File size: 13,279 Bytes
50afd98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
"""Indexing mixin for sparse array/matrix classes.
"""
from __future__ import annotations

from typing import TYPE_CHECKING

import numpy as np
from ._sputils import isintlike

if TYPE_CHECKING:
    import numpy.typing as npt

INT_TYPES = (int, np.integer)


def _broadcast_arrays(a, b):
    """
    Same as np.broadcast_arrays(a, b) but old writeability rules.

    NumPy >= 1.17.0 transitions broadcast_arrays to return
    read-only arrays. Set writeability explicitly to avoid warnings.
    Retain the old writeability rules, as our Cython code assumes
    the old behavior.
    """
    x, y = np.broadcast_arrays(a, b)
    x.flags.writeable = a.flags.writeable
    y.flags.writeable = b.flags.writeable
    return x, y


class IndexMixin:
    """
    This class provides common dispatching and validation logic for indexing.
    """
    def _raise_on_1d_array_slice(self):
        """We do not currently support 1D sparse arrays.

        This function is called each time that a 1D array would
        result, raising an error instead.

        Once 1D sparse arrays are implemented, it should be removed.
        """
        from scipy.sparse import sparray

        if isinstance(self, sparray):
            raise NotImplementedError(
                'We have not yet implemented 1D sparse slices; '
                'please index using explicit indices, e.g. `x[:, [0]]`'
            )

    def __getitem__(self, key):
        row, col = self._validate_indices(key)

        # Dispatch to specialized methods.
        if isinstance(row, INT_TYPES):
            if isinstance(col, INT_TYPES):
                return self._get_intXint(row, col)
            elif isinstance(col, slice):
                self._raise_on_1d_array_slice()
                return self._get_intXslice(row, col)
            elif col.ndim == 1:
                self._raise_on_1d_array_slice()
                return self._get_intXarray(row, col)
            elif col.ndim == 2:
                return self._get_intXarray(row, col)
            raise IndexError('index results in >2 dimensions')
        elif isinstance(row, slice):
            if isinstance(col, INT_TYPES):
                self._raise_on_1d_array_slice()
                return self._get_sliceXint(row, col)
            elif isinstance(col, slice):
                if row == slice(None) and row == col:
                    return self.copy()
                return self._get_sliceXslice(row, col)
            elif col.ndim == 1:
                return self._get_sliceXarray(row, col)
            raise IndexError('index results in >2 dimensions')
        elif row.ndim == 1:
            if isinstance(col, INT_TYPES):
                self._raise_on_1d_array_slice()
                return self._get_arrayXint(row, col)
            elif isinstance(col, slice):
                return self._get_arrayXslice(row, col)
        else:  # row.ndim == 2
            if isinstance(col, INT_TYPES):
                return self._get_arrayXint(row, col)
            elif isinstance(col, slice):
                raise IndexError('index results in >2 dimensions')
            elif row.shape[1] == 1 and (col.ndim == 1 or col.shape[0] == 1):
                # special case for outer indexing
                return self._get_columnXarray(row[:,0], col.ravel())

        # The only remaining case is inner (fancy) indexing
        row, col = _broadcast_arrays(row, col)
        if row.shape != col.shape:
            raise IndexError('number of row and column indices differ')
        if row.size == 0:
            return self.__class__(np.atleast_2d(row).shape, dtype=self.dtype)
        return self._get_arrayXarray(row, col)

    def __setitem__(self, key, x):
        row, col = self._validate_indices(key)

        if isinstance(row, INT_TYPES) and isinstance(col, INT_TYPES):
            x = np.asarray(x, dtype=self.dtype)
            if x.size != 1:
                raise ValueError('Trying to assign a sequence to an item')
            self._set_intXint(row, col, x.flat[0])
            return

        if isinstance(row, slice):
            row = np.arange(*row.indices(self.shape[0]))[:, None]
        else:
            row = np.atleast_1d(row)

        if isinstance(col, slice):
            col = np.arange(*col.indices(self.shape[1]))[None, :]
            if row.ndim == 1:
                row = row[:, None]
        else:
            col = np.atleast_1d(col)

