegressor(max_depth=3, random_state=0)),
                        ("est2", DecisionTreeRegressor(max_depth=3, random_state=1)),
                    ]
                )
            else:
                estimator = Estimator(
                    estimators=[
                        ("est1", DecisionTreeClassifier(max_depth=3, random_state=0)),
                        ("est2", DecisionTreeClassifier(max_depth=3, random_state=1)),
                    ]
                )
        else:
            msg = (
                f"Can't instantiate estimator {Estimator.__name__} "
                f"parameters {required_parameters}"
            )
            # raise additional warning to be shown by pytest
            warnings.warn(msg, SkipTestWarning)
            raise SkipTest(msg)
    else:
        estimator = Estimator()
    return estimator


def _maybe_mark_xfail(estimator, check, pytest):
    # Mark (estimator, check) pairs as XFAIL if needed (see conditions in
    # _should_be_skipped_or_marked())
    # This is similar to _maybe_skip(), but this one is used by
    # @parametrize_with_checks() instead of check_estimator()

    should_be_marked, reason = _should_be_skipped_or_marked(estimator, check)
    if not should_be_marked:
        return estimator, check
    else:
        return pytest.param(estimator, check, marks=pytest.mark.xfail(reason=reason))


def _maybe_skip(estimator, check):
    # Wrap a check so that it's skipped if needed (see conditions in
    # _should_be_skipped_or_marked())
    # This is similar to _maybe_mark_xfail(), but this one is used by
    # check_estimator() instead of @parametrize_with_checks which requires
    # pytest
    should_be_skipped, reason = _should_be_skipped_or_marked(estimator, check)
    if not should_be_skipped:
        return check

    check_name = check.func.__name__ if isinstance(check, partial) else check.__name__

    @wraps(check)
    def wrapped(*args, **kwargs):
        raise SkipTest(
            f"Skipping {check_name} for {estimator.__class__.__name__}: {reason}"
        )

    return wrapped


def _should_be_skipped_or_marked(estimator, check):
    # Return whether a check should be skipped (when using check_estimator())
    # or marked as XFAIL (when using @parametrize_with_checks()), along with a
    # reason.
    # Currently, a check should be skipped or marked if
    # the check is in the _xfail_checks tag of the estimator

    check_name = check.func.__name__ if isinstance(check, partial) else check.__name__

    xfail_checks = _safe_tags(estimator, key="_xfail_checks") or {}
    if check_name in xfail_checks:
        return True, xfail_checks[check_name]

    return False, "placeholder reason that will never be used"


def parametrize_with_checks(estimators):
    """Pytest specific decorator for parametrizing estimator checks.

    The `id` of each check is set to be a pprint version of the estimator
    and the name of the check with its keyword arguments.
    This allows to use `pytest -k` to specify which tests to run::

        pytest test_check_estimators.py -k check_estimators_fit_returns_self

    Parameters
    ----------
    estimators : list of estimators instances
        Estimators to generated checks for.

        .. versionchanged:: 0.24
           Passing a class was deprecated in version 0.23, and support for
           classes was removed in 0.24. Pass an instance instead.

        .. versionadded:: 0.24

    Returns
    -------
    decorator : `pytest.mark.parametrize`

    See Also
    --------
    check_estimator : Check if estimator adheres to scikit-learn conventions.

    Examples
    --------
    >>> from sklearn.utils.estimator_checks import parametrize_with_checks
    >>> from sklearn.linear_model import LogisticRegression
    >>> from sklearn.tree import DecisionTreeRegressor

    >>> @parametrize_with_checks([LogisticRegression(),
    ...                           DecisionTreeRegressor()])
    ... def test_sklearn_compatible_estimator(estimator, check):
    ...     check(estimator)

    """
    import pytest

    if any(isinstance(est, type) for est in estimators):
        msg = (
            "Passing a class was deprecated in version 0.23 "
            "and isn't supported anymore from 0.24."
            "Please pass an instance instead."
        )
        raise TypeError(msg)

    def checks_generator():
        for estimator in estimators:
            name = type(estimator).__name__
            for check in _yield_all_checks(estimator):
                check = partial(check, name)
                yield _maybe_mark_xfail(estimator, check, pytest)

    return pytest.mark.parametrize(
        "estimator, check", checks_generator(), ids=_get_check_estimator_ids
    )


def check_estimator(estimator=None, generate_only=False):
    """Check if estimator adheres to scikit-learn conventions.

    This function will run an extensive test-suite for input validation,
    shapes, etc, making sure that the estimator complies with `scikit-learn`
    conventions as detailed in :ref:`rolling_your_own_estimator`.
    Additional tests for classifiers, regressors, clustering or transformers
    will be run if the Estimator class inherits from the corresponding mixin
    from sklearn.base.

    Setting `generate_only=True` returns a generator that yields (estimator,
    check) tuples where the check can be called independently from each
    other, i.e. `check(estimator)`. This allows all checks to be run
    independently and report the checks that are failing.

    scikit-learn provides a pytest specific decorator,
    :func:`~sklearn.utils.estimator_checks.parametrize_with_checks`, making it
    easier to test multiple estimators.

    Parameters
    ----------
    estimator : estimator object
        Estimator instance to check.

        .. versionadded:: 1.1
           Passing a class was deprecated in version 0.23, and support for
           classes was removed in 0.24.

    generate_only : bool, default=False
        When `False`, checks are evaluated when `check_estimator` is called.
        When `True`, `check_estimator` returns a generator that yields
        (estimator, check) tuples. The check is run by calling
        `check(estimator)`.

        .. versionadded:: 0.22

    Returns
    -------
    checks_generator : generator
        Generator that yields (estimator, check) tuples. Returned when
        `generate_only=True`.

    See Also
    --------
    parametrize_with_checks : Pytest specific decorator for parametrizing estimator
        checks.

    Examples
    --------
    >>> from sklearn.utils.estimator_checks import check_estimator
    >>> from sklearn.linear_model import LogisticRegression
    >>> check_estimator(LogisticRegression(), generate_only=True)
    <generator object ...>
    """
    if isinstance(estimator, type):
        msg = (
            "Passing a class was deprecated in version 0.23 "
            "and isn't supported anymore from 0.24."
            "Please pass an instance instead."
        )
        raise TypeError(msg)

    name = type(estimator).__name__

    def checks_generator():
        for check in _yield_all_checks(estimator):
            check = _maybe_skip(estimator, check)
            yield estimator, partial(check, name)

    if generate_only:
        return checks_generator()

    for estimator, check in checks_generator():
        try:
            check(estimator)
        except SkipTest as exception:
            # SkipTest is thrown when pandas can't be imported, or by checks
            # that are in the xfail_checks tag
            warnings.warn(str(exception), SkipTestWarning)


def _regression_dataset():
    global REGRESSION_DATASET
    if REGRESSION_DATASET is None:
        X, y = make_regression(
            n_samples=200,
            n_features=10,
            n_informative=1,
            bias=5.0,
            noise=20,
            random_state=42,
        )
        X = StandardScaler().fit_transform(X)
        REGRESSION_DATASET = X, y
    return REGRESSION_DATASET


def _set_checking_parameters(estimator):
    # set parameters to speed up some estimators and
    # avoid deprecated behaviour
    params = estimator.get_params()
    name = estimator.__class__.__name__
    if name == "TSNE":
        estimator.set_params(perplexity=2)
    if "n_iter" in params and name != "TSNE":
        estimator.set_params(n_iter=5)
    if "max_iter" in params:
        if estimator.max_iter is not None:
            estimator.set_params(max_iter=min(5, estimator.max_iter))
        # LinearSVR, LinearSVC
        if name in ["LinearSVR", "LinearSVC"]:
            estimator.set_params(max_iter=20)
        # NMF
        if name == "NMF":
            estimator.set_params(max_iter=500)
        # DictionaryLearning
        if name == "DictionaryLearning":
            estimator.set_params(max_iter=20, transform_algorithm="lasso_lars")
        # MiniBatchNMF
        if estimator.__class__.__name__ == "MiniBatchNMF":
            estimator.set_params(max_iter=20, fresh_restarts=True)
        # MLP
        if name in ["MLPClassifier", "MLPRegressor"]:
            estimator.set_params(max_iter=100)
        # MiniBatchDictionaryLearning
        if name == "MiniBatchDictionaryLearning":
            estimator.set_params(max_iter=5)

    if "n_resampling" in params:
        # randomized lasso
        estimator.set_params(n_resampling=5)
    if "n_estimators" in params:
        estimator.set_params(n_estimators=min(5, estimator.n_estimators))
    if "max_trials" in params:
        # RANSAC
        estimator.set_params(max_trials=10)
    if "n_init" in params:
        # K-Means
        estimator.set_params(n_init=2)
    if "batch_size" in params and not name.startswith("MLP"):
        estimator.set_params(batch_size=10)

    if name == "MeanShift":
        # In the case of check_fit2d_1sample, bandwidth is set to None and
        # is thus estimated. De facto it is 0.0 as a single sample is provided
        # and this makes the test fails. Hence we give it a placeholder value.
        estimator.set_params(bandwidth=1.0)

    if name == "TruncatedSVD":
        # TruncatedSVD doesn't run with n_components = n_features
        # This is ugly :-/
        estimator.n_components = 1

    if name == "LassoLarsIC":
        # Noise variance estimation does not work when `n_samples < n_features`.
        # We need to provide the noise variance explicitly.
        estimator.set_params(noise_variance=1.0)

    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = min(estimator.n_clusters, 2)

    if hasattr(estimator, "n_best"):
        estimator.n_best = 1

    if name == "SelectFdr":
        # be tolerant of noisy datasets (not actually speed)
        estimator.set_params(alpha=0.5)

    if name == "TheilSenRegressor":
        estimator.max_subpopulation = 100

    if isinstance(estimator, BaseRandomProjection):
        # Due to the jl lemma and often very few samples, the number
        # of components of the random matrix projection will be probably
        # greater than the number of features.
        # So we impose a smaller number (avoid "auto" mode)
        estimator.set_params(n_components=2)

    if isinstance(estimator, SelectKBest):
        # SelectKBest has a default of k=10
        # which is more feature than we have in most case.
        estimator.set_params(k=1)

    if name in ("HistGradientBoostingClassifier", "HistGradientBoostingRegressor"):
        # The default min_samples_leaf (20) isn't appropriate for small
        # datasets (only very shallow trees are built) that the checks use.
        estimator.set_params(min_samples_leaf=5)

    if name == "DummyClassifier":
        # the default strategy prior would output constant predictions and fail
        # for check_classifiers_predictions
        estimator.set_params(strategy="stratified")

    # Speed-up by reducing the number of CV or splits for CV estimators
    loo_cv = ["RidgeCV", "RidgeClassifierCV"]
    if name not in loo_cv and hasattr(estimator, "cv"):
        estimator.set_params(cv=3)
    if hasattr(estimator, "n_splits"):
        estimator.set_params(n_splits=3)

    if name == "OneHotEncoder":
        estimator.set_params(handle_unknown="ignore")

    if name == "QuantileRegressor":
        # Avoid warning due to Scipy deprecating interior-point solver
        solver = "highs" if sp_version >= parse_version("1.6.0") else "interior-point"
        estimator.set_params(solver=solver)

    if name in CROSS_DECOMPOSITION:
        estimator.set_params(n_components=1)

    # Default "auto" parameter can lead to different ordering of eigenvalues on
    # windows: #24105
    if name == "SpectralEmbedding":
        estimator.set_params(eigen_tol=1e-5)

    if name == "HDBSCAN":
        estimator.set_params(min_samples=1)


class _NotAnArray:
    """An object that is convertible to an array.

    Parameters
    ----------
    data : array-like
        The data.
    """

    def __init__(self, data):
        self.data = np.asarray(data)

    def __array__(self, dtype=None):
        return self.data

    def __array_function__(self, func, types, args, kwargs):
        if func.__name__ == "may_share_memory":
            return True
        raise TypeError("Don't want to call array_function {}!".format(func.__name__))


def _is_pairwise_metric(estimator):
    """Returns True if estimator accepts pairwise metric.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if _pairwise is set to True and False otherwise.
    """
    metric = getattr(estimator, "metric", None)

    return bool(metric == "precomputed")


def _generate_sparse_matrix(X_csr):
    """Generate sparse matrices with {32,64}bit indices of diverse format.

    Parameters
    ----------
    X_csr: CSR Matrix
        Input matrix in CSR format.

    Returns
    -------
    out: iter(Matrices)
        In format['dok', 'lil', 'dia', 'bsr', 'csr', 'csc', 'coo',
        'coo_64', 'csc_64', 'csr_64']
    """

    assert X_csr.format == "csr"
    yield "csr", X_csr.copy()
    for sparse_format in ["dok", "lil", "dia", "bsr", "csc", "coo"]:
        yield sparse_format, X_csr.asformat(sparse_format)

    # Generate large indices matrix only if its supported by scipy
    X_coo = X_csr.asformat("coo")
    X_coo.row = X_coo.row.astype("int64")
    X_coo.col = X_coo.col.astype("int64")
    yield "coo_64", X_coo

    for sparse_format in ["csc", "csr"]:
        X = X_csr.asformat(sparse_format)
        X.indices = X.indices.astype("int64")
        X.indptr = X.indptr.astype("int64")
        yield sparse_format + "_64", X


def check_array_api_input(
    name,
    estimator_orig,
    array_namespace,
    device=None,
    dtype_name="float64",
    check_values=False,
):
    """Check that the estimator can work consistently with the Array API

    By default, this just checks that the types and shapes of the arrays are
    consistent with calling the same estimator with numpy arrays.

    When check_values is True, it also checks that calling the estimator on the
    array_api Array gives the same results as ndarrays.
    """
    xp = _array_api_for_tests(array_namespace, device)

    X, y = make_classification(random_state=42)
    X = X.astype(dtype_name, copy=False)

    X = _enforce_estimator_tags_X(estimator_orig, X)
    y = _enforce_estimator_tags_y(estimator_orig, y)

    est = clone(estimator_orig)

    X_xp = xp.asarray(X, device=device)
    y_xp = xp.asarray(y, device=device)

    est.fit(X, y)

    array_attributes = {
        key: value for key, value in vars(est).items() if isinstance(value, np.ndarray)
    }

    est_xp = clone(est)
    with config_context(array_api_dispatch=True):
        est_xp.fit(X_xp, y_xp)
        input_ns = get_namespace(X_xp)[0].__name__

    # Fitted attributes which are arrays must have the same
    # namespace as the one of the training data.
    for key, attribute in array_attributes.items():
        est_xp_param = getattr(est_xp, key)
        with config_context(array_api_dispatch=True):
            attribute_ns = get_namespace(est_xp_param)[0].__name__
        assert attribute_ns == input_ns, (
            f"'{key}' attribute is in wrong namespace, expected {input_ns} "
            f"got {attribute_ns}"
        )

        assert array_device(est_xp_param) == array_device(X_xp)

        est_xp_param_np = _convert_to_numpy(est_xp_param, xp=xp)
        if check_values:
            assert_allclose(
                attribute,
                est_xp_param_np,
                err_msg=f"{key} not the same",
                atol=np.finfo(X.dtype).eps * 100,
            )
        else:
            assert attribute.shape == est_xp_param_np.shape
            assert attribute.dtype == est_xp_param_np.dtype

