File size: 7,584 Bytes
734b6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch
from deepspeed import comm as dist
import cupy
import numpy as np

from deepspeed.runtime.compression.cupy import CupyBackend
from deepspeed.utils.torch import required_torch_version
from deepspeed.accelerator import get_accelerator


class NcclBackend(object):

    def __init__(self, mpu=None):
        if mpu is None:
            self.world_group = dist.new_group(ranks=range(dist.get_world_size()))
        else:
            self.mpu = mpu
            self.world_group = self.mpu.get_data_parallel_group()
        self.rank = dist.get_rank(group=self.world_group)
        self.size = dist.get_world_size(group=self.world_group)
        self.compression_backend = CupyBackend()
        self.bool_not_supported = required_torch_version(min_version=1.10)

    def my_igather(self, rank, size, group, sendbuf, recvbuf, root):
        req = []
        if rank == root:
            for idx in range(size):
                if idx != rank:
                    req.append(dist.irecv(recvbuf[idx], src=idx, group=group))
                else:
                    recvbuf[rank] = sendbuf
        else:
            req.append(dist.isend(sendbuf, group=group, dst=root))
        return req

    def my_gather(self, rank, size, group, sendbuf, recvbuf, root):
        if rank == root:
            for idx in range(size):
                if idx != rank:
                    dist.recv(recvbuf[idx], src=idx, group=group)
                else:
                    recvbuf[rank] = sendbuf
        else:
            dist.send(sendbuf, group=group, dst=root)

    def compressed_allreduce(self, buffer_m: torch.tensor, worker_error, server_error, local_rank):

        # all_start_time = time.time()
        original_shape = buffer_m.size()
        if len(original_shape) > 1:
            buffer_m = torch.flatten(buffer_m)
        original_size = buffer_m.numel()
        worker_error_size = worker_error.numel()
        cupy.cuda.Device(local_rank).use()

        if original_size != worker_error_size:
            empty_tensor = torch.zeros(worker_error_size - original_size, device=buffer_m.device)
            buffer_m = torch.cat([buffer_m, empty_tensor])

        buffer_m.add_(worker_error)
        worker_scale = torch.linalg.norm(buffer_m) / np.sqrt(buffer_m.numel())
        worker_error.set_(buffer_m - worker_scale * buffer_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0))

        if self.bool_not_supported:
            cupy_sign_list_packed = self.compression_backend.compress_by_chunk(
                self.compression_backend.torch2cupy(buffer_m.sign_().add_(1).bool().to(dtype=torch.uint8)), self.size)
        else:
            cupy_sign_list_packed = self.compression_backend.compress_by_chunk(
                self.compression_backend.torch2cupy(buffer_m.sign_().add_(1).bool()), self.size)
        cupy_worker_scale = self.compression_backend.torch2cupy(worker_scale)

        cupy_recvbuf_sign = cupy.zeros([self.size, cupy_sign_list_packed[self.rank].size],
                                       dtype=cupy_sign_list_packed[0].dtype)
        # cupy_recvbuf_scale = cupy.zeros([self.size, 1], dtype=cupy_worker_scale.dtype)

        sign_list_packed = [
            self.compression_backend.cupy2torch(cupy_sign_list_packed[idx]) for idx in range(self.size)
        ]

        # worker_scale = self.compression_backend.cupy2torch(cupy_worker_scale)
        recvbuf_sign = self.compression_backend.cupy2torch(cupy_recvbuf_sign)
        #recvbuf_scale = self.compression_backend.cupy2torch(cupy_recvbuf_scale)
        recvbuf_scale = [
            torch.zeros(1, dtype=worker_scale.dtype, device=torch.device(get_accelerator().device_name(local_rank)))
            for i in range(self.size)
        ]

        # communication phase 1
        # gather_start = time.time()
        # Alltoall for sign
        dist.all_to_all_single(recvbuf_sign, torch.stack(sign_list_packed), group=self.world_group)
        # Allgather for scale
        dist.all_gather(recvbuf_scale, worker_scale, group=self.world_group)

        # gather_end = time.time()

        # cupy_sign_list_packed, sign_list_packed, cupy_worker_scale, worker_scale = None, None, None, None
        cupy_sign_list_packed = None

        cupy_recvbuf_sign = self.compression_backend.torch2cupy(recvbuf_sign)
        #cupy_recvbuf_scale = self.compression_backend.torch2cupy(torch.stack(recvbuf_scale))

        compensated_server_m = self.compression_backend.cupy2torch(
            (cupy.unpackbits(cupy_recvbuf_sign.flatten())).reshape(self.size, -1)).float().add_(-0.5).mul_(2.0).mul_(
                torch.stack(recvbuf_scale).mul_(1 / self.size)).sum(0)
        compensated_server_m.add_(server_error)
        server_scale = torch.linalg.norm(compensated_server_m) / np.sqrt(compensated_server_m.numel())
        server_error.set_(compensated_server_m -
                          server_scale * compensated_server_m.sign().add_(1).bool().float().add_(-0.5).mul_(2.0))

        # cupy_server_scale = self.compression_backend.torch2cupy(server_scale)

        if self.bool_not_supported:
            cupy_server_sign_packed = self.compression_backend.compress_by_chunk(
                self.compression_backend.torch2cupy(compensated_server_m.sign_().add_(1).bool().to(dtype=torch.uint8)),
                1)
        else:
            cupy_server_sign_packed = self.compression_backend.compress_by_chunk(
                self.compression_backend.torch2cupy(compensated_server_m.sign_().add_(1).bool()), 1)
        compensated_server_m = None

        cupy_recvbuf_sign_server = cupy.zeros([self.size, cupy_server_sign_packed[0].size],
                                              dtype=cupy_recvbuf_sign.dtype)
        # cupy_recvbuf_sign, recvbuf_sign = None, None
        cupy_recvbuf_sign = None

        server_sign_packed = [self.compression_backend.cupy2torch(cupy_server_sign_packed[0])]
        recvbuf_sign_server = [
            self.compression_backend.cupy2torch(cupy_recvbuf_sign_server[idx]) for idx in range(self.size)
        ]

        # server_scale = self.compression_backend.cupy2torch(cupy_server_scale)
        cupy_recvbuf_scale_server = cupy.zeros([self.size, 1], dtype=cupy_worker_scale.dtype)
        # cupy_recvbuf_scale, recvbuf_scale = None, None

        recvbuf_scale_server = [
            self.compression_backend.cupy2torch(cupy_recvbuf_scale_server[idx]) for idx in range(self.size)
        ]

        # Communication Phase 2
        dist.all_gather(recvbuf_sign_server, server_sign_packed[0], group=self.world_group)
        dist.all_gather(recvbuf_scale_server, server_scale, group=self.world_group)

        cupy_server_sign_packed = None

        # need to convert from a tensor list to a single tensor
        # dist.all_gather only provides a tensor list as the recv/output buffer
        recvbuf_sign_server = torch.stack(recvbuf_sign_server)

        cupy_recvbuf_sign_server = self.compression_backend.torch2cupy(recvbuf_sign_server)

        buffer_m.data.copy_(
            self.compression_backend.cupy2torch((cupy.unpackbits(cupy_recvbuf_sign_server.flatten())).reshape(
                self.size, -1)).float().add_(-0.5).mul_(2.0).mul_(
                    self.compression_backend.cupy2torch(cupy_recvbuf_scale_server)).flatten().data)
        if original_size != worker_error_size:
            buffer_m = buffer_m[0:original_size]
        if len(original_shape) > 1:
            buffer_m = buffer_m.reshape(original_shape)

        return buffer_m