File size: 20,663 Bytes
734b6a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from deepspeed.inference.config import DeepSpeedInferenceConfig
from deepspeed.module_inject.replace_policy import replace_policies
from deepspeed.module_inject.utils import policy_to_ds_container
from .engine import DeepSpeedEngine
from .utils import TLinear, get_inactive_params
from deepspeed.runtime.zero import GatheredParameters
import time
import gc
import math
from deepspeed import comm as dist
from deepspeed.accelerator import get_accelerator
from torch import nn
from deepspeed.utils import logger
from deepspeed.ops.op_builder import InferenceBuilder
from deepspeed.module_inject.layers import LinearLayer, Normalize, EmbeddingLayer, OPTEmbedding
try:
import transformers
OPTLearnedPositionalEmbedding = transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding
except:
OPTLearnedPositionalEmbedding = None
inference_cuda_module = None
class DeepSpeedHybridEngine(DeepSpeedEngine):
r"""DeepSpeed engine for training and inference."""
inference_mp_group = None
def __init__(self, args, model, **kwargs):
super().__init__(args, model, **kwargs)
# synch seed between all GPUs
_rng_state = get_accelerator().get_rng_state().to(get_accelerator().current_device_name())
dist.broadcast(_rng_state, 0)
get_accelerator().set_rng_state(_rng_state.cpu())
self.Z3_enabled = (self._config.zero_config.stage == 3)
self.gather_all_layers = self._config.hybrid_engine.pin_parameters
# inference containers / fwds
self._inference_containers = []
self._orig_modules = []
self._orig_fwds = []
self.create_inference_module()
# Performance stats
self._t_start = None
self._total_latency = 0
self._iters = 0
self._training_start_time = None
self._generate_latency = 0
self._training_latency = 0
self._total_batch_size = None
self._gather_latency = 0
global inference_cuda_module
if inference_cuda_module is None:
builder = InferenceBuilder()
inference_cuda_module = builder.load()
self.is_lora_fused = False
def convert_to_linear_transposed(self, model):
def _replace_linear_layer(r_module, parent_type=None, prev_type=None):
for name, child in r_module.named_children():
if child.__class__ in [torch.nn.Linear] and \
(parent_type is torch.nn.ModuleList or prev_type is torch.nn.ModuleList):
setattr(r_module, name, TLinear(child, name))
else:
_replace_linear_layer(child, type(r_module), prev_type=parent_type)
return r_module
_replace_linear_layer(model)
def new_inference_container(self, orig_layer, policy_cls, layer_id):
policy = policy_cls(orig_layer, inference=True)
if self._config.fp16_enabled:
inference_dtype = torch.float16
elif self._config.bfloat16_enabled:
inference_dtype = torch.bfloat16
else:
inference_dtype = torch.float32
_container = policy_to_ds_container(
policy=policy,
config=DeepSpeedInferenceConfig(
set_empty_params=True,
dtype=inference_dtype,
max_out_tokens=self._config.hybrid_engine.max_out_tokens,
min_out_tokens=self._config.hybrid_engine.max_out_tokens,
transposed_mode=True,
),
model_config=self.module.config if hasattr(self.module, 'config') else None,
layer_id=layer_id,
child=orig_layer)
if self.mpu is not None:
if hasattr(self.mpu, 'get_model_parallel_world_size'):
_container.set_tensor_parallel_config(self.mpu.get_model_parallel_world_size(),
self.mpu.get_model_parallel_group())
else:
_container.set_tensor_parallel_config(self.mpu.get_tensor_model_parallel_world_size(),
self.mpu.get_tensor_model_parallel_group())