    # Check estimator methods, if supported, give the same results
    methods = (
        "score",
        "score_samples",
        "decision_function",
        "predict",
        "predict_log_proba",
        "predict_proba",
        "transform",
    )

    for method_name in methods:
        method = getattr(est, method_name, None)
        if method is None:
            continue

        if method_name == "score":
            result = method(X, y)
            with config_context(array_api_dispatch=True):
                result_xp = getattr(est_xp, method_name)(X_xp, y_xp)
            # score typically returns a Python float
            assert isinstance(result, float)
            assert isinstance(result_xp, float)
            if check_values:
                assert abs(result - result_xp) < np.finfo(X.dtype).eps * 100
            continue
        else:
            result = method(X)
            with config_context(array_api_dispatch=True):
                result_xp = getattr(est_xp, method_name)(X_xp)

        with config_context(array_api_dispatch=True):
            result_ns = get_namespace(result_xp)[0].__name__
        assert result_ns == input_ns, (
            f"'{method}' output is in wrong namespace, expected {input_ns}, "
            f"got {result_ns}."
        )

        assert array_device(result_xp) == array_device(X_xp)
        result_xp_np = _convert_to_numpy(result_xp, xp=xp)

        if check_values:
            assert_allclose(
                result,
                result_xp_np,
                err_msg=f"{method} did not the return the same result",
                atol=np.finfo(X.dtype).eps * 100,
            )
        else:
            if hasattr(result, "shape"):
                assert result.shape == result_xp_np.shape
                assert result.dtype == result_xp_np.dtype

        if method_name == "transform" and hasattr(est, "inverse_transform"):
            inverse_result = est.inverse_transform(result)
            with config_context(array_api_dispatch=True):
                invese_result_xp = est_xp.inverse_transform(result_xp)
                inverse_result_ns = get_namespace(invese_result_xp)[0].__name__
            assert inverse_result_ns == input_ns, (
                "'inverse_transform' output is in wrong namespace, expected"
                f" {input_ns}, got {inverse_result_ns}."
            )

            assert array_device(invese_result_xp) == array_device(X_xp)

            invese_result_xp_np = _convert_to_numpy(invese_result_xp, xp=xp)
            if check_values:
                assert_allclose(
                    inverse_result,
                    invese_result_xp_np,
                    err_msg="inverse_transform did not the return the same result",
                    atol=np.finfo(X.dtype).eps * 100,
                )
            else:
                assert inverse_result.shape == invese_result_xp_np.shape
                assert inverse_result.dtype == invese_result_xp_np.dtype


def check_array_api_input_and_values(
    name,
    estimator_orig,
    array_namespace,
    device=None,
    dtype_name="float64",
):
    return check_array_api_input(
        name,
        estimator_orig,
        array_namespace=array_namespace,
        device=device,
        dtype_name=dtype_name,
        check_values=True,
    )


def check_estimator_sparse_data(name, estimator_orig):
    rng = np.random.RandomState(0)
    X = rng.uniform(size=(40, 3))
    X[X < 0.8] = 0
    X = _enforce_estimator_tags_X(estimator_orig, X)
    X_csr = sparse.csr_matrix(X)
    y = (4 * rng.uniform(size=40)).astype(int)
    # catch deprecation warnings
    with ignore_warnings(category=FutureWarning):
        estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)
    tags = _safe_tags(estimator_orig)
    for matrix_format, X in _generate_sparse_matrix(X_csr):
        # catch deprecation warnings
        with ignore_warnings(category=FutureWarning):
            estimator = clone(estimator_orig)
            if name in ["Scaler", "StandardScaler"]:
                estimator.set_params(with_mean=False)
        # fit and predict
        if "64" in matrix_format:
            err_msg = (
                f"Estimator {name} doesn't seem to support {matrix_format} "
                "matrix, and is not failing gracefully, e.g. by using "
                "check_array(X, accept_large_sparse=False)"
            )
        else:
            err_msg = (
                f"Estimator {name} doesn't seem to fail gracefully on sparse "
                "data: error message should state explicitly that sparse "
                "input is not supported if this is not the case."
            )
        with raises(
            (TypeError, ValueError),
            match=["sparse", "Sparse"],
            may_pass=True,
            err_msg=err_msg,
        ):
            with ignore_warnings(category=FutureWarning):
                estimator.fit(X, y)
            if hasattr(estimator, "predict"):
                pred = estimator.predict(X)
                if tags["multioutput_only"]:
                    assert pred.shape == (X.shape[0], 1)
                else:
                    assert pred.shape == (X.shape[0],)
            if hasattr(estimator, "predict_proba"):
                probs = estimator.predict_proba(X)
                if tags["binary_only"]:
                    expected_probs_shape = (X.shape[0], 2)
                else:
                    expected_probs_shape = (X.shape[0], 4)
                assert probs.shape == expected_probs_shape


@ignore_warnings(category=FutureWarning)
def check_sample_weights_pandas_series(name, estimator_orig):
    # check that estimators will accept a 'sample_weight' parameter of
    # type pandas.Series in the 'fit' function.
    estimator = clone(estimator_orig)
    try:
        import pandas as pd

        X = np.array(
            [
                [1, 1],
                [1, 2],
                [1, 3],
                [1, 4],
                [2, 1],
                [2, 2],
                [2, 3],
                [2, 4],
                [3, 1],
                [3, 2],
                [3, 3],
                [3, 4],
            ]
        )
        X = pd.DataFrame(_enforce_estimator_tags_X(estimator_orig, X), copy=False)
        y = pd.Series([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2])
        weights = pd.Series([1] * 12)
        if _safe_tags(estimator, key="multioutput_only"):
            y = pd.DataFrame(y, copy=False)
        try:
            estimator.fit(X, y, sample_weight=weights)
        except ValueError:
            raise ValueError(
                "Estimator {0} raises error if "
                "'sample_weight' parameter is of "
                "type pandas.Series".format(name)
            )
    except ImportError:
        raise SkipTest(
            "pandas is not installed: not testing for "
            "input of type pandas.Series to class weight."
        )


@ignore_warnings(category=(FutureWarning))
def check_sample_weights_not_an_array(name, estimator_orig):
    # check that estimators will accept a 'sample_weight' parameter of
    # type _NotAnArray in the 'fit' function.
    estimator = clone(estimator_orig)
    X = np.array(
        [
            [1, 1],
            [1, 2],
            [1, 3],
            [1, 4],
            [2, 1],
            [2, 2],
            [2, 3],
            [2, 4],
            [3, 1],
            [3, 2],
            [3, 3],
            [3, 4],
        ]
    )
    X = _NotAnArray(_enforce_estimator_tags_X(estimator_orig, X))
    y = _NotAnArray([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2])
    weights = _NotAnArray([1] * 12)
    if _safe_tags(estimator, key="multioutput_only"):
        y = _NotAnArray(y.data.reshape(-1, 1))
    estimator.fit(X, y, sample_weight=weights)


@ignore_warnings(category=(FutureWarning))
def check_sample_weights_list(name, estimator_orig):
    # check that estimators will accept a 'sample_weight' parameter of
    # type list in the 'fit' function.
    estimator = clone(estimator_orig)
    rnd = np.random.RandomState(0)
    n_samples = 30
    X = _enforce_estimator_tags_X(estimator_orig, rnd.uniform(size=(n_samples, 3)))
    y = np.arange(n_samples) % 3
    y = _enforce_estimator_tags_y(estimator, y)
    sample_weight = [3] * n_samples
    # Test that estimators don't raise any exception
    estimator.fit(X, y, sample_weight=sample_weight)


@ignore_warnings(category=FutureWarning)
def check_sample_weights_shape(name, estimator_orig):
    # check that estimators raise an error if sample_weight
    # shape mismatches the input
    estimator = clone(estimator_orig)
    X = np.array(
        [
            [1, 3],
            [1, 3],
            [1, 3],
            [1, 3],
            [2, 1],
            [2, 1],
            [2, 1],
            [2, 1],
            [3, 3],
            [3, 3],
            [3, 3],
            [3, 3],
            [4, 1],
            [4, 1],
            [4, 1],
            [4, 1],
        ]
    )
    y = np.array([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2])
    y = _enforce_estimator_tags_y(estimator, y)

    estimator.fit(X, y, sample_weight=np.ones(len(y)))

    with raises(ValueError):
        estimator.fit(X, y, sample_weight=np.ones(2 * len(y)))

    with raises(ValueError):
        estimator.fit(X, y, sample_weight=np.ones((len(y), 2)))


@ignore_warnings(category=FutureWarning)
def check_sample_weights_invariance(name, estimator_orig, kind="ones"):
    # For kind="ones" check that the estimators yield same results for
    # unit weights and no weights
    # For kind="zeros" check that setting sample_weight to 0 is equivalent
    # to removing corresponding samples.
    estimator1 = clone(estimator_orig)
    estimator2 = clone(estimator_orig)
    set_random_state(estimator1, random_state=0)
    set_random_state(estimator2, random_state=0)

    X1 = np.array(
        [
            [1, 3],
            [1, 3],
            [1, 3],
            [1, 3],
            [2, 1],
            [2, 1],
            [2, 1],
            [2, 1],
            [3, 3],
            [3, 3],
            [3, 3],
            [3, 3],
            [4, 1],
            [4, 1],
            [4, 1],
            [4, 1],
        ],
        dtype=np.float64,
    )
    y1 = np.array([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int)

    if kind == "ones":
        X2 = X1
        y2 = y1
        sw2 = np.ones(shape=len(y1))
        err_msg = (
            f"For {name} sample_weight=None is not equivalent to sample_weight=ones"
        )
    elif kind == "zeros":
        # Construct a dataset that is very different to (X, y) if weights
        # are disregarded, but identical to (X, y) given weights.
        X2 = np.vstack([X1, X1 + 1])
        y2 = np.hstack([y1, 3 - y1])
        sw2 = np.ones(shape=len(y1) * 2)
        sw2[len(y1) :] = 0
        X2, y2, sw2 = shuffle(X2, y2, sw2, random_state=0)

        err_msg = (
            f"For {name}, a zero sample_weight is not equivalent to removing the sample"
        )
    else:  # pragma: no cover
        raise ValueError

    y1 = _enforce_estimator_tags_y(estimator1, y1)
    y2 = _enforce_estimator_tags_y(estimator2, y2)

    estimator1.fit(X1, y=y1, sample_weight=None)
    estimator2.fit(X2, y=y2, sample_weight=sw2)

    for method in ["predict", "predict_proba", "decision_function", "transform"]:
        if hasattr(estimator_orig, method):
            X_pred1 = getattr(estimator1, method)(X1)
            X_pred2 = getattr(estimator2, method)(X1)
            assert_allclose_dense_sparse(X_pred1, X_pred2, err_msg=err_msg)


def check_sample_weights_not_overwritten(name, estimator_orig):
    # check that estimators don't override the passed sample_weight parameter
    estimator = clone(estimator_orig)
    set_random_state(estimator, random_state=0)

    X = np.array(
        [
            [1, 3],
            [1, 3],
            [1, 3],
            [1, 3],
            [2, 1],
            [2, 1],
            [2, 1],
            [2, 1],
            [3, 3],
            [3, 3],
            [3, 3],
            [3, 3],
            [4, 1],
            [4, 1],
            [4, 1],
            [4, 1],
        ],
        dtype=np.float64,
    )
    y = np.array([1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int)
    y = _enforce_estimator_tags_y(estimator, y)

    sample_weight_original = np.ones(y.shape[0])
    sample_weight_original[0] = 10.0

    sample_weight_fit = sample_weight_original.copy()

    estimator.fit(X, y, sample_weight=sample_weight_fit)

    err_msg = f"{name} overwrote the original `sample_weight` given during fit"
    assert_allclose(sample_weight_fit, sample_weight_original, err_msg=err_msg)


@ignore_warnings(category=(FutureWarning, UserWarning))
def check_dtype_object(name, estimator_orig):
    # check that estimators treat dtype object as numeric if possible
    rng = np.random.RandomState(0)
    X = _enforce_estimator_tags_X(estimator_orig, rng.uniform(size=(40, 10)))
    X = X.astype(object)
    tags = _safe_tags(estimator_orig)
    y = (X[:, 0] * 4).astype(int)
    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)

    estimator.fit(X, y)
    if hasattr(estimator, "predict"):
        estimator.predict(X)

    if hasattr(estimator, "transform"):
        estimator.transform(X)

    with raises(Exception, match="Unknown label type", may_pass=True):
        estimator.fit(X, y.astype(object))

    if "string" not in tags["X_types"]:
        X[0, 0] = {"foo": "bar"}
        # This error is raised by:
        # - `np.asarray` in `check_array`
        # - `_unique_python` for encoders
        msg = "argument must be .* string.* number"
        with raises(TypeError, match=msg):
            estimator.fit(X, y)
    else:
        # Estimators supporting string will not call np.asarray to convert the
        # data to numeric and therefore, the error will not be raised.
        # Checking for each element dtype in the input array will be costly.
        # Refer to #11401 for full discussion.
        estimator.fit(X, y)


def check_complex_data(name, estimator_orig):
    rng = np.random.RandomState(42)
    # check that estimators raise an exception on providing complex data
    X = rng.uniform(size=10) + 1j * rng.uniform(size=10)
    X = X.reshape(-1, 1)

    # Something both valid for classification and regression
    y = rng.randint(low=0, high=2, size=10) + 1j
    estimator = clone(estimator_orig)
    set_random_state(estimator, random_state=0)
    with raises(ValueError, match="Complex data not supported"):
        estimator.fit(X, y)


@ignore_warnings
def check_dict_unchanged(name, estimator_orig):
    # this estimator raises
    # ValueError: Found array with 0 feature(s) (shape=(23, 0))
    # while a minimum of 1 is required.
    # error
    if name in ["SpectralCoclustering"]:
        return
    rnd = np.random.RandomState(0)
    if name in ["RANSACRegressor"]:
        X = 3 * rnd.uniform(size=(20, 3))
    else:
        X = 2 * rnd.uniform(size=(20, 3))

    X = _enforce_estimator_tags_X(estimator_orig, X)

    y = X[:, 0].astype(int)
    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)
    if hasattr(estimator, "n_components"):
        estimator.n_components = 1

    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    if hasattr(estimator, "n_best"):
        estimator.n_best = 1

    set_random_state(estimator, 1)

    estimator.fit(X, y)
    for method in ["predict", "transform", "decision_function", "predict_proba"]:
        if hasattr(estimator, method):
            dict_before = estimator.__dict__.copy()
            getattr(estimator, method)(X)
            assert estimator.__dict__ == dict_before, (
                "Estimator changes __dict__ during %s" % method
            )


def _is_public_parameter(attr):
    return not (attr.startswith("_") or attr.endswith("_"))


@ignore_warnings(category=FutureWarning)
def check_dont_overwrite_parameters(name, estimator_orig):
    # check that fit method only changes or sets private attributes
    if hasattr(estimator_orig.__init__, "deprecated_original"):
        # to not check deprecated classes
        return
    estimator = clone(estimator_orig)
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(20, 3))
    X = _enforce_estimator_tags_X(estimator_orig, X)
    y = X[:, 0].astype(int)
    y = _enforce_estimator_tags_y(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    set_random_state(estimator, 1)
    dict_before_fit = estimator.__dict__.copy()
    estimator.fit(X, y)

    dict_after_fit = estimator.__dict__

    public_keys_after_fit = [
        key for key in dict_after_fit.keys() if _is_public_parameter(key)
    ]

    attrs_added_by_fit = [
        key for key in public_keys_after_fit if key not in dict_before_fit.keys()
    ]

    # check that fit doesn't add any public attribute
    assert not attrs_added_by_fit, (
        "Estimator adds public attribute(s) during"
        " the fit method."
        " Estimators are only allowed to add private attributes"
        " either started with _ or ended"
        " with _ but %s added"
        % ", ".join(attrs_added_by_fit)
    )

    # check that fit doesn't change any public attribute
    attrs_changed_by_fit = [
        key
        for key in public_keys_after_fit
        if (dict_before_fit[key] is not dict_after_fit[key])
    ]

    assert not attrs_changed_by_fit, (
        "Estimator changes public attribute(s) during"
        " the fit method. Estimators are only allowed"
        " to change attributes started"
        " or ended with _, but"
        " %s changed"
        % ", ".join(attrs_changed_by_fit)
    )


@ignore_warnings(category=FutureWarning)
def check_fit2d_predict1d(name, estimator_orig):
    # check by fitting a 2d array and predicting with a 1d array
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(20, 3))
    X = _enforce_estimator_tags_X(estimator_orig, X)
    y = X[:, 0].astype(int)
    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    set_random_state(estimator, 1)
    estimator.fit(X, y)

    for method in ["predict", "transform", "decision_function", "predict_proba"]:
        if hasattr(estimator, method):
            assert_raise_message(
                ValueError, "Reshape your data", getattr(estimator, method), X[0]
            )


def _apply_on_subsets(func, X):
    # apply function on the whole set and on mini batches
    result_full = func(X)
    n_features = X.shape[1]
    result_by_batch = [func(batch.reshape(1, n_features)) for batch in X]

    # func can output tuple (e.g. score_samples)
    if type(result_full) == tuple:
        result_full = result_full[0]
        result_by_batch = list(map(lambda x: x[0], result_by_batch))

    if sparse.issparse(result_full):
        result_full = result_full.toarray()
        result_by_batch = [x.toarray() for x in result_by_batch]

    return np.ravel(result_full), np.ravel(result_by_batch)


@ignore_warnings(category=FutureWarning)
def check_methods_subset_invariance(name, estimator_orig):
    # check that method gives invariant results if applied
    # on mini batches or the whole set
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(20, 3))
    X = _enforce_estimator_tags_X(estimator_orig, X)
    y = X[:, 0].astype(int)
    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    set_random_state(estimator, 1)
    estimator.fit(X, y)

    for method in [
        "predict",
        "transform",
        "decision_function",
        "score_samples",
        "predict_proba",
    ]:
        msg = ("{method} of {name} is not invariant when applied to a subset.").format(
            method=method, name=name
        )

        if hasattr(estimator, method):
            result_full, result_by_batch = _apply_on_subsets(
                getattr(estimator, method), X
            )
            assert_allclose(result_full, result_by_batch, atol=1e-7, err_msg=msg)


@ignore_warnings(category=FutureWarning)
def check_methods_sample_order_invariance(name, estimator_orig):
    # check that method gives invariant results if applied
    # on a subset with different sample order
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(20, 3))
    X = _enforce_estimator_tags_X(estimator_orig, X)
    y = X[:, 0].astype(np.int64)
    if _safe_tags(estimator_orig, key="binary_only"):
        y[y == 2] = 1
    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 2

    set_random_state(estimator, 1)
    estimator.fit(X, y)

    idx = np.random.permutation(X.shape[0])

    for method in [
        "predict",
        "transform",
        "decision_function",
        "score_samples",
        "predict_proba",
    ]:
        msg = (
            "{method} of {name} is not invariant when applied to a dataset"
            "with different sample order."
        ).format(method=method, name=name)

        if hasattr(estimator, method):
            assert_allclose_dense_sparse(
                getattr(estimator, method)(X)[idx],
                getattr(estimator, method)(X[idx]),
                atol=1e-9,
                err_msg=msg,
            )