        i, j = _broadcast_arrays(row, col)
        if i.shape != j.shape:
            raise IndexError('number of row and column indices differ')

        from ._base import issparse
        if issparse(x):
            if i.ndim == 1:
                # Inner indexing, so treat them like row vectors.
                i = i[None]
                j = j[None]
            broadcast_row = x.shape[0] == 1 and i.shape[0] != 1
            broadcast_col = x.shape[1] == 1 and i.shape[1] != 1
            if not ((broadcast_row or x.shape[0] == i.shape[0]) and
                    (broadcast_col or x.shape[1] == i.shape[1])):
                raise ValueError('shape mismatch in assignment')
            if x.shape[0] == 0 or x.shape[1] == 0:
                return
            x = x.tocoo(copy=True)
            x.sum_duplicates()
            self._set_arrayXarray_sparse(i, j, x)
        else:
            # Make x and i into the same shape
            x = np.asarray(x, dtype=self.dtype)
            if x.squeeze().shape != i.squeeze().shape:
                x = np.broadcast_to(x, i.shape)
            if x.size == 0:
                return
            x = x.reshape(i.shape)
            self._set_arrayXarray(i, j, x)

    def _validate_indices(self, key):
        # First, check if indexing with single boolean matrix.
        from ._base import _spbase
        if (isinstance(key, (_spbase, np.ndarray)) and
                key.ndim == 2 and key.dtype.kind == 'b'):
            if key.shape != self.shape:
                raise IndexError('boolean index shape does not match array shape')
            row, col = key.nonzero()
        else:
            row, col = _unpack_index(key)
        M, N = self.shape

        def _validate_bool_idx(
            idx: npt.NDArray[np.bool_],
            axis_size: int,
            axis_name: str
        ) -> npt.NDArray[np.int_]:
            if len(idx) != axis_size:
                raise IndexError(
                    f"boolean {axis_name} index has incorrect length: {len(idx)} "
                    f"instead of {axis_size}"
                )
            return _boolean_index_to_array(idx)

        if isintlike(row):
            row = int(row)
            if row < -M or row >= M:
                raise IndexError('row index (%d) out of range' % row)
            if row < 0:
                row += M
        elif (bool_row := _compatible_boolean_index(row)) is not None:
            row = _validate_bool_idx(bool_row, M, "row")
        elif not isinstance(row, slice):
            row = self._asindices(row, M)

        if isintlike(col):
            col = int(col)
            if col < -N or col >= N:
                raise IndexError('column index (%d) out of range' % col)
            if col < 0:
                col += N
        elif (bool_col := _compatible_boolean_index(col)) is not None:
            col = _validate_bool_idx(bool_col, N, "column")
        elif not isinstance(col, slice):
            col = self._asindices(col, N)

        return row, col

    def _asindices(self, idx, length):
        """Convert `idx` to a valid index for an axis with a given length.

        Subclasses that need special validation can override this method.
        """
        try:
            x = np.asarray(idx)
        except (ValueError, TypeError, MemoryError) as e:
            raise IndexError('invalid index') from e

        if x.ndim not in (1, 2):
            raise IndexError('Index dimension must be 1 or 2')

        if x.size == 0:
            return x

        # Check bounds
        max_indx = x.max()
        if max_indx >= length:
            raise IndexError('index (%d) out of range' % max_indx)

        min_indx = x.min()
        if min_indx < 0:
            if min_indx < -length:
                raise IndexError('index (%d) out of range' % min_indx)
            if x is idx or not x.flags.owndata:
                x = x.copy()
            x[x < 0] += length
        return x

    def _getrow(self, i):
        """Return a copy of row i of the matrix, as a (1 x n) row vector.
        """
        M, N = self.shape
        i = int(i)
        if i < -M or i >= M:
            raise IndexError('index (%d) out of range' % i)
        if i < 0:
            i += M
        return self._get_intXslice(i, slice(None))

    def _getcol(self, i):
        """Return a copy of column i of the matrix, as a (m x 1) column vector.
        """
        M, N = self.shape
        i = int(i)
        if i < -N or i >= N:
            raise IndexError('index (%d) out of range' % i)
        if i < 0:
            i += N
        return self._get_sliceXint(slice(None), i)