else:
_container.set_tensor_parallel_config(self._config.hybrid_engine.inference_tp_size, self.mp_group)
_container.initialize_tensors(enable_training=True)
_container.create_ds_model_config()
_container.create_module()
_container.set_params_wo_copy(Z3_enabled=self.Z3_enabled)
return _container
def populate_all_inference_policies(self):
self.inference_policies = {}
for plcy in replace_policies:
_ = plcy(None)
if isinstance(plcy._orig_layer_class, list):
for orig_layer_class in plcy._orig_layer_class:
self.inference_policies.update({orig_layer_class: (self.new_inference_container, plcy)})
elif plcy._orig_layer_class is not None:
self.inference_policies.update({plcy._orig_layer_class: (self.new_inference_container, plcy)})
self.inference_policies.update({
nn.Linear: (LinearLayer, ),
nn.Embedding: (EmbeddingLayer, ),
nn.LayerNorm: (Normalize, ),
OPTLearnedPositionalEmbedding: (OPTEmbedding, )
})
def _fuse_lora_layer(self, layer_id):
self._inference_containers[layer_id].fuse_lora()
def fuse_lora_weight(self):
for layer_id in range(len(self.layer_params)):
self._fuse_lora_layer(layer_id)
def _unfuse_lora_layer(self, layer_id):
self._inference_containers[layer_id].unfuse_lora()
def unfuse_lora_weight(self):
for layer_id in range(len(self.layer_params)):
self._unfuse_lora_layer(layer_id)
def unfuse_lora_weight_non_pinned(self):
for layer_id in range(len(self.layer_params)):
non_active_params = get_inactive_params(self.layer_params[layer_id])
non_active_lora_params = get_inactive_params(self.layer_lora_params[layer_id])
non_active_params.extend(non_active_lora_params)
with GatheredParameters(non_active_params):
self._unfuse_lora_layer(layer_id)
def retake_inference_cache(self):
if self._config.hybrid_engine.release_inference_cache:
retake_success = inference_cuda_module.retake_workspace()
if not retake_success:
logger.warning("Unable to acquire workspace on first attempt, emptying cache and retrying.")
gc.collect()
get_accelerator().empty_cache()
retake_success = inference_cuda_module.retake_workspace()
if not retake_success:
raise RuntimeError("Unable to retake inference workspace.")
def generate(self, *inputs, **kwargs):
if self._total_batch_size is None:
bsz = inputs[0].shape[0] if len(inputs) > 0 else \
kwargs['input_ids'].shape[0]
self._total_batch_size = bsz * dist.get_world_size()
self._t0 = time.time()
if self.Z3_enabled and self.gather_all_layers:
if self._config.hybrid_engine.inference_tp_size > 1:
non_tp_params = []
for other_layer in self._other_layers:
non_tp_params.extend(list(other_layer.parameters()))
partition_size = self._config.hybrid_engine.tp_gather_partition_size
layer_groups = math.ceil(len(self.layer_params) / partition_size)
for lg in range(layer_groups):
non_active_params = []
non_active_lora_params = []
for layer_id in range(lg * partition_size, min(len(self.layer_params), (lg + 1) * partition_size),
1):
non_tp_params.extend(self.layer_params[layer_id][:4])
non_active_params.extend(get_inactive_params(self.layer_params[layer_id]))
non_active_params.extend(get_inactive_params(self.layer_lora_params[layer_id]))
with GatheredParameters(non_active_params):
for layer_id in range(lg * partition_size,
min(len(self.layer_params), (lg + 1) * partition_size), 1):
if len(self.all_lora_params) > 0:
self._fuse_lora_layer(layer_id)
if self.mpu is not None:
self._inference_containers[layer_id].apply_tensor_parallelism(self.mp_replace,
reversed_dim=True)