@ignore_warnings
def check_fit2d_1sample(name, estimator_orig):
    # Check that fitting a 2d array with only one sample either works or
    # returns an informative message. The error message should either mention
    # the number of samples or the number of classes.
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(1, 10))
    X = _enforce_estimator_tags_X(estimator_orig, X)

    y = X[:, 0].astype(int)
    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    set_random_state(estimator, 1)

    # min_cluster_size cannot be less than the data size for OPTICS.
    if name == "OPTICS":
        estimator.set_params(min_samples=1.0)

    # perplexity cannot be more than the number of samples for TSNE.
    if name == "TSNE":
        estimator.set_params(perplexity=0.5)

    msgs = [
        "1 sample",
        "n_samples = 1",
        "n_samples=1",
        "one sample",
        "1 class",
        "one class",
    ]

    with raises(ValueError, match=msgs, may_pass=True):
        estimator.fit(X, y)


@ignore_warnings
def check_fit2d_1feature(name, estimator_orig):
    # check fitting a 2d array with only 1 feature either works or returns
    # informative message
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(10, 1))
    X = _enforce_estimator_tags_X(estimator_orig, X)
    y = X[:, 0].astype(int)
    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1
    # ensure two labels in subsample for RandomizedLogisticRegression
    if name == "RandomizedLogisticRegression":
        estimator.sample_fraction = 1
    # ensure non skipped trials for RANSACRegressor
    if name == "RANSACRegressor":
        estimator.residual_threshold = 0.5

    y = _enforce_estimator_tags_y(estimator, y)
    set_random_state(estimator, 1)

    msgs = [r"1 feature\(s\)", "n_features = 1", "n_features=1"]

    with raises(ValueError, match=msgs, may_pass=True):
        estimator.fit(X, y)


@ignore_warnings
def check_fit1d(name, estimator_orig):
    # check fitting 1d X array raises a ValueError
    rnd = np.random.RandomState(0)
    X = 3 * rnd.uniform(size=(20))
    y = X.astype(int)
    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)

    if hasattr(estimator, "n_components"):
        estimator.n_components = 1
    if hasattr(estimator, "n_clusters"):
        estimator.n_clusters = 1

    set_random_state(estimator, 1)
    with raises(ValueError):
        estimator.fit(X, y)


@ignore_warnings(category=FutureWarning)
def check_transformer_general(name, transformer, readonly_memmap=False):
    X, y = make_blobs(
        n_samples=30,
        centers=[[0, 0, 0], [1, 1, 1]],
        random_state=0,
        n_features=2,
        cluster_std=0.1,
    )
    X = StandardScaler().fit_transform(X)
    X = _enforce_estimator_tags_X(transformer, X)

    if readonly_memmap:
        X, y = create_memmap_backed_data([X, y])

    _check_transformer(name, transformer, X, y)


@ignore_warnings(category=FutureWarning)
def check_transformer_data_not_an_array(name, transformer):
    X, y = make_blobs(
        n_samples=30,
        centers=[[0, 0, 0], [1, 1, 1]],
        random_state=0,
        n_features=2,
        cluster_std=0.1,
    )
    X = StandardScaler().fit_transform(X)
    X = _enforce_estimator_tags_X(transformer, X)
    this_X = _NotAnArray(X)
    this_y = _NotAnArray(np.asarray(y))
    _check_transformer(name, transformer, this_X, this_y)
    # try the same with some list
    _check_transformer(name, transformer, X.tolist(), y.tolist())


@ignore_warnings(category=FutureWarning)
def check_transformers_unfitted(name, transformer):
    X, y = _regression_dataset()

    transformer = clone(transformer)
    with raises(
        (AttributeError, ValueError),
        err_msg=(
            "The unfitted "
            f"transformer {name} does not raise an error when "
            "transform is called. Perhaps use "
            "check_is_fitted in transform."
        ),
    ):
        transformer.transform(X)


@ignore_warnings(category=FutureWarning)
def check_transformers_unfitted_stateless(name, transformer):
    """Check that using transform without prior fitting
    doesn't raise a NotFittedError for stateless transformers.
    """
    rng = np.random.RandomState(0)
    X = rng.uniform(size=(20, 5))
    X = _enforce_estimator_tags_X(transformer, X)

    transformer = clone(transformer)
    X_trans = transformer.transform(X)

    assert X_trans.shape[0] == X.shape[0]


def _check_transformer(name, transformer_orig, X, y):
    n_samples, n_features = np.asarray(X).shape
    transformer = clone(transformer_orig)
    set_random_state(transformer)

    # fit

    if name in CROSS_DECOMPOSITION:
        y_ = np.c_[np.asarray(y), np.asarray(y)]
        y_[::2, 1] *= 2
        if isinstance(X, _NotAnArray):
            y_ = _NotAnArray(y_)
    else:
        y_ = y

    transformer.fit(X, y_)
    # fit_transform method should work on non fitted estimator
    transformer_clone = clone(transformer)
    X_pred = transformer_clone.fit_transform(X, y=y_)

    if isinstance(X_pred, tuple):
        for x_pred in X_pred:
            assert x_pred.shape[0] == n_samples
    else:
        # check for consistent n_samples
        assert X_pred.shape[0] == n_samples

    if hasattr(transformer, "transform"):
        if name in CROSS_DECOMPOSITION:
            X_pred2 = transformer.transform(X, y_)
            X_pred3 = transformer.fit_transform(X, y=y_)
        else:
            X_pred2 = transformer.transform(X)
            X_pred3 = transformer.fit_transform(X, y=y_)

        if _safe_tags(transformer_orig, key="non_deterministic"):
            msg = name + " is non deterministic"
            raise SkipTest(msg)
        if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple):
            for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3):
                assert_allclose_dense_sparse(
                    x_pred,
                    x_pred2,
                    atol=1e-2,
                    err_msg="fit_transform and transform outcomes not consistent in %s"
                    % transformer,
                )
                assert_allclose_dense_sparse(
                    x_pred,
                    x_pred3,
                    atol=1e-2,
                    err_msg="consecutive fit_transform outcomes not consistent in %s"
                    % transformer,
                )
        else:
            assert_allclose_dense_sparse(
                X_pred,
                X_pred2,
                err_msg="fit_transform and transform outcomes not consistent in %s"
                % transformer,
                atol=1e-2,
            )
            assert_allclose_dense_sparse(
                X_pred,
                X_pred3,
                atol=1e-2,
                err_msg="consecutive fit_transform outcomes not consistent in %s"
                % transformer,
            )
            assert _num_samples(X_pred2) == n_samples
            assert _num_samples(X_pred3) == n_samples

        # raises error on malformed input for transform
        if (
            hasattr(X, "shape")
            and not _safe_tags(transformer, key="stateless")
            and X.ndim == 2
            and X.shape[1] > 1
        ):
            # If it's not an array, it does not have a 'T' property
            with raises(
                ValueError,
                err_msg=(
                    f"The transformer {name} does not raise an error "
                    "when the number of features in transform is different from "
                    "the number of features in fit."
                ),
            ):
                transformer.transform(X[:, :-1])


@ignore_warnings
def check_pipeline_consistency(name, estimator_orig):
    if _safe_tags(estimator_orig, key="non_deterministic"):
        msg = name + " is non deterministic"
        raise SkipTest(msg)

    # check that make_pipeline(est) gives same score as est
    X, y = make_blobs(
        n_samples=30,
        centers=[[0, 0, 0], [1, 1, 1]],
        random_state=0,
        n_features=2,
        cluster_std=0.1,
    )
    X = _enforce_estimator_tags_X(estimator_orig, X, kernel=rbf_kernel)
    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)
    set_random_state(estimator)
    pipeline = make_pipeline(estimator)
    estimator.fit(X, y)
    pipeline.fit(X, y)

    funcs = ["score", "fit_transform"]

    for func_name in funcs:
        func = getattr(estimator, func_name, None)
        if func is not None:
            func_pipeline = getattr(pipeline, func_name)
            result = func(X, y)
            result_pipe = func_pipeline(X, y)
            assert_allclose_dense_sparse(result, result_pipe)


@ignore_warnings
def check_fit_score_takes_y(name, estimator_orig):
    # check that all estimators accept an optional y
    # in fit and score so they can be used in pipelines
    rnd = np.random.RandomState(0)
    n_samples = 30
    X = rnd.uniform(size=(n_samples, 3))
    X = _enforce_estimator_tags_X(estimator_orig, X)
    y = np.arange(n_samples) % 3
    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)
    set_random_state(estimator)

    funcs = ["fit", "score", "partial_fit", "fit_predict", "fit_transform"]
    for func_name in funcs:
        func = getattr(estimator, func_name, None)
        if func is not None:
            func(X, y)
            args = [p.name for p in signature(func).parameters.values()]
            if args[0] == "self":
                # available_if makes methods into functions
                # with an explicit "self", so need to shift arguments
                args = args[1:]
            assert args[1] in ["y", "Y"], (
                "Expected y or Y as second argument for method "
                "%s of %s. Got arguments: %r."
                % (func_name, type(estimator).__name__, args)
            )


@ignore_warnings
def check_estimators_dtypes(name, estimator_orig):
    rnd = np.random.RandomState(0)
    X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32)
    X_train_32 = _enforce_estimator_tags_X(estimator_orig, X_train_32)
    X_train_64 = X_train_32.astype(np.float64)
    X_train_int_64 = X_train_32.astype(np.int64)
    X_train_int_32 = X_train_32.astype(np.int32)
    y = X_train_int_64[:, 0]
    y = _enforce_estimator_tags_y(estimator_orig, y)

    methods = ["predict", "transform", "decision_function", "predict_proba"]

    for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]:
        estimator = clone(estimator_orig)
        set_random_state(estimator, 1)
        estimator.fit(X_train, y)

        for method in methods:
            if hasattr(estimator, method):
                getattr(estimator, method)(X_train)


def check_transformer_preserve_dtypes(name, transformer_orig):
    # check that dtype are preserved meaning if input X is of some dtype
    # X_transformed should be from the same dtype.
    X, y = make_blobs(
        n_samples=30,
        centers=[[0, 0, 0], [1, 1, 1]],
        random_state=0,
        cluster_std=0.1,
    )
    X = StandardScaler().fit_transform(X)
    X = _enforce_estimator_tags_X(transformer_orig, X)

    for dtype in _safe_tags(transformer_orig, key="preserves_dtype"):
        X_cast = X.astype(dtype)
        transformer = clone(transformer_orig)
        set_random_state(transformer)
        X_trans1 = transformer.fit_transform(X_cast, y)
        X_trans2 = transformer.fit(X_cast, y).transform(X_cast)

        for Xt, method in zip([X_trans1, X_trans2], ["fit_transform", "transform"]):
            if isinstance(Xt, tuple):
                # cross-decompostion returns a tuple of (x_scores, y_scores)
                # when given y with fit_transform; only check the first element
                Xt = Xt[0]

            # check that the output dtype is preserved
            assert Xt.dtype == dtype, (
                f"{name} (method={method}) does not preserve dtype. "
                f"Original/Expected dtype={dtype.__name__}, got dtype={Xt.dtype}."
            )


@ignore_warnings(category=FutureWarning)
def check_estimators_empty_data_messages(name, estimator_orig):
    e = clone(estimator_orig)
    set_random_state(e, 1)

    X_zero_samples = np.empty(0).reshape(0, 3)
    # The precise message can change depending on whether X or y is
    # validated first. Let us test the type of exception only:
    err_msg = (
        f"The estimator {name} does not raise a ValueError when an "
        "empty data is used to train. Perhaps use check_array in train."
    )
    with raises(ValueError, err_msg=err_msg):
        e.fit(X_zero_samples, [])

    X_zero_features = np.empty(0).reshape(12, 0)
    # the following y should be accepted by both classifiers and regressors
    # and ignored by unsupervised models
    y = _enforce_estimator_tags_y(e, np.array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0]))
    msg = r"0 feature\(s\) \(shape=\(\d*, 0\)\) while a minimum of \d* " "is required."
    with raises(ValueError, match=msg):
        e.fit(X_zero_features, y)


@ignore_warnings(category=FutureWarning)
def check_estimators_nan_inf(name, estimator_orig):
    # Checks that Estimator X's do not contain NaN or inf.
    rnd = np.random.RandomState(0)
    X_train_finite = _enforce_estimator_tags_X(
        estimator_orig, rnd.uniform(size=(10, 3))
    )
    X_train_nan = rnd.uniform(size=(10, 3))
    X_train_nan[0, 0] = np.nan
    X_train_inf = rnd.uniform(size=(10, 3))
    X_train_inf[0, 0] = np.inf
    y = np.ones(10)
    y[:5] = 0
    y = _enforce_estimator_tags_y(estimator_orig, y)
    error_string_fit = f"Estimator {name} doesn't check for NaN and inf in fit."
    error_string_predict = f"Estimator {name} doesn't check for NaN and inf in predict."
    error_string_transform = (
        f"Estimator {name} doesn't check for NaN and inf in transform."
    )
    for X_train in [X_train_nan, X_train_inf]:
        # catch deprecation warnings
        with ignore_warnings(category=FutureWarning):
            estimator = clone(estimator_orig)
            set_random_state(estimator, 1)
            # try to fit
            with raises(ValueError, match=["inf", "NaN"], err_msg=error_string_fit):
                estimator.fit(X_train, y)
            # actually fit
            estimator.fit(X_train_finite, y)

            # predict
            if hasattr(estimator, "predict"):
                with raises(
                    ValueError,
                    match=["inf", "NaN"],
                    err_msg=error_string_predict,
                ):
                    estimator.predict(X_train)

            # transform
            if hasattr(estimator, "transform"):
                with raises(
                    ValueError,
                    match=["inf", "NaN"],
                    err_msg=error_string_transform,
                ):
                    estimator.transform(X_train)


@ignore_warnings
def check_nonsquare_error(name, estimator_orig):
    """Test that error is thrown when non-square data provided."""

    X, y = make_blobs(n_samples=20, n_features=10)
    estimator = clone(estimator_orig)

    with raises(
        ValueError,
        err_msg=(
            f"The pairwise estimator {name} does not raise an error on non-square data"
        ),
    ):
        estimator.fit(X, y)


@ignore_warnings
def check_estimators_pickle(name, estimator_orig, readonly_memmap=False):
    """Test that we can pickle all estimators."""
    check_methods = ["predict", "transform", "decision_function", "predict_proba"]

    X, y = make_blobs(
        n_samples=30,
        centers=[[0, 0, 0], [1, 1, 1]],
        random_state=0,
        n_features=2,
        cluster_std=0.1,
    )

    X = _enforce_estimator_tags_X(estimator_orig, X, kernel=rbf_kernel)

    tags = _safe_tags(estimator_orig)
    # include NaN values when the estimator should deal with them
    if tags["allow_nan"]:
        # set randomly 10 elements to np.nan
        rng = np.random.RandomState(42)
        mask = rng.choice(X.size, 10, replace=False)
        X.reshape(-1)[mask] = np.nan

    estimator = clone(estimator_orig)

    y = _enforce_estimator_tags_y(estimator, y)

    set_random_state(estimator)
    estimator.fit(X, y)

    if readonly_memmap:
        unpickled_estimator = create_memmap_backed_data(estimator)
    else:
        # No need to touch the file system in that case.
        pickled_estimator = pickle.dumps(estimator)
        module_name = estimator.__module__
        if module_name.startswith("sklearn.") and not (
            "test_" in module_name or module_name.endswith("_testing")
        ):
            # strict check for sklearn estimators that are not implemented in test
            # modules.
            assert b"_sklearn_version" in pickled_estimator
        unpickled_estimator = pickle.loads(pickled_estimator)

    result = dict()
    for method in check_methods:
        if hasattr(estimator, method):
            result[method] = getattr(estimator, method)(X)

    for method in result:
        unpickled_result = getattr(unpickled_estimator, method)(X)
        assert_allclose_dense_sparse(result[method], unpickled_result)


@ignore_warnings(category=FutureWarning)
def check_estimators_partial_fit_n_features(name, estimator_orig):
    # check if number of features changes between calls to partial_fit.
    if not hasattr(estimator_orig, "partial_fit"):
        return
    estimator = clone(estimator_orig)
    X, y = make_blobs(n_samples=50, random_state=1)
    X = _enforce_estimator_tags_X(estimator_orig, X)
    y = _enforce_estimator_tags_y(estimator_orig, y)

    try:
        if is_classifier(estimator):
            classes = np.unique(y)
            estimator.partial_fit(X, y, classes=classes)
        else:
            estimator.partial_fit(X, y)
    except NotImplementedError:
        return

    with raises(
        ValueError,
        err_msg=(
            f"The estimator {name} does not raise an error when the "
            "number of features changes between calls to partial_fit."
        ),
    ):
        estimator.partial_fit(X[:, :-1], y)


