File size: 5,625 Bytes
734b6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch
from deepspeed.utils import log_dist
import numpy as np
import logging


class Eigenvalue(object):

    def __init__(self,
                 verbose=False,
                 max_iter=100,
                 tol=1e-2,
                 stability=0,
                 gas_boundary_resolution=1,
                 layer_name='',
                 layer_num=0):
        super().__init__()

        self.verbose = verbose
        self.max_iter = max_iter
        self.tol = tol
        self.stability = stability
        self.gas_boundary_resolution = gas_boundary_resolution
        self.layer_name = layer_name
        self.layer_num = layer_num

        assert len(self.layer_name) > 0 and layer_num > 0

        log_dist(
            f'enabled eigenvalue with verbose={verbose}, max_iter={max_iter}, tol={tol}, stability={stability}, gas_boundary_resolution={gas_boundary_resolution}, layer_name={layer_name}, layer_num={layer_num}',
            ranks=[0])

    # Replace all nan/pos-inf/neg-inf to zero
    # TODO: Pytorch new version may add this function, replace this one by then.
    def nan_to_num(self, x):
        device = x.device
        x = x.cpu().numpy()
        x = np.nan_to_num(x=x, copy=False, nan=0.0, posinf=0.0, neginf=0.0)
        return torch.from_numpy(x).to(device)

    def normalize(self, v):
        norm_squared = self.inner_product(v, v)
        norm = norm_squared**0.5 + self.stability
        normalized_vectors = [vector / norm for vector in v]
        normalized_vectors = [self.nan_to_num(vector) for vector in normalized_vectors]
        return normalized_vectors

    def inner_product(self, xs, ys):
        return sum([torch.sum(x * y) for (x, y) in zip(xs, ys)])

    def get_layers(self, module):
        scope_names = self.layer_name.split('.')
        assert len(scope_names) > 0

        m = module
        for name in scope_names:
            assert hasattr(m, name), "layer_name configuration is invalid."
            m = getattr(m, name)

        return m

    def compute_eigenvalue(self, module, device=None, scale=1.0):
        block_eigenvalue = []
        param_keys = []
        layers = self.get_layers(module)

        for block in range(self.layer_num):
            model_block = layers[block]

            # We found this randn() has obvious accuracy impact in some cases, save/recover random state here.
            rng_state = torch.random.get_rng_state()
            if device is None:
                v = [
                    torch.randn(p.size()) for p in model_block.parameters()
                    if p.grad is not None and p.grad.grad_fn is not None
                ]
            else:
                v = [
                    torch.randn(p.size(), device=device) for p in model_block.parameters()
                    if p.grad is not None and p.grad.grad_fn is not None
                ]
            torch.random.set_rng_state(rng_state)

            grads = [
                param.grad for param in model_block.parameters()
                if param.grad is not None and param.grad.grad_fn is not None
            ]
            params = [
                param for param in model_block.parameters()
                if param.grad is not None and param.grad.grad_fn is not None
            ]

            layer_keys = [id(p) for p in model_block.parameters()]
            param_keys.append(layer_keys)

            v = self.normalize(v)

            # Disable eigenvalue if the model doesn't support second order gradients computation,
            # e.g. when enabling DS transformer kernel.
            if len(grads) == 0 or len(params) == 0:
                log_dist(f'The model does NOT support eigenvalue computation.', ranks=[0], level=logging.WARNING)
                return []

            i = 0
            eigenvalue_current, eigenvalue_previous = 1., 0.

            while (i < self.max_iter) and abs(eigenvalue_current) > 0 and (abs(
                (eigenvalue_current - eigenvalue_previous) / eigenvalue_current) >=
                                                                           self.tol):  # test convergence criteria
                eigenvalue_previous = eigenvalue_current

                Hv = torch.autograd.grad(grads, params, grad_outputs=v, only_inputs=True, retain_graph=True)
                #Hv = [hv.float() for hv in Hv]
                Hv = [self.nan_to_num(hv).float() for hv in Hv]

                eigenvalue_current = self.inner_product(Hv, v).item()

                v = self.normalize(Hv)
                v = [x / scale for x in v]
                i += 1

            eigenvalue_current *= scale
            block_eigenvalue.append(eigenvalue_current)

            if self.verbose:
                log_dist(f'block: {block}, power iteration: {i}, eigenvalue: {eigenvalue_current}', ranks=[0])

        block_eigenvalue = self.post_process(block_eigenvalue)

        if self.verbose:
            log_dist(f'post processed block_eigenvalue: {block_eigenvalue}', ranks=[0])

        # {param_id: (eigenvalue, layer_id)}
        ev_dict = {}
        for i, (layer_keys, value) in enumerate(zip(param_keys, block_eigenvalue)):
            ev_dict.update(dict.fromkeys(layer_keys, (value, i)))

        return ev_dict

    # 1. Map all eigenvalues to [0, 1.0].
    # 2. Some layers can't generate valid eigenvalues on fp16 precision, use 1.0 instead.
    def post_process(self, value_list):
        max_value = abs(max(value_list, key=abs))
        return [abs(v) / max_value if v != 0.0 else 1.0 for v in value_list]