    def _get_intXint(self, row, col):
        raise NotImplementedError()

    def _get_intXarray(self, row, col):
        raise NotImplementedError()

    def _get_intXslice(self, row, col):
        raise NotImplementedError()

    def _get_sliceXint(self, row, col):
        raise NotImplementedError()

    def _get_sliceXslice(self, row, col):
        raise NotImplementedError()

    def _get_sliceXarray(self, row, col):
        raise NotImplementedError()

    def _get_arrayXint(self, row, col):
        raise NotImplementedError()

    def _get_arrayXslice(self, row, col):
        raise NotImplementedError()

    def _get_columnXarray(self, row, col):
        raise NotImplementedError()

    def _get_arrayXarray(self, row, col):
        raise NotImplementedError()

    def _set_intXint(self, row, col, x):
        raise NotImplementedError()

    def _set_arrayXarray(self, row, col, x):
        raise NotImplementedError()

    def _set_arrayXarray_sparse(self, row, col, x):
        # Fall back to densifying x
        x = np.asarray(x.toarray(), dtype=self.dtype)
        x, _ = _broadcast_arrays(x, row)
        self._set_arrayXarray(row, col, x)


def _unpack_index(index) -> tuple[
    int | slice | npt.NDArray[np.bool_ | np.int_],
    int | slice | npt.NDArray[np.bool_ | np.int_]
]:
    """ Parse index. Always return a tuple of the form (row, col).
    Valid type for row/col is integer, slice, array of bool, or array of integers.
    """
    # Parse any ellipses.
    index = _check_ellipsis(index)

    # Next, parse the tuple or object
    if isinstance(index, tuple):
        if len(index) == 2:
            row, col = index
        elif len(index) == 1:
            row, col = index[0], slice(None)
        else:
            raise IndexError('invalid number of indices')
    else:
        idx = _compatible_boolean_index(index)
        if idx is None:
            row, col = index, slice(None)
        elif idx.ndim < 2:
            return idx, slice(None)
        elif idx.ndim == 2:
            return idx.nonzero()
    # Next, check for validity and transform the index as needed.
    from ._base import issparse
    if issparse(row) or issparse(col):
        # Supporting sparse boolean indexing with both row and col does
        # not work because spmatrix.ndim is always 2.
        raise IndexError(
            'Indexing with sparse matrices is not supported '
            'except boolean indexing where matrix and index '
            'are equal shapes.')
    return row, col


def _check_ellipsis(index):
    """Process indices with Ellipsis. Returns modified index."""
    if index is Ellipsis:
        return (slice(None), slice(None))

    if not isinstance(index, tuple):
        return index

    # Find any Ellipsis objects.
    ellipsis_indices = [i for i, v in enumerate(index) if v is Ellipsis]
    if not ellipsis_indices:
        return index
    if len(ellipsis_indices) > 1:
        raise IndexError("an index can only have a single ellipsis ('...')")

    # Replace the Ellipsis object with 0, 1, or 2 null-slices as needed.
    i, = ellipsis_indices
    num_slices = max(0, 3 - len(index))
    return index[:i] + (slice(None),) * num_slices + index[i + 1:]


def _maybe_bool_ndarray(idx):
    """Returns a compatible array if elements are boolean.
    """
    idx = np.asanyarray(idx)
    if idx.dtype.kind == 'b':
        return idx
    return None


def _first_element_bool(idx, max_dim=2):
    """Returns True if first element of the incompatible
    array type is boolean.
    """
    if max_dim < 1:
        return None
    try:
        first = next(iter(idx), None)
    except TypeError:
        return None
    if isinstance(first, bool):
        return True
    return _first_element_bool(first, max_dim-1)


def _compatible_boolean_index(idx):
    """Returns a boolean index array that can be converted to
    integer array. Returns None if no such array exists.
    """
    # Presence of attribute `ndim` indicates a compatible array type.
    if hasattr(idx, 'ndim') or _first_element_bool(idx):
        return _maybe_bool_ndarray(idx)
    return None


def _boolean_index_to_array(idx):
    if idx.ndim > 1:
        raise IndexError('invalid index shape')
    return np.where(idx)[0]