@ignore_warnings(category=FutureWarning)
def check_classifier_multioutput(name, estimator):
    n_samples, n_labels, n_classes = 42, 5, 3
    tags = _safe_tags(estimator)
    estimator = clone(estimator)
    X, y = make_multilabel_classification(
        random_state=42, n_samples=n_samples, n_labels=n_labels, n_classes=n_classes
    )
    estimator.fit(X, y)
    y_pred = estimator.predict(X)

    assert y_pred.shape == (n_samples, n_classes), (
        "The shape of the prediction for multioutput data is "
        "incorrect. Expected {}, got {}.".format((n_samples, n_labels), y_pred.shape)
    )
    assert y_pred.dtype.kind == "i"

    if hasattr(estimator, "decision_function"):
        decision = estimator.decision_function(X)
        assert isinstance(decision, np.ndarray)
        assert decision.shape == (n_samples, n_classes), (
            "The shape of the decision function output for "
            "multioutput data is incorrect. Expected {}, got {}.".format(
                (n_samples, n_classes), decision.shape
            )
        )

        dec_pred = (decision > 0).astype(int)
        dec_exp = estimator.classes_[dec_pred]
        assert_array_equal(dec_exp, y_pred)

    if hasattr(estimator, "predict_proba"):
        y_prob = estimator.predict_proba(X)

        if isinstance(y_prob, list) and not tags["poor_score"]:
            for i in range(n_classes):
                assert y_prob[i].shape == (n_samples, 2), (
                    "The shape of the probability for multioutput data is"
                    " incorrect. Expected {}, got {}.".format(
                        (n_samples, 2), y_prob[i].shape
                    )
                )
                assert_array_equal(
                    np.argmax(y_prob[i], axis=1).astype(int), y_pred[:, i]
                )
        elif not tags["poor_score"]:
            assert y_prob.shape == (n_samples, n_classes), (
                "The shape of the probability for multioutput data is"
                " incorrect. Expected {}, got {}.".format(
                    (n_samples, n_classes), y_prob.shape
                )
            )
            assert_array_equal(y_prob.round().astype(int), y_pred)

    if hasattr(estimator, "decision_function") and hasattr(estimator, "predict_proba"):
        for i in range(n_classes):
            y_proba = estimator.predict_proba(X)[:, i]
            y_decision = estimator.decision_function(X)
            assert_array_equal(rankdata(y_proba), rankdata(y_decision[:, i]))


@ignore_warnings(category=FutureWarning)
def check_regressor_multioutput(name, estimator):
    estimator = clone(estimator)
    n_samples = n_features = 10

    if not _is_pairwise_metric(estimator):
        n_samples = n_samples + 1

    X, y = make_regression(
        random_state=42, n_targets=5, n_samples=n_samples, n_features=n_features
    )
    X = _enforce_estimator_tags_X(estimator, X)

    estimator.fit(X, y)
    y_pred = estimator.predict(X)

    assert y_pred.dtype == np.dtype("float64"), (
        "Multioutput predictions by a regressor are expected to be"
        " floating-point precision. Got {} instead".format(y_pred.dtype)
    )
    assert y_pred.shape == y.shape, (
        "The shape of the prediction for multioutput data is incorrect."
        " Expected {}, got {}."
    )


@ignore_warnings(category=FutureWarning)
def check_clustering(name, clusterer_orig, readonly_memmap=False):
    clusterer = clone(clusterer_orig)
    X, y = make_blobs(n_samples=50, random_state=1)
    X, y = shuffle(X, y, random_state=7)
    X = StandardScaler().fit_transform(X)
    rng = np.random.RandomState(7)
    X_noise = np.concatenate([X, rng.uniform(low=-3, high=3, size=(5, 2))])

    if readonly_memmap:
        X, y, X_noise = create_memmap_backed_data([X, y, X_noise])

    n_samples, n_features = X.shape
    # catch deprecation and neighbors warnings
    if hasattr(clusterer, "n_clusters"):
        clusterer.set_params(n_clusters=3)
    set_random_state(clusterer)
    if name == "AffinityPropagation":
        clusterer.set_params(preference=-100)
        clusterer.set_params(max_iter=100)

    # fit
    clusterer.fit(X)
    # with lists
    clusterer.fit(X.tolist())

    pred = clusterer.labels_
    assert pred.shape == (n_samples,)
    assert adjusted_rand_score(pred, y) > 0.4
    if _safe_tags(clusterer, key="non_deterministic"):
        return
    set_random_state(clusterer)
    with warnings.catch_warnings(record=True):
        pred2 = clusterer.fit_predict(X)
    assert_array_equal(pred, pred2)

    # fit_predict(X) and labels_ should be of type int
    assert pred.dtype in [np.dtype("int32"), np.dtype("int64")]
    assert pred2.dtype in [np.dtype("int32"), np.dtype("int64")]

    # Add noise to X to test the possible values of the labels
    labels = clusterer.fit_predict(X_noise)

    # There should be at least one sample in every cluster. Equivalently
    # labels_ should contain all the consecutive values between its
    # min and its max.
    labels_sorted = np.unique(labels)
    assert_array_equal(
        labels_sorted, np.arange(labels_sorted[0], labels_sorted[-1] + 1)
    )

    # Labels are expected to start at 0 (no noise) or -1 (if noise)
    assert labels_sorted[0] in [0, -1]
    # Labels should be less than n_clusters - 1
    if hasattr(clusterer, "n_clusters"):
        n_clusters = getattr(clusterer, "n_clusters")
        assert n_clusters - 1 >= labels_sorted[-1]
    # else labels should be less than max(labels_) which is necessarily true


@ignore_warnings(category=FutureWarning)
def check_clusterer_compute_labels_predict(name, clusterer_orig):
    """Check that predict is invariant of compute_labels."""
    X, y = make_blobs(n_samples=20, random_state=0)
    clusterer = clone(clusterer_orig)
    set_random_state(clusterer)

    if hasattr(clusterer, "compute_labels"):
        # MiniBatchKMeans
        X_pred1 = clusterer.fit(X).predict(X)
        clusterer.set_params(compute_labels=False)
        X_pred2 = clusterer.fit(X).predict(X)
        assert_array_equal(X_pred1, X_pred2)


@ignore_warnings(category=FutureWarning)
def check_classifiers_one_label(name, classifier_orig):
    error_string_fit = "Classifier can't train when only one class is present."
    error_string_predict = "Classifier can't predict when only one class is present."
    rnd = np.random.RandomState(0)
    X_train = rnd.uniform(size=(10, 3))
    X_test = rnd.uniform(size=(10, 3))
    y = np.ones(10)
    # catch deprecation warnings
    with ignore_warnings(category=FutureWarning):
        classifier = clone(classifier_orig)
        with raises(
            ValueError, match="class", may_pass=True, err_msg=error_string_fit
        ) as cm:
            classifier.fit(X_train, y)

        if cm.raised_and_matched:
            # ValueError was raised with proper error message
            return

        assert_array_equal(classifier.predict(X_test), y, err_msg=error_string_predict)


@ignore_warnings(category=FutureWarning)
def check_classifiers_one_label_sample_weights(name, classifier_orig):
    """Check that classifiers accepting sample_weight fit or throws a ValueError with
    an explicit message if the problem is reduced to one class.
    """
    error_fit = (
        f"{name} failed when fitted on one label after sample_weight trimming. Error "
        "message is not explicit, it should have 'class'."
    )
    error_predict = f"{name} prediction results should only output the remaining class."
    rnd = np.random.RandomState(0)
    # X should be square for test on SVC with precomputed kernel
    X_train = rnd.uniform(size=(10, 10))
    X_test = rnd.uniform(size=(10, 10))
    y = np.arange(10) % 2
    sample_weight = y.copy()  # select a single class
    classifier = clone(classifier_orig)

    if has_fit_parameter(classifier, "sample_weight"):
        match = [r"\bclass(es)?\b", error_predict]
        err_type, err_msg = (AssertionError, ValueError), error_fit
    else:
        match = r"\bsample_weight\b"
        err_type, err_msg = (TypeError, ValueError), None

    with raises(err_type, match=match, may_pass=True, err_msg=err_msg) as cm:
        classifier.fit(X_train, y, sample_weight=sample_weight)
        if cm.raised_and_matched:
            # raise the proper error type with the proper error message
            return
        # for estimators that do not fail, they should be able to predict the only
        # class remaining during fit
        assert_array_equal(
            classifier.predict(X_test), np.ones(10), err_msg=error_predict
        )


@ignore_warnings  # Warnings are raised by decision function
def check_classifiers_train(
    name, classifier_orig, readonly_memmap=False, X_dtype="float64"
):
    X_m, y_m = make_blobs(n_samples=300, random_state=0)
    X_m = X_m.astype(X_dtype)
    X_m, y_m = shuffle(X_m, y_m, random_state=7)
    X_m = StandardScaler().fit_transform(X_m)
    # generate binary problem from multi-class one
    y_b = y_m[y_m != 2]
    X_b = X_m[y_m != 2]

    if name in ["BernoulliNB", "MultinomialNB", "ComplementNB", "CategoricalNB"]:
        X_m -= X_m.min()
        X_b -= X_b.min()

    if readonly_memmap:
        X_m, y_m, X_b, y_b = create_memmap_backed_data([X_m, y_m, X_b, y_b])

    problems = [(X_b, y_b)]
    tags = _safe_tags(classifier_orig)
    if not tags["binary_only"]:
        problems.append((X_m, y_m))

    for X, y in problems:
        classes = np.unique(y)
        n_classes = len(classes)
        n_samples, n_features = X.shape
        classifier = clone(classifier_orig)
        X = _enforce_estimator_tags_X(classifier, X)
        y = _enforce_estimator_tags_y(classifier, y)

        set_random_state(classifier)
        # raises error on malformed input for fit
        if not tags["no_validation"]:
            with raises(
                ValueError,
                err_msg=(
                    f"The classifier {name} does not raise an error when "
                    "incorrect/malformed input data for fit is passed. The number "
                    "of training examples is not the same as the number of "
                    "labels. Perhaps use check_X_y in fit."
                ),
            ):
                classifier.fit(X, y[:-1])

        # fit
        classifier.fit(X, y)
        # with lists
        classifier.fit(X.tolist(), y.tolist())
        assert hasattr(classifier, "classes_")
        y_pred = classifier.predict(X)

        assert y_pred.shape == (n_samples,)
        # training set performance
        if not tags["poor_score"]:
            assert accuracy_score(y, y_pred) > 0.83

        # raises error on malformed input for predict
        msg_pairwise = (
            "The classifier {} does not raise an error when shape of X in "
            " {} is not equal to (n_test_samples, n_training_samples)"
        )
        msg = (
            "The classifier {} does not raise an error when the number of "
            "features in {} is different from the number of features in "
            "fit."
        )

        if not tags["no_validation"]:
            if tags["pairwise"]:
                with raises(
                    ValueError,
                    err_msg=msg_pairwise.format(name, "predict"),
                ):
                    classifier.predict(X.reshape(-1, 1))
            else:
                with raises(ValueError, err_msg=msg.format(name, "predict")):
                    classifier.predict(X.T)
        if hasattr(classifier, "decision_function"):
            try:
                # decision_function agrees with predict
                decision = classifier.decision_function(X)
                if n_classes == 2:
                    if not tags["multioutput_only"]:
                        assert decision.shape == (n_samples,)
                    else:
                        assert decision.shape == (n_samples, 1)
                    dec_pred = (decision.ravel() > 0).astype(int)
                    assert_array_equal(dec_pred, y_pred)
                else:
                    assert decision.shape == (n_samples, n_classes)
                    assert_array_equal(np.argmax(decision, axis=1), y_pred)

                # raises error on malformed input for decision_function
                if not tags["no_validation"]:
                    if tags["pairwise"]:
                        with raises(
                            ValueError,
                            err_msg=msg_pairwise.format(name, "decision_function"),
                        ):
                            classifier.decision_function(X.reshape(-1, 1))
                    else:
                        with raises(
                            ValueError,
                            err_msg=msg.format(name, "decision_function"),
                        ):
                            classifier.decision_function(X.T)
            except NotImplementedError:
                pass

        if hasattr(classifier, "predict_proba"):
            # predict_proba agrees with predict
            y_prob = classifier.predict_proba(X)
            assert y_prob.shape == (n_samples, n_classes)
            assert_array_equal(np.argmax(y_prob, axis=1), y_pred)
            # check that probas for all classes sum to one
            assert_array_almost_equal(np.sum(y_prob, axis=1), np.ones(n_samples))
            if not tags["no_validation"]:
                # raises error on malformed input for predict_proba
                if tags["pairwise"]:
                    with raises(
                        ValueError,
                        err_msg=msg_pairwise.format(name, "predict_proba"),
                    ):
                        classifier.predict_proba(X.reshape(-1, 1))
                else:
                    with raises(
                        ValueError,
                        err_msg=msg.format(name, "predict_proba"),
                    ):
                        classifier.predict_proba(X.T)
            if hasattr(classifier, "predict_log_proba"):
                # predict_log_proba is a transformation of predict_proba
                y_log_prob = classifier.predict_log_proba(X)
                assert_allclose(y_log_prob, np.log(y_prob), 8, atol=1e-9)
                assert_array_equal(np.argsort(y_log_prob), np.argsort(y_prob))


def check_outlier_corruption(num_outliers, expected_outliers, decision):
    # Check for deviation from the precise given contamination level that may
    # be due to ties in the anomaly scores.
    if num_outliers < expected_outliers:
        start = num_outliers
        end = expected_outliers + 1
    else:
        start = expected_outliers
        end = num_outliers + 1

    # ensure that all values in the 'critical area' are tied,
    # leading to the observed discrepancy between provided
    # and actual contamination levels.
    sorted_decision = np.sort(decision)
    msg = (
        "The number of predicted outliers is not equal to the expected "
        "number of outliers and this difference is not explained by the "
        "number of ties in the decision_function values"
    )
    assert len(np.unique(sorted_decision[start:end])) == 1, msg


def check_outliers_train(name, estimator_orig, readonly_memmap=True):
    n_samples = 300
    X, _ = make_blobs(n_samples=n_samples, random_state=0)
    X = shuffle(X, random_state=7)

    if readonly_memmap:
        X = create_memmap_backed_data(X)

    n_samples, n_features = X.shape
    estimator = clone(estimator_orig)
    set_random_state(estimator)

    # fit
    estimator.fit(X)
    # with lists
    estimator.fit(X.tolist())

    y_pred = estimator.predict(X)
    assert y_pred.shape == (n_samples,)
    assert y_pred.dtype.kind == "i"
    assert_array_equal(np.unique(y_pred), np.array([-1, 1]))

    decision = estimator.decision_function(X)
    scores = estimator.score_samples(X)
    for output in [decision, scores]:
        assert output.dtype == np.dtype("float")
        assert output.shape == (n_samples,)

    # raises error on malformed input for predict
    with raises(ValueError):
        estimator.predict(X.T)

    # decision_function agrees with predict
    dec_pred = (decision >= 0).astype(int)
    dec_pred[dec_pred == 0] = -1
    assert_array_equal(dec_pred, y_pred)

    # raises error on malformed input for decision_function
    with raises(ValueError):
        estimator.decision_function(X.T)

    # decision_function is a translation of score_samples
    y_dec = scores - estimator.offset_
    assert_allclose(y_dec, decision)

    # raises error on malformed input for score_samples
    with raises(ValueError):
        estimator.score_samples(X.T)

    # contamination parameter (not for OneClassSVM which has the nu parameter)
    if hasattr(estimator, "contamination") and not hasattr(estimator, "novelty"):
        # proportion of outliers equal to contamination parameter when not
        # set to 'auto'. This is true for the training set and cannot thus be
        # checked as follows for estimators with a novelty parameter such as
        # LocalOutlierFactor (tested in check_outliers_fit_predict)
        expected_outliers = 30
        contamination = expected_outliers / n_samples
        estimator.set_params(contamination=contamination)
        estimator.fit(X)
        y_pred = estimator.predict(X)

        num_outliers = np.sum(y_pred != 1)
        # num_outliers should be equal to expected_outliers unless
        # there are ties in the decision_function values. this can
        # only be tested for estimators with a decision_function
        # method, i.e. all estimators except LOF which is already
        # excluded from this if branch.
        if num_outliers != expected_outliers:
            decision = estimator.decision_function(X)
            check_outlier_corruption(num_outliers, expected_outliers, decision)


def check_outlier_contamination(name, estimator_orig):
    # Check that the contamination parameter is in (0.0, 0.5] when it is an
    # interval constraint.

    if not hasattr(estimator_orig, "_parameter_constraints"):
        # Only estimator implementing parameter constraints will be checked
        return

    if "contamination" not in estimator_orig._parameter_constraints:
        return

    contamination_constraints = estimator_orig._parameter_constraints["contamination"]
    if not any([isinstance(c, Interval) for c in contamination_constraints]):
        raise AssertionError(
            "contamination constraints should contain a Real Interval constraint."
        )

    for constraint in contamination_constraints:
        if isinstance(constraint, Interval):
            assert (
                constraint.type == Real
                and constraint.left >= 0.0
                and constraint.right <= 0.5
                and (constraint.left > 0 or constraint.closed in {"right", "neither"})
            ), "contamination constraint should be an interval in (0, 0.5]"


