File size: 6,977 Bytes
734b6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from torch.utils.data import DataLoader, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from deepspeed.accelerator import get_accelerator

from deepspeed.runtime.data_pipeline.data_sampling.data_sampler import DeepSpeedDataSampler
from deepspeed.runtime.data_pipeline.constants import CURRICULUM_LEARNING, \
    DATA_EFFICIENCY, DATA_SAMPLING_NUM_WORKERS
from deepspeed.runtime.constants import GRADIENT_ACCUMULATION_STEPS, \
    DATA_PARALLEL_GROUP, GLOBAL_RANK


class RepeatingLoader:

    def __init__(self, loader):
        """Wraps an iterator to allow for infinite iteration. This is especially useful
        for DataLoader types that we wish to automatically restart upon completion.

        Args:
            loader (iterator): The data loader to repeat.
        """
        self.loader = loader
        self.data_iter = iter(self.loader)

    def __iter__(self):
        return self

    def __next__(self):
        try:
            batch = next(self.data_iter)
        except StopIteration:
            self.data_iter = iter(self.loader)
            batch = next(self.data_iter)
        return batch


class DeepSpeedDataLoader(object):

    def __init__(self,
                 dataset,
                 batch_size,
                 pin_memory,
                 local_rank,
                 tput_timer,
                 collate_fn=None,
                 num_local_io_workers=None,
                 data_sampler=None,
                 data_parallel_world_size=None,
                 data_parallel_rank=None,
                 dataloader_drop_last=False,
                 deepspeed_dataloader_config={}):
        self.deepspeed_dataloader_config = deepspeed_dataloader_config
        self.tput_timer = tput_timer
        self.batch_size = batch_size
        self.curriculum_learning_enabled = False
        if CURRICULUM_LEARNING in deepspeed_dataloader_config:
            self.curriculum_learning_enabled = deepspeed_dataloader_config[CURRICULUM_LEARNING]

        if self.curriculum_learning_enabled:
            data_sampler = DeepSpeedDataSampler(self.deepspeed_dataloader_config[DATA_EFFICIENCY],
                                                len(dataset),
                                                self.batch_size,
                                                data_parallel_rank,
                                                data_parallel_world_size,
                                                self.deepspeed_dataloader_config[DATA_PARALLEL_GROUP],
                                                self.deepspeed_dataloader_config[GRADIENT_ACCUMULATION_STEPS],
                                                self.deepspeed_dataloader_config[GLOBAL_RANK],
                                                drop_last=dataloader_drop_last)
            device_count = get_accelerator().device_count()
            num_local_io_workers = self.deepspeed_dataloader_config[DATA_SAMPLING_NUM_WORKERS]
        else:
            if local_rank >= 0:
                if data_sampler is None:
                    data_sampler = DistributedSampler(dataset=dataset,
                                                      num_replicas=data_parallel_world_size,
                                                      rank=data_parallel_rank)
                device_count = 1
            else:
                if data_sampler is None:
                    data_sampler = RandomSampler(dataset)
                device_count = get_accelerator().device_count()
                batch_size *= device_count

            if num_local_io_workers is None:
                num_local_io_workers = 2 * device_count

        self.num_local_io_workers = num_local_io_workers
        self.data_sampler = data_sampler
        self.dataset = dataset
        self.collate_fn = collate_fn
        self.device_count = device_count
        self.batch_size = batch_size
        self.pin_memory = pin_memory
        self.data = None
        self.dataloader_drop_last = dataloader_drop_last
        self.post_process_func = None

        if self.dataloader_drop_last:
            self.len = len(self.data_sampler) // self.batch_size
        else:
            from math import ceil
            self.len = ceil(len(self.data_sampler) / self.batch_size)

    def __iter__(self):
        self._create_dataloader()
        return self

    def __len__(self):
        return self.len

    def __next__(self):
        if self.tput_timer:
            self.tput_timer.start()
        if self.curriculum_learning_enabled:
            data = next(self.data_iterator)
            if self.post_process_func is not None:
                data = self.post_process_func(data, self.data_sampler.state_dict())
            return data
        else:
            return next(self.data)

    def _create_dataloader(self):
        if self.curriculum_learning_enabled:
            if self.collate_fn is None:
                self.dataloader = DataLoader(self.dataset,
                                             pin_memory=self.pin_memory,
                                             batch_sampler=self.data_sampler,
                                             num_workers=self.num_local_io_workers)
            else:
                self.dataloader = DataLoader(self.dataset,
                                             pin_memory=self.pin_memory,
                                             batch_sampler=self.data_sampler,
                                             collate_fn=self.collate_fn,
                                             num_workers=self.num_local_io_workers)
            self.data_iterator = iter(self.dataloader)
            return self.dataloader
        else:
            if self.collate_fn is None:
                self.dataloader = DataLoader(self.dataset,
                                             batch_size=self.batch_size,
                                             pin_memory=self.pin_memory,
                                             sampler=self.data_sampler,
                                             num_workers=self.num_local_io_workers,
                                             drop_last=self.dataloader_drop_last)
            else:
                self.dataloader = DataLoader(self.dataset,
                                             batch_size=self.batch_size,
                                             pin_memory=self.pin_memory,
                                             sampler=self.data_sampler,
                                             collate_fn=self.collate_fn,
                                             num_workers=self.num_local_io_workers,
                                             drop_last=self.dataloader_drop_last)
            self.data = (x for x in self.dataloader)

            return self.dataloader


# DataLoader([(torch.randn(3, 3), torch.tensor(i % 2)) for i in range(10)], batch_size=2))