@ignore_warnings(category=FutureWarning)
def check_classifiers_multilabel_representation_invariance(name, classifier_orig):
    X, y = make_multilabel_classification(
        n_samples=100,
        n_features=2,
        n_classes=5,
        n_labels=3,
        length=50,
        allow_unlabeled=True,
        random_state=0,
    )
    X = scale(X)

    X_train, y_train = X[:80], y[:80]
    X_test = X[80:]

    y_train_list_of_lists = y_train.tolist()
    y_train_list_of_arrays = list(y_train)

    classifier = clone(classifier_orig)
    set_random_state(classifier)

    y_pred = classifier.fit(X_train, y_train).predict(X_test)

    y_pred_list_of_lists = classifier.fit(X_train, y_train_list_of_lists).predict(
        X_test
    )

    y_pred_list_of_arrays = classifier.fit(X_train, y_train_list_of_arrays).predict(
        X_test
    )

    assert_array_equal(y_pred, y_pred_list_of_arrays)
    assert_array_equal(y_pred, y_pred_list_of_lists)

    assert y_pred.dtype == y_pred_list_of_arrays.dtype
    assert y_pred.dtype == y_pred_list_of_lists.dtype
    assert type(y_pred) == type(y_pred_list_of_arrays)
    assert type(y_pred) == type(y_pred_list_of_lists)


@ignore_warnings(category=FutureWarning)
def check_classifiers_multilabel_output_format_predict(name, classifier_orig):
    """Check the output of the `predict` method for classifiers supporting
    multilabel-indicator targets."""
    classifier = clone(classifier_orig)
    set_random_state(classifier)

    n_samples, test_size, n_outputs = 100, 25, 5
    X, y = make_multilabel_classification(
        n_samples=n_samples,
        n_features=2,
        n_classes=n_outputs,
        n_labels=3,
        length=50,
        allow_unlabeled=True,
        random_state=0,
    )
    X = scale(X)

    X_train, X_test = X[:-test_size], X[-test_size:]
    y_train, y_test = y[:-test_size], y[-test_size:]
    classifier.fit(X_train, y_train)

    response_method_name = "predict"
    predict_method = getattr(classifier, response_method_name, None)
    if predict_method is None:
        raise SkipTest(f"{name} does not have a {response_method_name} method.")

    y_pred = predict_method(X_test)

    # y_pred.shape -> y_test.shape with the same dtype
    assert isinstance(y_pred, np.ndarray), (
        f"{name}.predict is expected to output a NumPy array. Got "
        f"{type(y_pred)} instead."
    )
    assert y_pred.shape == y_test.shape, (
        f"{name}.predict outputs a NumPy array of shape {y_pred.shape} "
        f"instead of {y_test.shape}."
    )
    assert y_pred.dtype == y_test.dtype, (
        f"{name}.predict does not output the same dtype than the targets. "
        f"Got {y_pred.dtype} instead of {y_test.dtype}."
    )


@ignore_warnings(category=FutureWarning)
def check_classifiers_multilabel_output_format_predict_proba(name, classifier_orig):
    """Check the output of the `predict_proba` method for classifiers supporting
    multilabel-indicator targets."""
    classifier = clone(classifier_orig)
    set_random_state(classifier)

    n_samples, test_size, n_outputs = 100, 25, 5
    X, y = make_multilabel_classification(
        n_samples=n_samples,
        n_features=2,
        n_classes=n_outputs,
        n_labels=3,
        length=50,
        allow_unlabeled=True,
        random_state=0,
    )
    X = scale(X)

    X_train, X_test = X[:-test_size], X[-test_size:]
    y_train = y[:-test_size]
    classifier.fit(X_train, y_train)

    response_method_name = "predict_proba"
    predict_proba_method = getattr(classifier, response_method_name, None)
    if predict_proba_method is None:
        raise SkipTest(f"{name} does not have a {response_method_name} method.")

    y_pred = predict_proba_method(X_test)

    # y_pred.shape -> 2 possibilities:
    # - list of length n_outputs of shape (n_samples, 2);
    # - ndarray of shape (n_samples, n_outputs).
    # dtype should be floating
    if isinstance(y_pred, list):
        assert len(y_pred) == n_outputs, (
            f"When {name}.predict_proba returns a list, the list should "
            "be of length n_outputs and contain NumPy arrays. Got length "
            f"of {len(y_pred)} instead of {n_outputs}."
        )
        for pred in y_pred:
            assert pred.shape == (test_size, 2), (
                f"When {name}.predict_proba returns a list, this list "
                "should contain NumPy arrays of shape (n_samples, 2). Got "
                f"NumPy arrays of shape {pred.shape} instead of "
                f"{(test_size, 2)}."
            )
            assert pred.dtype.kind == "f", (
                f"When {name}.predict_proba returns a list, it should "
                "contain NumPy arrays with floating dtype. Got "
                f"{pred.dtype} instead."
            )
            # check that we have the correct probabilities
            err_msg = (
                f"When {name}.predict_proba returns a list, each NumPy "
                "array should contain probabilities for each class and "
                "thus each row should sum to 1 (or close to 1 due to "
                "numerical errors)."
            )
            assert_allclose(pred.sum(axis=1), 1, err_msg=err_msg)
    elif isinstance(y_pred, np.ndarray):
        assert y_pred.shape == (test_size, n_outputs), (
            f"When {name}.predict_proba returns a NumPy array, the "
            f"expected shape is (n_samples, n_outputs). Got {y_pred.shape}"
            f" instead of {(test_size, n_outputs)}."
        )
        assert y_pred.dtype.kind == "f", (
            f"When {name}.predict_proba returns a NumPy array, the "
            f"expected data type is floating. Got {y_pred.dtype} instead."
        )
        err_msg = (
            f"When {name}.predict_proba returns a NumPy array, this array "
            "is expected to provide probabilities of the positive class "
            "and should therefore contain values between 0 and 1."
        )
        assert_array_less(0, y_pred, err_msg=err_msg)
        assert_array_less(y_pred, 1, err_msg=err_msg)
    else:
        raise ValueError(
            f"Unknown returned type {type(y_pred)} by {name}."
            "predict_proba. A list or a Numpy array is expected."
        )


@ignore_warnings(category=FutureWarning)
def check_classifiers_multilabel_output_format_decision_function(name, classifier_orig):
    """Check the output of the `decision_function` method for classifiers supporting
    multilabel-indicator targets."""
    classifier = clone(classifier_orig)
    set_random_state(classifier)

    n_samples, test_size, n_outputs = 100, 25, 5
    X, y = make_multilabel_classification(
        n_samples=n_samples,
        n_features=2,
        n_classes=n_outputs,
        n_labels=3,
        length=50,
        allow_unlabeled=True,
        random_state=0,
    )
    X = scale(X)

    X_train, X_test = X[:-test_size], X[-test_size:]
    y_train = y[:-test_size]
    classifier.fit(X_train, y_train)

    response_method_name = "decision_function"
    decision_function_method = getattr(classifier, response_method_name, None)
    if decision_function_method is None:
        raise SkipTest(f"{name} does not have a {response_method_name} method.")

    y_pred = decision_function_method(X_test)

    # y_pred.shape -> y_test.shape with floating dtype
    assert isinstance(y_pred, np.ndarray), (
        f"{name}.decision_function is expected to output a NumPy array."
        f" Got {type(y_pred)} instead."
    )
    assert y_pred.shape == (test_size, n_outputs), (
        f"{name}.decision_function is expected to provide a NumPy array "
        f"of shape (n_samples, n_outputs). Got {y_pred.shape} instead of "
        f"{(test_size, n_outputs)}."
    )
    assert y_pred.dtype.kind == "f", (
        f"{name}.decision_function is expected to output a floating dtype."
        f" Got {y_pred.dtype} instead."
    )


@ignore_warnings(category=FutureWarning)
def check_get_feature_names_out_error(name, estimator_orig):
    """Check the error raised by get_feature_names_out when called before fit.

    Unfitted estimators with get_feature_names_out should raise a NotFittedError.
    """

    estimator = clone(estimator_orig)
    err_msg = (
        f"Estimator {name} should have raised a NotFitted error when fit is called"
        " before get_feature_names_out"
    )
    with raises(NotFittedError, err_msg=err_msg):
        estimator.get_feature_names_out()


@ignore_warnings(category=FutureWarning)
def check_estimators_fit_returns_self(name, estimator_orig, readonly_memmap=False):
    """Check if self is returned when calling fit."""
    X, y = make_blobs(random_state=0, n_samples=21)
    X = _enforce_estimator_tags_X(estimator_orig, X)

    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)

    if readonly_memmap:
        X, y = create_memmap_backed_data([X, y])

    set_random_state(estimator)
    assert estimator.fit(X, y) is estimator


@ignore_warnings
def check_estimators_unfitted(name, estimator_orig):
    """Check that predict raises an exception in an unfitted estimator.

    Unfitted estimators should raise a NotFittedError.
    """
    # Common test for Regressors, Classifiers and Outlier detection estimators
    X, y = _regression_dataset()

    estimator = clone(estimator_orig)
    for method in (
        "decision_function",
        "predict",
        "predict_proba",
        "predict_log_proba",
    ):
        if hasattr(estimator, method):
            with raises(NotFittedError):
                getattr(estimator, method)(X)


@ignore_warnings(category=FutureWarning)
def check_supervised_y_2d(name, estimator_orig):
    tags = _safe_tags(estimator_orig)
    rnd = np.random.RandomState(0)
    n_samples = 30
    X = _enforce_estimator_tags_X(estimator_orig, rnd.uniform(size=(n_samples, 3)))
    y = np.arange(n_samples) % 3
    y = _enforce_estimator_tags_y(estimator_orig, y)
    estimator = clone(estimator_orig)
    set_random_state(estimator)
    # fit
    estimator.fit(X, y)
    y_pred = estimator.predict(X)

    set_random_state(estimator)
    # Check that when a 2D y is given, a DataConversionWarning is
    # raised
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always", DataConversionWarning)
        warnings.simplefilter("ignore", RuntimeWarning)
        estimator.fit(X, y[:, np.newaxis])
    y_pred_2d = estimator.predict(X)
    msg = "expected 1 DataConversionWarning, got: %s" % ", ".join(
        [str(w_x) for w_x in w]
    )
    if not tags["multioutput"]:
        # check that we warned if we don't support multi-output
        assert len(w) > 0, msg
        assert (
            "DataConversionWarning('A column-vector y"
            " was passed when a 1d array was expected"
            in msg
        )
    assert_allclose(y_pred.ravel(), y_pred_2d.ravel())


@ignore_warnings
def check_classifiers_predictions(X, y, name, classifier_orig):
    classes = np.unique(y)
    classifier = clone(classifier_orig)
    if name == "BernoulliNB":
        X = X > X.mean()
    set_random_state(classifier)

    classifier.fit(X, y)
    y_pred = classifier.predict(X)

    if hasattr(classifier, "decision_function"):
        decision = classifier.decision_function(X)
        assert isinstance(decision, np.ndarray)
        if len(classes) == 2:
            dec_pred = (decision.ravel() > 0).astype(int)
            dec_exp = classifier.classes_[dec_pred]
            assert_array_equal(
                dec_exp,
                y_pred,
                err_msg=(
                    "decision_function does not match "
                    "classifier for %r: expected '%s', got '%s'"
                )
                % (
                    classifier,
                    ", ".join(map(str, dec_exp)),
                    ", ".join(map(str, y_pred)),
                ),
            )
        elif getattr(classifier, "decision_function_shape", "ovr") == "ovr":
            decision_y = np.argmax(decision, axis=1).astype(int)
            y_exp = classifier.classes_[decision_y]
            assert_array_equal(
                y_exp,
                y_pred,
                err_msg=(
                    "decision_function does not match "
                    "classifier for %r: expected '%s', got '%s'"
                )
                % (
                    classifier,
                    ", ".join(map(str, y_exp)),
                    ", ".join(map(str, y_pred)),
                ),
            )

    # training set performance
    if name != "ComplementNB":
        # This is a pathological data set for ComplementNB.
        # For some specific cases 'ComplementNB' predicts less classes
        # than expected
        assert_array_equal(np.unique(y), np.unique(y_pred))
    assert_array_equal(
        classes,
        classifier.classes_,
        err_msg="Unexpected classes_ attribute for %r: expected '%s', got '%s'"
        % (
            classifier,
            ", ".join(map(str, classes)),
            ", ".join(map(str, classifier.classes_)),
        ),
    )


def _choose_check_classifiers_labels(name, y, y_names):
    # Semisupervised classifiers use -1 as the indicator for an unlabeled
    # sample.
    return (
        y
        if name in ["LabelPropagation", "LabelSpreading", "SelfTrainingClassifier"]
        else y_names
    )


def check_classifiers_classes(name, classifier_orig):
    X_multiclass, y_multiclass = make_blobs(
        n_samples=30, random_state=0, cluster_std=0.1
    )
    X_multiclass, y_multiclass = shuffle(X_multiclass, y_multiclass, random_state=7)
    X_multiclass = StandardScaler().fit_transform(X_multiclass)

    X_binary = X_multiclass[y_multiclass != 2]
    y_binary = y_multiclass[y_multiclass != 2]

    X_multiclass = _enforce_estimator_tags_X(classifier_orig, X_multiclass)
    X_binary = _enforce_estimator_tags_X(classifier_orig, X_binary)

    labels_multiclass = ["one", "two", "three"]
    labels_binary = ["one", "two"]

    y_names_multiclass = np.take(labels_multiclass, y_multiclass)
    y_names_binary = np.take(labels_binary, y_binary)

    problems = [(X_binary, y_binary, y_names_binary)]
    if not _safe_tags(classifier_orig, key="binary_only"):
        problems.append((X_multiclass, y_multiclass, y_names_multiclass))

    for X, y, y_names in problems:
        for y_names_i in [y_names, y_names.astype("O")]:
            y_ = _choose_check_classifiers_labels(name, y, y_names_i)
            check_classifiers_predictions(X, y_, name, classifier_orig)

    labels_binary = [-1, 1]
    y_names_binary = np.take(labels_binary, y_binary)
    y_binary = _choose_check_classifiers_labels(name, y_binary, y_names_binary)
    check_classifiers_predictions(X_binary, y_binary, name, classifier_orig)


@ignore_warnings(category=FutureWarning)
def check_regressors_int(name, regressor_orig):
    X, _ = _regression_dataset()
    X = _enforce_estimator_tags_X(regressor_orig, X[:50])
    rnd = np.random.RandomState(0)
    y = rnd.randint(3, size=X.shape[0])
    y = _enforce_estimator_tags_y(regressor_orig, y)
    rnd = np.random.RandomState(0)
    # separate estimators to control random seeds
    regressor_1 = clone(regressor_orig)
    regressor_2 = clone(regressor_orig)
    set_random_state(regressor_1)
    set_random_state(regressor_2)

    if name in CROSS_DECOMPOSITION:
        y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))])
        y_ = y_.T
    else:
        y_ = y

    # fit
    regressor_1.fit(X, y_)
    pred1 = regressor_1.predict(X)
    regressor_2.fit(X, y_.astype(float))
    pred2 = regressor_2.predict(X)
    assert_allclose(pred1, pred2, atol=1e-2, err_msg=name)


@ignore_warnings(category=FutureWarning)
def check_regressors_train(
    name, regressor_orig, readonly_memmap=False, X_dtype=np.float64
):
    X, y = _regression_dataset()
    X = X.astype(X_dtype)
    y = scale(y)  # X is already scaled
    regressor = clone(regressor_orig)
    X = _enforce_estimator_tags_X(regressor, X)
    y = _enforce_estimator_tags_y(regressor, y)
    if name in CROSS_DECOMPOSITION:
        rnd = np.random.RandomState(0)
        y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))])
        y_ = y_.T
    else:
        y_ = y

    if readonly_memmap:
        X, y, y_ = create_memmap_backed_data([X, y, y_])

    if not hasattr(regressor, "alphas") and hasattr(regressor, "alpha"):
        # linear regressors need to set alpha, but not generalized CV ones
        regressor.alpha = 0.01
    if name == "PassiveAggressiveRegressor":
        regressor.C = 0.01

    # raises error on malformed input for fit
    with raises(
        ValueError,
        err_msg=(
            f"The classifier {name} does not raise an error when "
            "incorrect/malformed input data for fit is passed. The number of "
            "training examples is not the same as the number of labels. Perhaps "
            "use check_X_y in fit."
        ),
    ):
        regressor.fit(X, y[:-1])
    # fit
    set_random_state(regressor)
    regressor.fit(X, y_)
    regressor.fit(X.tolist(), y_.tolist())
    y_pred = regressor.predict(X)
    assert y_pred.shape == y_.shape

    # TODO: find out why PLS and CCA fail. RANSAC is random
    # and furthermore assumes the presence of outliers, hence
    # skipped
    if not _safe_tags(regressor, key="poor_score"):
        assert regressor.score(X, y_) > 0.5


@ignore_warnings
def check_regressors_no_decision_function(name, regressor_orig):
    # check that regressors don't have a decision_function, predict_proba, or
    # predict_log_proba method.
    rng = np.random.RandomState(0)
    regressor = clone(regressor_orig)

    X = rng.normal(size=(10, 4))
    X = _enforce_estimator_tags_X(regressor_orig, X)
    y = _enforce_estimator_tags_y(regressor, X[:, 0])

    regressor.fit(X, y)
    funcs = ["decision_function", "predict_proba", "predict_log_proba"]
    for func_name in funcs:
        assert not hasattr(regressor, func_name)


@ignore_warnings(category=FutureWarning)
def check_class_weight_classifiers(name, classifier_orig):
    if _safe_tags(classifier_orig, key="binary_only"):
        problems = [2]
    else:
        problems = [2, 3]

    for n_centers in problems:
        # create a very noisy dataset
        X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20)
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.5, random_state=0
        )

        # can't use gram_if_pairwise() here, setting up gram matrix manually
        if _safe_tags(classifier_orig, key="pairwise"):
            X_test = rbf_kernel(X_test, X_train)
            X_train = rbf_kernel(X_train, X_train)

        n_centers = len(np.unique(y_train))

        if n_centers == 2:
            class_weight = {0: 1000, 1: 0.0001}
        else:
            class_weight = {0: 1000, 1: 0.0001, 2: 0.0001}

        classifier = clone(classifier_orig).set_params(class_weight=class_weight)
        if hasattr(classifier, "n_iter"):
            classifier.set_params(n_iter=100)
        if hasattr(classifier, "max_iter"):
            classifier.set_params(max_iter=1000)
        if hasattr(classifier, "min_weight_fraction_leaf"):
            classifier.set_params(min_weight_fraction_leaf=0.01)
        if hasattr(classifier, "n_iter_no_change"):
            classifier.set_params(n_iter_no_change=20)

        set_random_state(classifier)
        classifier.fit(X_train, y_train)
        y_pred = classifier.predict(X_test)
        # XXX: Generally can use 0.89 here. On Windows, LinearSVC gets
        #      0.88 (Issue #9111)
        if not _safe_tags(classifier_orig, key="poor_score"):
            assert np.mean(y_pred == 0) > 0.87


@ignore_warnings(category=FutureWarning)
def check_class_weight_balanced_classifiers(
    name, classifier_orig, X_train, y_train, X_test, y_test, weights
):
    classifier = clone(classifier_orig)
    if hasattr(classifier, "n_iter"):
        classifier.set_params(n_iter=100)
    if hasattr(classifier, "max_iter"):
        classifier.set_params(max_iter=1000)

    set_random_state(classifier)
    classifier.fit(X_train, y_train)
    y_pred = classifier.predict(X_test)

    classifier.set_params(class_weight="balanced")
    classifier.fit(X_train, y_train)
    y_pred_balanced = classifier.predict(X_test)
    assert f1_score(y_test, y_pred_balanced, average="weighted") > f1_score(
        y_test, y_pred, average="weighted"
    )


@ignore_warnings(category=FutureWarning)
def check_class_weight_balanced_linear_classifier(name, Classifier):
    """Test class weights with non-contiguous class labels."""
    # this is run on classes, not instances, though this should be changed
    X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]])
    y = np.array([1, 1, 1, -1, -1])

    classifier = Classifier()

    if hasattr(classifier, "n_iter"):
        # This is a very small dataset, default n_iter are likely to prevent
        # convergence
        classifier.set_params(n_iter=1000)
    if hasattr(classifier, "max_iter"):
        classifier.set_params(max_iter=1000)
    if hasattr(classifier, "cv"):
        classifier.set_params(cv=3)
    set_random_state(classifier)

    # Let the model compute the class frequencies
    classifier.set_params(class_weight="balanced")
    coef_balanced = classifier.fit(X, y).coef_.copy()

    # Count each label occurrence to reweight manually
    n_samples = len(y)
    n_classes = float(len(np.unique(y)))

    class_weight = {
        1: n_samples / (np.sum(y == 1) * n_classes),
        -1: n_samples / (np.sum(y == -1) * n_classes),
    }
    classifier.set_params(class_weight=class_weight)
    coef_manual = classifier.fit(X, y).coef_.copy()

    assert_allclose(
        coef_balanced,
        coef_manual,
        err_msg="Classifier %s is not computing class_weight=balanced properly." % name,
    )


@ignore_warnings(category=FutureWarning)
def check_estimators_overwrite_params(name, estimator_orig):
    X, y = make_blobs(random_state=0, n_samples=21)
    X = _enforce_estimator_tags_X(estimator_orig, X, kernel=rbf_kernel)
    estimator = clone(estimator_orig)
    y = _enforce_estimator_tags_y(estimator, y)

    set_random_state(estimator)

    # Make a physical copy of the original estimator parameters before fitting.
    params = estimator.get_params()
    original_params = deepcopy(params)

    # Fit the model
    estimator.fit(X, y)

    # Compare the state of the model parameters with the original parameters
    new_params = estimator.get_params()
    for param_name, original_value in original_params.items():
        new_value = new_params[param_name]

        # We should never change or mutate the internal state of input
        # parameters by default. To check this we use the joblib.hash function
        # that introspects recursively any subobjects to compute a checksum.
        # The only exception to this rule of immutable constructor parameters
        # is possible RandomState instance but in this check we explicitly
        # fixed the random_state params recursively to be integer seeds.
        assert joblib.hash(new_value) == joblib.hash(original_value), (
            "Estimator %s should not change or mutate "
            " the parameter %s from %s to %s during fit."
            % (name, param_name, original_value, new_value)
        )


@ignore_warnings(category=FutureWarning)
def check_no_attributes_set_in_init(name, estimator_orig):
    """Check setting during init."""
    try:
        # Clone fails if the estimator does not store
        # all parameters as an attribute during init
        estimator = clone(estimator_orig)
    except AttributeError:
        raise AttributeError(
            f"Estimator {name} should store all parameters as an attribute during init."
        )

    if hasattr(type(estimator).__init__, "deprecated_original"):
        return

    init_params = _get_args(type(estimator).__init__)
    if IS_PYPY:
        # __init__ signature has additional objects in PyPy
        for key in ["obj"]:
            if key in init_params:
                init_params.remove(key)
    parents_init_params = [
        param
        for params_parent in (_get_args(parent) for parent in type(estimator).__mro__)
        for param in params_parent
    ]

    # Test for no setting apart from parameters during init
    invalid_attr = set(vars(estimator)) - set(init_params) - set(parents_init_params)
    # Ignore private attributes
    invalid_attr = set([attr for attr in invalid_attr if not attr.startswith("_")])
    assert not invalid_attr, (
        "Estimator %s should not set any attribute apart"
        " from parameters during init. Found attributes %s."
        % (name, sorted(invalid_attr))
    )


@ignore_warnings(category=FutureWarning)
def check_sparsify_coefficients(name, estimator_orig):
    X = np.array(
        [
            [-2, -1],
            [-1, -1],
            [-1, -2],
            [1, 1],
            [1, 2],
            [2, 1],
            [-1, -2],
            [2, 2],
            [-2, -2],
        ]
    )
    y = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3])
    y = _enforce_estimator_tags_y(estimator_orig, y)
    est = clone(estimator_orig)

    est.fit(X, y)
    pred_orig = est.predict(X)

    # test sparsify with dense inputs
    est.sparsify()
    assert sparse.issparse(est.coef_)
    pred = est.predict(X)
    assert_array_equal(pred, pred_orig)

    # pickle and unpickle with sparse coef_
    est = pickle.loads(pickle.dumps(est))
    assert sparse.issparse(est.coef_)
    pred = est.predict(X)
    assert_array_equal(pred, pred_orig)


@ignore_warnings(category=FutureWarning)
def check_classifier_data_not_an_array(name, estimator_orig):
    X = np.array(
        [
            [3, 0],
            [0, 1],
            [0, 2],
            [1, 1],
            [1, 2],
            [2, 1],
            [0, 3],
            [1, 0],
            [2, 0],
            [4, 4],
            [2, 3],
            [3, 2],
        ]
    )
    X = _enforce_estimator_tags_X(estimator_orig, X)
    y = np.array([1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2])
    y = _enforce_estimator_tags_y(estimator_orig, y)
    for obj_type in ["NotAnArray", "PandasDataframe"]:
        check_estimators_data_not_an_array(name, estimator_orig, X, y, obj_type)


@ignore_warnings(category=FutureWarning)
def check_regressor_data_not_an_array(name, estimator_orig):
    X, y = _regression_dataset()
    X = _enforce_estimator_tags_X(estimator_orig, X)
    y = _enforce_estimator_tags_y(estimator_orig, y)
    for obj_type in ["NotAnArray", "PandasDataframe"]:
        check_estimators_data_not_an_array(name, estimator_orig, X, y, obj_type)


@ignore_warnings(category=FutureWarning)
def check_estimators_data_not_an_array(name, estimator_orig, X, y, obj_type):
    if name in CROSS_DECOMPOSITION:
        raise SkipTest(
            "Skipping check_estimators_data_not_an_array "
            "for cross decomposition module as estimators "
            "are not deterministic."
        )
    # separate estimators to control random seeds
    estimator_1 = clone(estimator_orig)
    estimator_2 = clone(estimator_orig)
    set_random_state(estimator_1)
    set_random_state(estimator_2)

    if obj_type not in ["NotAnArray", "PandasDataframe"]:
        raise ValueError("Data type {0} not supported".format(obj_type))

    if obj_type == "NotAnArray":
        y_ = _NotAnArray(np.asarray(y))
        X_ = _NotAnArray(np.asarray(X))
    else:
        # Here pandas objects (Series and DataFrame) are tested explicitly
        # because some estimators may handle them (especially their indexing)
        # specially.
        try:
            import pandas as pd

            y_ = np.asarray(y)
            if y_.ndim == 1:
                y_ = pd.Series(y_, copy=False)
            else:
                y_ = pd.DataFrame(y_, copy=False)
            X_ = pd.DataFrame(np.asarray(X), copy=False)

        except ImportError:
            raise SkipTest(
                "pandas is not installed: not checking estimators for pandas objects."
            )

    # fit
    estimator_1.fit(X_, y_)
    pred1 = estimator_1.predict(X_)
    estimator_2.fit(X, y)
    pred2 = estimator_2.predict(X)
    assert_allclose(pred1, pred2, atol=1e-2, err_msg=name)


def check_parameters_default_constructible(name, Estimator):
    # test default-constructibility
    # get rid of deprecation warnings

    Estimator = Estimator.__class__

    with ignore_warnings(category=FutureWarning):
        estimator = _construct_instance(Estimator)
        # test cloning
        clone(estimator)
        # test __repr__
        repr(estimator)
        # test that set_params returns self
        assert estimator.set_params() is estimator

        # test if init does nothing but set parameters
        # this is important for grid_search etc.
        # We get the default parameters from init and then
        # compare these against the actual values of the attributes.

        # this comes from getattr. Gets rid of deprecation decorator.
        init = getattr(estimator.__init__, "deprecated_original", estimator.__init__)

        try:

            def param_filter(p):
                """Identify hyper parameters of an estimator."""
                return (
                    p.name != "self"
                    and p.kind != p.VAR_KEYWORD
                    and p.kind != p.VAR_POSITIONAL
                )

            init_params = [
                p for p in signature(init).parameters.values() if param_filter(p)
            ]

        except (TypeError, ValueError):
            # init is not a python function.
            # true for mixins
            return
        params = estimator.get_params()
        # they can need a non-default argument
        init_params = init_params[len(getattr(estimator, "_required_parameters", [])) :]

        for init_param in init_params:
            assert (
                init_param.default != init_param.empty
            ), "parameter %s for %s has no default value" % (
                init_param.name,
                type(estimator).__name__,
            )
            allowed_types = {
                str,
                int,
                float,
                bool,
                tuple,
                type(None),
                type,
            }
            # Any numpy numeric such as np.int32.
            allowed_types.update(np.sctypeDict.values())

            allowed_value = (
                type(init_param.default) in allowed_types
                or
                # Although callables are mutable, we accept them as argument
                # default value and trust that neither the implementation of
                # the callable nor of the estimator changes the state of the
                # callable.
                callable(init_param.default)
            )

            assert allowed_value, (
                f"Parameter '{init_param.name}' of estimator "
                f"'{Estimator.__name__}' is of type "
                f"{type(init_param.default).__name__} which is not allowed. "
                f"'{init_param.name}' must be a callable or must be of type "
                f"{set(type.__name__ for type in allowed_types)}."
            )
            if init_param.name not in params.keys():
                # deprecated parameter, not in get_params
                assert init_param.default is None, (
                    f"Estimator parameter '{init_param.name}' of estimator "
                    f"'{Estimator.__name__}' is not returned by get_params. "
                    "If it is deprecated, set its default value to None."
                )
                continue

            param_value = params[init_param.name]
            if isinstance(param_value, np.ndarray):
                assert_array_equal(param_value, init_param.default)
            else:
                failure_text = (
                    f"Parameter {init_param.name} was mutated on init. All "
                    "parameters must be stored unchanged."
                )
                if is_scalar_nan(param_value):
                    # Allows to set default parameters to np.nan
                    assert param_value is init_param.default, failure_text
                else:
                    assert param_value == init_param.default, failure_text


def _enforce_estimator_tags_y(estimator, y):
    # Estimators with a `requires_positive_y` tag only accept strictly positive
    # data
    if _safe_tags(estimator, key="requires_positive_y"):
        # Create strictly positive y. The minimal increment above 0 is 1, as
        # y could be of integer dtype.
        y += 1 + abs(y.min())
    if _safe_tags(estimator, key="binary_only") and y.size > 0:
        y = np.where(y == y.flat[0], y, y.flat[0] + 1)
    # Estimators in mono_output_task_error raise ValueError if y is of 1-D
    # Convert into a 2-D y for those estimators.
    if _safe_tags(estimator, key="multioutput_only"):
        return np.reshape(y, (-1, 1))
    return y


def _enforce_estimator_tags_X(estimator, X, kernel=linear_kernel):
    # Estimators with `1darray` in `X_types` tag only accept
    # X of shape (`n_samples`,)
    if "1darray" in _safe_tags(estimator, key="X_types"):
        X = X[:, 0]
    # Estimators with a `requires_positive_X` tag only accept
    # strictly positive data
    if _safe_tags(estimator, key="requires_positive_X"):
        X = X - X.min()
    if "categorical" in _safe_tags(estimator, key="X_types"):
        dtype = np.float64 if _safe_tags(estimator, key="allow_nan") else np.int32
        X = np.round((X - X.min())).astype(dtype)

    if estimator.__class__.__name__ == "SkewedChi2Sampler":
        # SkewedChi2Sampler requires X > -skewdness in transform
        X = X - X.min()

    # Pairwise estimators only accept
    # X of shape (`n_samples`, `n_samples`)
    if _is_pairwise_metric(estimator):
        X = pairwise_distances(X, metric="euclidean")
    elif _safe_tags(estimator, key="pairwise"):
        X = kernel(X, X)
    return X


@ignore_warnings(category=FutureWarning)
def check_non_transformer_estimators_n_iter(name, estimator_orig):
    # Test that estimators that are not transformers with a parameter
    # max_iter, return the attribute of n_iter_ at least 1.

    # These models are dependent on external solvers like
    # libsvm and accessing the iter parameter is non-trivial.
    # SelfTrainingClassifier does not perform an iteration if all samples are
    # labeled, hence n_iter_ = 0 is valid.
    not_run_check_n_iter = [
        "Ridge",
        "RidgeClassifier",
        "RandomizedLasso",
        "LogisticRegressionCV",
        "LinearSVC",
        "LogisticRegression",
        "SelfTrainingClassifier",
    ]

    # Tested in test_transformer_n_iter
    not_run_check_n_iter += CROSS_DECOMPOSITION
    if name in not_run_check_n_iter:
        return

    # LassoLars stops early for the default alpha=1.0 the iris dataset.
    if name == "LassoLars":
        estimator = clone(estimator_orig).set_params(alpha=0.0)
    else:
        estimator = clone(estimator_orig)
    if hasattr(estimator, "max_iter"):
        iris = load_iris()
        X, y_ = iris.data, iris.target
        y_ = _enforce_estimator_tags_y(estimator, y_)

        set_random_state(estimator, 0)

        X = _enforce_estimator_tags_X(estimator_orig, X)

        estimator.fit(X, y_)

        assert np.all(estimator.n_iter_ >= 1)


@ignore_warnings(category=FutureWarning)
def check_transformer_n_iter(name, estimator_orig):
    # Test that transformers with a parameter max_iter, return the
    # attribute of n_iter_ at least 1.
    estimator = clone(estimator_orig)
    if hasattr(estimator, "max_iter"):
        if name in CROSS_DECOMPOSITION:
            # Check using default data
            X = [[0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [2.0, 5.0, 4.0]]
            y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]]

        else:
            X, y_ = make_blobs(
                n_samples=30,
                centers=[[0, 0, 0], [1, 1, 1]],
                random_state=0,
                n_features=2,
                cluster_std=0.1,
            )
            X = _enforce_estimator_tags_X(estimator_orig, X)
        set_random_state(estimator, 0)
        estimator.fit(X, y_)

        # These return a n_iter per component.
        if name in CROSS_DECOMPOSITION:
            for iter_ in estimator.n_iter_:
                assert iter_ >= 1
        else:
            assert estimator.n_iter_ >= 1


@ignore_warnings(category=FutureWarning)
def check_get_params_invariance(name, estimator_orig):
    # Checks if get_params(deep=False) is a subset of get_params(deep=True)
    e = clone(estimator_orig)

    shallow_params = e.get_params(deep=False)
    deep_params = e.get_params(deep=True)

    assert all(item in deep_params.items() for item in shallow_params.items())


@ignore_warnings(category=FutureWarning)
def check_set_params(name, estimator_orig):
    # Check that get_params() returns the same thing
    # before and after set_params() with some fuzz
    estimator = clone(estimator_orig)

    orig_params = estimator.get_params(deep=False)
    msg = "get_params result does not match what was passed to set_params"

    estimator.set_params(**orig_params)
    curr_params = estimator.get_params(deep=False)
    assert set(orig_params.keys()) == set(curr_params.keys()), msg
    for k, v in curr_params.items():
        assert orig_params[k] is v, msg

    # some fuzz values
    test_values = [-np.inf, np.inf, None]

    test_params = deepcopy(orig_params)
    for param_name in orig_params.keys():
        default_value = orig_params[param_name]
        for value in test_values:
            test_params[param_name] = value
            try:
                estimator.set_params(**test_params)
            except (TypeError, ValueError) as e:
                e_type = e.__class__.__name__
                # Exception occurred, possibly parameter validation
                warnings.warn(
                    "{0} occurred during set_params of param {1} on "
                    "{2}. It is recommended to delay parameter "
                    "validation until fit.".format(e_type, param_name, name)
                )

                change_warning_msg = (
                    "Estimator's parameters changed after set_params raised {}".format(
                        e_type
                    )
                )
                params_before_exception = curr_params
                curr_params = estimator.get_params(deep=False)
                try:
                    assert set(params_before_exception.keys()) == set(
                        curr_params.keys()
                    )
                    for k, v in curr_params.items():
                        assert params_before_exception[k] is v
                except AssertionError:
                    warnings.warn(change_warning_msg)
            else:
                curr_params = estimator.get_params(deep=False)
                assert set(test_params.keys()) == set(curr_params.keys()), msg
                for k, v in curr_params.items():
                    assert test_params[k] is v, msg
        test_params[param_name] = default_value


@ignore_warnings(category=FutureWarning)
def check_classifiers_regression_target(name, estimator_orig):
    # Check if classifier throws an exception when fed regression targets

    X, y = _regression_dataset()

    X = _enforce_estimator_tags_X(estimator_orig, X)
    e = clone(estimator_orig)
    msg = "Unknown label type: "
    if not _safe_tags(e, key="no_validation"):
        with raises(ValueError, match=msg):
            e.fit(X, y)


@ignore_warnings(category=FutureWarning)
def check_decision_proba_consistency(name, estimator_orig):
    # Check whether an estimator having both decision_function and
    # predict_proba methods has outputs with perfect rank correlation.

    centers = [(2, 2), (4, 4)]
    X, y = make_blobs(
        n_samples=100,
        random_state=0,
        n_features=4,
        centers=centers,
        cluster_std=1.0,
        shuffle=True,
    )
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, random_state=0
    )
    estimator = clone(estimator_orig)

    if hasattr(estimator, "decision_function") and hasattr(estimator, "predict_proba"):
        estimator.fit(X_train, y_train)
        # Since the link function from decision_function() to predict_proba()
        # is sometimes not precise enough (typically expit), we round to the
        # 10th decimal to avoid numerical issues: we compare the rank
        # with deterministic ties rather than get platform specific rank
        # inversions in case of machine level differences.
        a = estimator.predict_proba(X_test)[:, 1].round(decimals=10)
        b = estimator.decision_function(X_test).round(decimals=10)

        rank_proba, rank_score = rankdata(a), rankdata(b)
        try:
            assert_array_almost_equal(rank_proba, rank_score)
        except AssertionError:
            # Sometimes, the rounding applied on the probabilities will have
            # ties that are not present in the scores because it is
            # numerically more precise. In this case, we relax the test by
            # grouping the decision function scores based on the probability
            # rank and check that the score is monotonically increasing.
            grouped_y_score = np.array(
                [b[rank_proba == group].mean() for group in np.unique(rank_proba)]
            )
            sorted_idx = np.argsort(grouped_y_score)
            assert_array_equal(sorted_idx, np.arange(len(sorted_idx)))


def check_outliers_fit_predict(name, estimator_orig):
    # Check fit_predict for outlier detectors.

    n_samples = 300
    X, _ = make_blobs(n_samples=n_samples, random_state=0)
    X = shuffle(X, random_state=7)
    n_samples, n_features = X.shape
    estimator = clone(estimator_orig)

    set_random_state(estimator)

    y_pred = estimator.fit_predict(X)
    assert y_pred.shape == (n_samples,)
    assert y_pred.dtype.kind == "i"
    assert_array_equal(np.unique(y_pred), np.array([-1, 1]))

    # check fit_predict = fit.predict when the estimator has both a predict and
    # a fit_predict method. recall that it is already assumed here that the
    # estimator has a fit_predict method
    if hasattr(estimator, "predict"):
        y_pred_2 = estimator.fit(X).predict(X)
        assert_array_equal(y_pred, y_pred_2)

    if hasattr(estimator, "contamination"):
        # proportion of outliers equal to contamination parameter when not
        # set to 'auto'
        expected_outliers = 30
        contamination = float(expected_outliers) / n_samples
        estimator.set_params(contamination=contamination)
        y_pred = estimator.fit_predict(X)

        num_outliers = np.sum(y_pred != 1)
        # num_outliers should be equal to expected_outliers unless
        # there are ties in the decision_function values. this can
        # only be tested for estimators with a decision_function
        # method
        if num_outliers != expected_outliers and hasattr(
            estimator, "decision_function"
        ):
            decision = estimator.decision_function(X)
            check_outlier_corruption(num_outliers, expected_outliers, decision)


def check_fit_non_negative(name, estimator_orig):
    # Check that proper warning is raised for non-negative X
    # when tag requires_positive_X is present
    X = np.array([[-1.0, 1], [-1.0, 1]])
    y = np.array([1, 2])
    estimator = clone(estimator_orig)
    with raises(ValueError):
        estimator.fit(X, y)


def check_fit_idempotent(name, estimator_orig):
    # Check that est.fit(X) is the same as est.fit(X).fit(X). Ideally we would
    # check that the estimated parameters during training (e.g. coefs_) are
    # the same, but having a universal comparison function for those
    # attributes is difficult and full of edge cases. So instead we check that
    # predict(), predict_proba(), decision_function() and transform() return
    # the same results.

    check_methods = ["predict", "transform", "decision_function", "predict_proba"]
    rng = np.random.RandomState(0)

    estimator = clone(estimator_orig)
    set_random_state(estimator)
    if "warm_start" in estimator.get_params().keys():
        estimator.set_params(warm_start=False)

    n_samples = 100
    X = rng.normal(loc=100, size=(n_samples, 2))
    X = _enforce_estimator_tags_X(estimator, X)
    if is_regressor(estimator_orig):
        y = rng.normal(size=n_samples)
    else:
        y = rng.randint(low=0, high=2, size=n_samples)
    y = _enforce_estimator_tags_y(estimator, y)

    train, test = next(ShuffleSplit(test_size=0.2, random_state=rng).split(X))
    X_train, y_train = _safe_split(estimator, X, y, train)
    X_test, y_test = _safe_split(estimator, X, y, test, train)

    # Fit for the first time
    estimator.fit(X_train, y_train)

    result = {
        method: getattr(estimator, method)(X_test)
        for method in check_methods
        if hasattr(estimator, method)
    }

    # Fit again
    set_random_state(estimator)
    estimator.fit(X_train, y_train)

    for method in check_methods:
        if hasattr(estimator, method):
            new_result = getattr(estimator, method)(X_test)
            if np.issubdtype(new_result.dtype, np.floating):
                tol = 2 * np.finfo(new_result.dtype).eps
            else:
                tol = 2 * np.finfo(np.float64).eps
            assert_allclose_dense_sparse(
                result[method],
                new_result,
                atol=max(tol, 1e-9),
                rtol=max(tol, 1e-7),
                err_msg="Idempotency check failed for method {}".format(method),
            )


def check_fit_check_is_fitted(name, estimator_orig):
    # Make sure that estimator doesn't pass check_is_fitted before calling fit
    # and that passes check_is_fitted once it's fit.

    rng = np.random.RandomState(42)

    estimator = clone(estimator_orig)
    set_random_state(estimator)
    if "warm_start" in estimator.get_params():
        estimator.set_params(warm_start=False)

    n_samples = 100
    X = rng.normal(loc=100, size=(n_samples, 2))
    X = _enforce_estimator_tags_X(estimator, X)
    if is_regressor(estimator_orig):
        y = rng.normal(size=n_samples)
    else:
        y = rng.randint(low=0, high=2, size=n_samples)
    y = _enforce_estimator_tags_y(estimator, y)

    if not _safe_tags(estimator).get("stateless", False):
        # stateless estimators (such as FunctionTransformer) are always "fit"!
        try:
            check_is_fitted(estimator)
            raise AssertionError(
                f"{estimator.__class__.__name__} passes check_is_fitted before being"
                " fit!"
            )
        except NotFittedError:
            pass
    estimator.fit(X, y)
    try:
        check_is_fitted(estimator)
    except NotFittedError as e:
        raise NotFittedError(
            "Estimator fails to pass `check_is_fitted` even though it has been fit."
        ) from e


def check_n_features_in(name, estimator_orig):
    # Make sure that n_features_in_ attribute doesn't exist until fit is
    # called, and that its value is correct.

    rng = np.random.RandomState(0)

    estimator = clone(estimator_orig)
    set_random_state(estimator)
    if "warm_start" in estimator.get_params():
        estimator.set_params(warm_start=False)

    n_samples = 100
    X = rng.normal(loc=100, size=(n_samples, 2))
    X = _enforce_estimator_tags_X(estimator, X)
    if is_regressor(estimator_orig):
        y = rng.normal(size=n_samples)
    else:
        y = rng.randint(low=0, high=2, size=n_samples)
    y = _enforce_estimator_tags_y(estimator, y)

    assert not hasattr(estimator, "n_features_in_")
    estimator.fit(X, y)
    assert hasattr(estimator, "n_features_in_")
    assert estimator.n_features_in_ == X.shape[1]


def check_requires_y_none(name, estimator_orig):
    # Make sure that an estimator with requires_y=True fails gracefully when
    # given y=None

    rng = np.random.RandomState(0)

    estimator = clone(estimator_orig)
    set_random_state(estimator)

    n_samples = 100
    X = rng.normal(loc=100, size=(n_samples, 2))
    X = _enforce_estimator_tags_X(estimator, X)

    expected_err_msgs = (
        "requires y to be passed, but the target y is None",
        "Expected array-like (array or non-string sequence), got None",
        "y should be a 1d array",
    )

    try:
        estimator.fit(X, None)
    except ValueError as ve:
        if not any(msg in str(ve) for msg in expected_err_msgs):
            raise ve


@ignore_warnings(category=FutureWarning)
def check_n_features_in_after_fitting(name, estimator_orig):
    # Make sure that n_features_in are checked after fitting
    tags = _safe_tags(estimator_orig)

    is_supported_X_types = (
        "2darray" in tags["X_types"] or "categorical" in tags["X_types"]
    )

    if not is_supported_X_types or tags["no_validation"]:
        return

    rng = np.random.RandomState(0)

    estimator = clone(estimator_orig)
    set_random_state(estimator)
    if "warm_start" in estimator.get_params():
        estimator.set_params(warm_start=False)

    n_samples = 150
    X = rng.normal(size=(n_samples, 8))
    X = _enforce_estimator_tags_X(estimator, X)

    if is_regressor(estimator):
        y = rng.normal(size=n_samples)
    else:
        y = rng.randint(low=0, high=2, size=n_samples)
    y = _enforce_estimator_tags_y(estimator, y)

    estimator.fit(X, y)
    assert estimator.n_features_in_ == X.shape[1]

    # check methods will check n_features_in_
    check_methods = [
        "predict",
        "transform",
        "decision_function",
        "predict_proba",
        "score",
    ]
    X_bad = X[:, [1]]

    msg = f"X has 1 features, but \\w+ is expecting {X.shape[1]} features as input"
    for method in check_methods:
        if not hasattr(estimator, method):
            continue

        callable_method = getattr(estimator, method)
        if method == "score":
            callable_method = partial(callable_method, y=y)

        with raises(ValueError, match=msg):
            callable_method(X_bad)

    # partial_fit will check in the second call
    if not hasattr(estimator, "partial_fit"):
        return

    estimator = clone(estimator_orig)
    if is_classifier(estimator):
        estimator.partial_fit(X, y, classes=np.unique(y))
    else:
        estimator.partial_fit(X, y)
    assert estimator.n_features_in_ == X.shape[1]

    with raises(ValueError, match=msg):
        estimator.partial_fit(X_bad, y)


def check_estimator_get_tags_default_keys(name, estimator_orig):
    # check that if _get_tags is implemented, it contains all keys from
    # _DEFAULT_KEYS
    estimator = clone(estimator_orig)
    if not hasattr(estimator, "_get_tags"):
        return

    tags_keys = set(estimator._get_tags().keys())
    default_tags_keys = set(_DEFAULT_TAGS.keys())
    assert tags_keys.intersection(default_tags_keys) == default_tags_keys, (
        f"{name}._get_tags() is missing entries for the following default tags"
        f": {default_tags_keys - tags_keys.intersection(default_tags_keys)}"
    )


def check_dataframe_column_names_consistency(name, estimator_orig):
    try:
        import pandas as pd
    except ImportError:
        raise SkipTest(
            "pandas is not installed: not checking column name consistency for pandas"
        )

    tags = _safe_tags(estimator_orig)
    is_supported_X_types = (
        "2darray" in tags["X_types"] or "categorical" in tags["X_types"]
    )

    if not is_supported_X_types or tags["no_validation"]:
        return

    rng = np.random.RandomState(0)

    estimator = clone(estimator_orig)
    set_random_state(estimator)

    X_orig = rng.normal(size=(150, 8))

    X_orig = _enforce_estimator_tags_X(estimator, X_orig)
    n_samples, n_features = X_orig.shape

    names = np.array([f"col_{i}" for i in range(n_features)])
    X = pd.DataFrame(X_orig, columns=names, copy=False)

    if is_regressor(estimator):
        y = rng.normal(size=n_samples)
    else:
        y = rng.randint(low=0, high=2, size=n_samples)
    y = _enforce_estimator_tags_y(estimator, y)

    # Check that calling `fit` does not raise any warnings about feature names.
    with warnings.catch_warnings():
        warnings.filterwarnings(
            "error",
            message="X does not have valid feature names",
            category=UserWarning,
            module="sklearn",
        )
        estimator.fit(X, y)

    if not hasattr(estimator, "feature_names_in_"):
        raise ValueError(
            "Estimator does not have a feature_names_in_ "
            "attribute after fitting with a dataframe"
        )
    assert isinstance(estimator.feature_names_in_, np.ndarray)
    assert estimator.feature_names_in_.dtype == object
    assert_array_equal(estimator.feature_names_in_, names)

    # Only check sklearn estimators for feature_names_in_ in docstring
    module_name = estimator_orig.__module__
    if (
        module_name.startswith("sklearn.")
        and not ("test_" in module_name or module_name.endswith("_testing"))
        and ("feature_names_in_" not in (estimator_orig.__doc__))
    ):
        raise ValueError(
            f"Estimator {name} does not document its feature_names_in_ attribute"
        )

    check_methods = []
    for method in (
        "predict",
        "transform",
        "decision_function",
        "predict_proba",
        "score",
        "score_samples",
        "predict_log_proba",
    ):
        if not hasattr(estimator, method):
            continue

        callable_method = getattr(estimator, method)
        if method == "score":
            callable_method = partial(callable_method, y=y)
        check_methods.append((method, callable_method))

    for _, method in check_methods:
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "error",
                message="X does not have valid feature names",
                category=UserWarning,
                module="sklearn",
            )
            method(X)  # works without UserWarning for valid features

    invalid_names = [
        (names[::-1], "Feature names must be in the same order as they were in fit."),
        (
            [f"another_prefix_{i}" for i in range(n_features)],
            (
                "Feature names unseen at fit time:\n- another_prefix_0\n-"
                " another_prefix_1\n"
            ),
        ),
        (
            names[:3],
            f"Feature names seen at fit time, yet now missing:\n- {min(names[3:])}\n",
        ),
    ]
    params = {
        key: value
        for key, value in estimator.get_params().items()
        if "early_stopping" in key
    }
    early_stopping_enabled = any(value is True for value in params.values())

    for invalid_name, additional_message in invalid_names:
        X_bad = pd.DataFrame(X, columns=invalid_name, copy=False)

        expected_msg = re.escape(
            "The feature names should match those that were passed during fit.\n"
            f"{additional_message}"
        )
        for name, method in check_methods:
            with raises(
                ValueError, match=expected_msg, err_msg=f"{name} did not raise"
            ):
                method(X_bad)

        # partial_fit checks on second call
        # Do not call partial fit if early_stopping is on
        if not hasattr(estimator, "partial_fit") or early_stopping_enabled:
            continue

        estimator = clone(estimator_orig)
        if is_classifier(estimator):
            classes = np.unique(y)
            estimator.partial_fit(X, y, classes=classes)
        else:
            estimator.partial_fit(X, y)

        with raises(ValueError, match=expected_msg):
            estimator.partial_fit(X_bad, y)


def check_transformer_get_feature_names_out(name, transformer_orig):
    tags = transformer_orig._get_tags()
    if "2darray" not in tags["X_types"] or tags["no_validation"]:
        return

    X, y = make_blobs(
        n_samples=30,
        centers=[[0, 0, 0], [1, 1, 1]],
        random_state=0,
        n_features=2,
        cluster_std=0.1,
    )
    X = StandardScaler().fit_transform(X)

    transformer = clone(transformer_orig)
    X = _enforce_estimator_tags_X(transformer, X)

    n_features = X.shape[1]
    set_random_state(transformer)

    y_ = y
    if name in CROSS_DECOMPOSITION:
        y_ = np.c_[np.asarray(y), np.asarray(y)]
        y_[::2, 1] *= 2

    X_transform = transformer.fit_transform(X, y=y_)
    input_features = [f"feature{i}" for i in range(n_features)]

    # input_features names is not the same length as n_features_in_
    with raises(ValueError, match="input_features should have length equal"):
        transformer.get_feature_names_out(input_features[::2])

    feature_names_out = transformer.get_feature_names_out(input_features)
    assert feature_names_out is not None
    assert isinstance(feature_names_out, np.ndarray)
    assert feature_names_out.dtype == object
    assert all(isinstance(name, str) for name in feature_names_out)

    if isinstance(X_transform, tuple):
        n_features_out = X_transform[0].shape[1]
    else:
        n_features_out = X_transform.shape[1]

    assert (
        len(feature_names_out) == n_features_out
    ), f"Expected {n_features_out} feature names, got {len(feature_names_out)}"


def check_transformer_get_feature_names_out_pandas(name, transformer_orig):
    try:
        import pandas as pd
    except ImportError:
        raise SkipTest(
            "pandas is not installed: not checking column name consistency for pandas"
        )

    tags = transformer_orig._get_tags()
    if "2darray" not in tags["X_types"] or tags["no_validation"]:
        return

    X, y = make_blobs(
        n_samples=30,
        centers=[[0, 0, 0], [1, 1, 1]],
        random_state=0,
        n_features=2,
        cluster_std=0.1,
    )
    X = StandardScaler().fit_transform(X)

    transformer = clone(transformer_orig)
    X = _enforce_estimator_tags_X(transformer, X)

    n_features = X.shape[1]
    set_random_state(transformer)

    y_ = y
    if name in CROSS_DECOMPOSITION:
        y_ = np.c_[np.asarray(y), np.asarray(y)]
        y_[::2, 1] *= 2

    feature_names_in = [f"col{i}" for i in range(n_features)]
    df = pd.DataFrame(X, columns=feature_names_in, copy=False)
    X_transform = transformer.fit_transform(df, y=y_)

    # error is raised when `input_features` do not match feature_names_in
    invalid_feature_names = [f"bad{i}" for i in range(n_features)]
    with raises(ValueError, match="input_features is not equal to feature_names_in_"):
        transformer.get_feature_names_out(invalid_feature_names)

    feature_names_out_default = transformer.get_feature_names_out()
    feature_names_in_explicit_names = transformer.get_feature_names_out(
        feature_names_in
    )
    assert_array_equal(feature_names_out_default, feature_names_in_explicit_names)

    if isinstance(X_transform, tuple):
        n_features_out = X_transform[0].shape[1]
    else:
        n_features_out = X_transform.shape[1]

    assert (
        len(feature_names_out_default) == n_features_out
    ), f"Expected {n_features_out} feature names, got {len(feature_names_out_default)}"


def check_param_validation(name, estimator_orig):
    # Check that an informative error is raised when the value of a constructor
    # parameter does not have an appropriate type or value.
    rng = np.random.RandomState(0)
    X = rng.uniform(size=(20, 5))
    y = rng.randint(0, 2, size=20)
    y = _enforce_estimator_tags_y(estimator_orig, y)

    estimator_params = estimator_orig.get_params(deep=False).keys()

    # check that there is a constraint for each parameter
    if estimator_params:
        validation_params = estimator_orig._parameter_constraints.keys()
        unexpected_params = set(validation_params) - set(estimator_params)
        missing_params = set(estimator_params) - set(validation_params)
        err_msg = (
            f"Mismatch between _parameter_constraints and the parameters of {name}."
            f"\nConsider the unexpected parameters {unexpected_params} and expected but"
            f" missing parameters {missing_params}"
        )
        assert validation_params == estimator_params, err_msg

    # this object does not have a valid type for sure for all params
    param_with_bad_type = type("BadType", (), {})()

    fit_methods = ["fit", "partial_fit", "fit_transform", "fit_predict"]

    for param_name in estimator_params:
        constraints = estimator_orig._parameter_constraints[param_name]

        if constraints == "no_validation":
            # This parameter is not validated
            continue

        # Mixing an interval of reals and an interval of integers must be avoided.
        if any(
            isinstance(constraint, Interval) and constraint.type == Integral
            for constraint in constraints
        ) and any(
            isinstance(constraint, Interval) and constraint.type == Real
            for constraint in constraints
        ):
            raise ValueError(
                f"The constraint for parameter {param_name} of {name} can't have a mix"
                " of intervals of Integral and Real types. Use the type RealNotInt"
                " instead of Real."
            )

        match = rf"The '{param_name}' parameter of {name} must be .* Got .* instead."
        err_msg = (
            f"{name} does not raise an informative error message when the "
            f"parameter {param_name} does not have a valid type or value."
        )

        estimator = clone(estimator_orig)

        # First, check that the error is raised if param doesn't match any valid type.
        estimator.set_params(**{param_name: param_with_bad_type})

        for method in fit_methods:
            if not hasattr(estimator, method):
                # the method is not accessible with the current set of parameters
                continue

            err_msg = (
                f"{name} does not raise an informative error message when the parameter"
                f" {param_name} does not have a valid type. If any Python type is"
                " valid, the constraint should be 'no_validation'."
            )

            with raises(InvalidParameterError, match=match, err_msg=err_msg):
                if any(
                    isinstance(X_type, str) and X_type.endswith("labels")
                    for X_type in _safe_tags(estimator, key="X_types")
                ):
                    # The estimator is a label transformer and take only `y`
                    getattr(estimator, method)(y)
                else:
                    getattr(estimator, method)(X, y)

        # Then, for constraints that are more than a type constraint, check that the
        # error is raised if param does match a valid type but does not match any valid
        # value for this type.
        constraints = [make_constraint(constraint) for constraint in constraints]

        for constraint in constraints:
            try:
                bad_value = generate_invalid_param_val(constraint)
            except NotImplementedError:
                continue

            estimator.set_params(**{param_name: bad_value})

            for method in fit_methods:
                if not hasattr(estimator, method):
                    # the method is not accessible with the current set of parameters
                    continue

                err_msg = (
                    f"{name} does not raise an informative error message when the "
                    f"parameter {param_name} does not have a valid value.\n"
                    "Constraints should be disjoint. For instance "
                    "[StrOptions({'a_string'}), str] is not a acceptable set of "
                    "constraint because generating an invalid string for the first "
                    "constraint will always produce a valid string for the second "
                    "constraint."
                )

                with raises(InvalidParameterError, match=match, err_msg=err_msg):
                    if any(
                        X_type.endswith("labels")
                        for X_type in _safe_tags(estimator, key="X_types")
                    ):
                        # The estimator is a label transformer and take only `y`
                        getattr(estimator, method)(y)
                    else:
                        getattr(estimator, method)(X, y)


def check_set_output_transform(name, transformer_orig):
    # Check transformer.set_output with the default configuration does not
    # change the transform output.
    tags = transformer_orig._get_tags()
    if "2darray" not in tags["X_types"] or tags["no_validation"]:
        return

    rng = np.random.RandomState(0)
    transformer = clone(transformer_orig)

    X = rng.uniform(size=(20, 5))
    X = _enforce_estimator_tags_X(transformer_orig, X)
    y = rng.randint(0, 2, size=20)
    y = _enforce_estimator_tags_y(transformer_orig, y)
    set_random_state(transformer)

    def fit_then_transform(est):
        if name in CROSS_DECOMPOSITION:
            return est.fit(X, y).transform(X, y)
        return est.fit(X, y).transform(X)

    def fit_transform(est):
        return est.fit_transform(X, y)

    transform_methods = {
        "transform": fit_then_transform,
        "fit_transform": fit_transform,
    }
    for name, transform_method in transform_methods.items():
        transformer = clone(transformer)
        if not hasattr(transformer, name):
            continue
        X_trans_no_setting = transform_method(transformer)

        # Auto wrapping only wraps the first array
        if name in CROSS_DECOMPOSITION:
            X_trans_no_setting = X_trans_no_setting[0]

        transformer.set_output(transform="default")
        X_trans_default = transform_method(transformer)

        if name in CROSS_DECOMPOSITION:
            X_trans_default = X_trans_default[0]

        # Default and no setting -> returns the same transformation
        assert_allclose_dense_sparse(X_trans_no_setting, X_trans_default)


def _output_from_fit_transform(transformer, name, X, df, y):
    """Generate output to test `set_output` for different configuration:

    - calling either `fit.transform` or `fit_transform`;
    - passing either a dataframe or a numpy array to fit;
    - passing either a dataframe or a numpy array to transform.
    """
    outputs = {}

    # fit then transform case:
    cases = [
        ("fit.transform/df/df", df, df),
        ("fit.transform/df/array", df, X),
        ("fit.transform/array/df", X, df),
        ("fit.transform/array/array", X, X),
    ]
    if all(hasattr(transformer, meth) for meth in ["fit", "transform"]):
        for (
            case,
            data_fit,
            data_transform,
        ) in cases:
            transformer.fit(data_fit, y)
            if name in CROSS_DECOMPOSITION:
                X_trans, _ = transformer.transform(data_transform, y)
            else:
                X_trans = transformer.transform(data_transform)
            outputs[case] = (X_trans, transformer.get_feature_names_out())

    # fit_transform case:
    cases = [
        ("fit_transform/df", df),
        ("fit_transform/array", X),
    ]
    if hasattr(transformer, "fit_transform"):
        for case, data in cases:
            if name in CROSS_DECOMPOSITION:
                X_trans, _ = transformer.fit_transform(data, y)
            else:
                X_trans = transformer.fit_transform(data, y)
            outputs[case] = (X_trans, transformer.get_feature_names_out())

    return outputs


def _check_generated_dataframe(
    name,
    case,
    index,
    outputs_default,
    outputs_dataframe_lib,
    is_supported_dataframe,
    create_dataframe,
    assert_frame_equal,
):
    """Check if the generated DataFrame by the transformer is valid.

    The DataFrame implementation is specified through the parameters of this function.

    Parameters
    ----------
    name : str
        The name of the transformer.
    case : str
        A single case from the cases generated by `_output_from_fit_transform`.
    index : index or None
        The index of the DataFrame. `None` if the library does not implement a DataFrame
        with an index.
    outputs_default : tuple
        A tuple containing the output data and feature names for the default output.
    outputs_dataframe_lib : tuple
        A tuple containing the output data and feature names for the pandas case.
    is_supported_dataframe : callable
        A callable that takes a DataFrame instance as input and return whether or
        E.g. `lambda X: isintance(X, pd.DataFrame)`.
    create_dataframe : callable
        A callable taking as parameters `data`, `columns`, and `index` and returns
        a callable. Be aware that `index` can be ignored. For example, polars dataframes
        would ignore the idnex.
    assert_frame_equal : callable
        A callable taking 2 dataframes to compare if they are equal.
    """
    X_trans, feature_names_default = outputs_default
    df_trans, feature_names_dataframe_lib = outputs_dataframe_lib

    assert is_supported_dataframe(df_trans)
    # We always rely on the output of `get_feature_names_out` of the
    # transformer used to generate the dataframe as a ground-truth of the
    # columns.
    # If a dataframe is passed into transform, then the output should have the same
    # index
    expected_index = index if case.endswith("df") else None
    expected_dataframe = create_dataframe(
        X_trans, columns=feature_names_dataframe_lib, index=expected_index
    )

    try:
        assert_frame_equal(df_trans, expected_dataframe)
    except AssertionError as e:
        raise AssertionError(
            f"{name} does not generate a valid dataframe in the {case} "
            "case. The generated dataframe is not equal to the expected "
            f"dataframe. The error message is: {e}"
        ) from e


def _check_set_output_transform_dataframe(
    name,
    transformer_orig,
    *,
    dataframe_lib,
    is_supported_dataframe,
    create_dataframe,
    assert_frame_equal,
    context,
):
    """Check that a transformer can output a DataFrame when requested.

    The DataFrame implementation is specified through the parameters of this function.

    Parameters
    ----------
    name : str
        The name of the transformer.
    transformer_orig : estimator
        The original transformer instance.
    dataframe_lib : str
        The name of the library implementing the DataFrame.
    is_supported_dataframe : callable
        A callable that takes a DataFrame instance as input and returns whether or
        not it is supported by the dataframe library.
        E.g. `lambda X: isintance(X, pd.DataFrame)`.
    create_dataframe : callable
        A callable taking as parameters `data`, `columns`, and `index` and returns
        a callable. Be aware that `index` can be ignored. For example, polars dataframes
        will ignore the index.
    assert_frame_equal : callable
        A callable taking 2 dataframes to compare if they are equal.
    context : {"local", "global"}
        Whether to use a local context by setting `set_output(...)` on the transformer
        or a global context by using the `with config_context(...)`
    """
    # Check transformer.set_output configures the output of transform="pandas".
    tags = transformer_orig._get_tags()
    if "2darray" not in tags["X_types"] or tags["no_validation"]:
        return

    rng = np.random.RandomState(0)
    transformer = clone(transformer_orig)

    X = rng.uniform(size=(20, 5))
    X = _enforce_estimator_tags_X(transformer_orig, X)
    y = rng.randint(0, 2, size=20)
    y = _enforce_estimator_tags_y(transformer_orig, y)
    set_random_state(transformer)

    feature_names_in = [f"col{i}" for i in range(X.shape[1])]
    index = [f"index{i}" for i in range(X.shape[0])]
    df = create_dataframe(X, columns=feature_names_in, index=index)

    transformer_default = clone(transformer).set_output(transform="default")
    outputs_default = _output_from_fit_transform(transformer_default, name, X, df, y)

    if context == "local":
        transformer_df = clone(transformer).set_output(transform=dataframe_lib)
        context_to_use = nullcontext()
    else:  # global
        transformer_df = clone(transformer)
        context_to_use = config_context(transform_output=dataframe_lib)

    try:
        with context_to_use:
            outputs_df = _output_from_fit_transform(transformer_df, name, X, df, y)
    except ValueError as e:
        # transformer does not support sparse data
        capitalized_lib = dataframe_lib.capitalize()
        error_message = str(e)
        assert (
            f"{capitalized_lib} output does not support sparse data." in error_message
            or "The transformer outputs a scipy sparse matrix." in error_message
        ), e
        return

    for case in outputs_default:
        _check_generated_dataframe(
            name,
            case,
            index,
            outputs_default[case],
            outputs_df[case],
            is_supported_dataframe,
            create_dataframe,
            assert_frame_equal,
        )


def _check_set_output_transform_pandas_context(name, transformer_orig, context):
    try:
        import pandas as pd
    except ImportError:  # pragma: no cover
        raise SkipTest("pandas is not installed: not checking set output")

    _check_set_output_transform_dataframe(
        name,
        transformer_orig,
        dataframe_lib="pandas",
        is_supported_dataframe=lambda X: isinstance(X, pd.DataFrame),
        create_dataframe=lambda X, columns, index: pd.DataFrame(
            X, columns=columns, copy=False, index=index
        ),
        assert_frame_equal=pd.testing.assert_frame_equal,
        context=context,
    )


def check_set_output_transform_pandas(name, transformer_orig):
    _check_set_output_transform_pandas_context(name, transformer_orig, "local")


def check_global_output_transform_pandas(name, transformer_orig):
    _check_set_output_transform_pandas_context(name, transformer_orig, "global")


def _check_set_output_transform_polars_context(name, transformer_orig, context):
    try:
        import polars as pl
        from polars.testing import assert_frame_equal
    except ImportError:  # pragma: no cover
        raise SkipTest("polars is not installed: not checking set output")

    def create_dataframe(X, columns, index):
        if isinstance(columns, np.ndarray):
            columns = columns.tolist()

        return pl.DataFrame(X, schema=columns, orient="row")

    _check_set_output_transform_dataframe(
        name,
        transformer_orig,
        dataframe_lib="polars",
        is_supported_dataframe=lambda X: isinstance(X, pl.DataFrame),
        create_dataframe=create_dataframe,
        assert_frame_equal=assert_frame_equal,
        context=context,
    )


def check_set_output_transform_polars(name, transformer_orig):
    _check_set_output_transform_polars_context(name, transformer_orig, "local")


def check_global_set_output_transform_polars(name, transformer_orig):
    _check_set_output_transform_polars_context(name, transformer_orig, "global")