# TODO(cmikeh2) Evaluate if this can be deferred when release_inference_cache
# is enabled.
gc.collect()
get_accelerator().empty_cache()
self._gather_latency = time.time() - self._t0
input_shape = inputs[0].shape if len(inputs) > 0 else \
kwargs['input_ids'].shape
output = torch.zeros(
(input_shape[0] * self._config.hybrid_engine.inference_tp_size, ) + input_shape[1:],
dtype=inputs[0].dtype if len(inputs) > 0 else kwargs['input_ids'].dtype,
device=inputs[0].device if len(inputs) > 0 else kwargs['input_ids'].device)
input_cont = inputs[0].contiguous() if len(inputs) > 0 else kwargs['input_ids'].contiguous()
dist.all_gather_into_tensor(output, input_cont, group=self.mp_group)
if len(inputs) > 0:
inputs = (output, *inputs[1:])
else:
kwargs['input_ids'] = output
self.retake_inference_cache()
non_active_params = get_inactive_params(non_tp_params)
with GatheredParameters(non_active_params):
generate_ret_vals = self._generate(*inputs, **kwargs)
for layer_id in range(len(self.layer_params)):
self._inference_containers[layer_id].release_memory()
rank = dist.get_rank(group=self.mp_group)
generate_ret_vals = generate_ret_vals[input_shape[0] * rank:input_shape[0] * (rank + 1)]
else:
non_active_layers = get_inactive_params(self.all_layers_params)
non_active_lora_params = get_inactive_params(self.all_lora_params)
non_active_layers.extend(non_active_lora_params)
with GatheredParameters(non_active_layers):
self._gather_latency = time.time() - self._t0
if len(self.all_lora_params) > 0:
self.fuse_lora_weight()
self.retake_inference_cache()
generate_ret_vals = self._generate(*inputs, **kwargs)
if len(self.all_lora_params) > 0:
self.unfuse_lora_weight()
else:
if len(self.all_lora_params) > 0 and (not self.Z3_enabled):
self.fuse_lora_weight()
self.retake_inference_cache()
generate_ret_vals = self._generate(*inputs, **kwargs)
if len(self.all_lora_params) > 0:
if (not self.Z3_enabled):
self.unfuse_lora_weight()
else:
self.unfuse_lora_weight_non_pinned()
self.is_lora_fused = False
if self._config.hybrid_engine.release_inference_cache:
inference_cuda_module.release_workspace()
gc.collect()
get_accelerator().empty_cache()
self._generate_latency = time.time() - self._t0 - self._gather_latency
return generate_ret_vals
def create_inference_containers(self, module, layer_id=0):
for name, child in module.named_children():
if child.__class__ in self.inference_policies:
if self.inference_policies[child.__class__][0] == self.new_inference_container:
self._inference_containers.append(self.inference_policies[child.__class__][0](
child, self.inference_policies[child.__class__][-1], layer_id))
self._orig_modules.append(child)
self._orig_fwds.append(child.forward)
self.layer_params.append(self._inference_containers[layer_id].get_all_params())
self.lora_params.append(self._inference_containers[layer_id].get_lora_params())
self.layer_lora_params.append([])
for lora_param in self.lora_params[layer_id]:
self.layer_lora_params[layer_id].extend(lora_param[:-1])
self.all_lora_params.extend(lora_param[:-1])
layer_id += 1
else:
self._other_layers.append(self.inference_policies[child.__class__][0](
weight=child.weight, bias=child.bias if hasattr(child, 'bias') else None))
self._orig_modules_others.append(child)
self._orig_fwds_others.append(child.forward)
else:
self.create_inference_containers(child, layer_id=layer_id)
def create_inference_module(self):
self.layer_params = []
self.layer_lora_params = []
self.lora_params = []
self.all_lora_params = []
self._other_layers = []
self._orig_modules_others = []
self._orig_fwds_others = []
if self._config.hybrid_engine.inference_tp_size > 1:
if self.mpu is None:
global_rank = dist.get_rank()
world_size = dist.get_world_size()
mp_group_id = global_rank // self._config.hybrid_engine.inference_tp_size
num_mp_groups = world_size // self._config.hybrid_engine.inference_tp_size
for mp_group_id in range(num_mp_groups):
ranks = list(
range(mp_group_id * self._config.hybrid_engine.inference_tp_size, \
(mp_group_id + 1) * self._config.hybrid_engine.inference_tp_size, \
1)
)
mp_group = dist.new_group(ranks)
if global_rank in ranks:
# mp_group is used for broader collective
self.mp_group = mp_group
# mp_replace is used for container tensor slicing
from deepspeed.module_inject import ReplaceWithTensorSlicing
self.mp_replace = ReplaceWithTensorSlicing(
mp_group=self.mp_group,
mp_size=self._config.hybrid_engine.inference_tp_size,
out_dim=0,
in_dim=1)
else:
self.mp_group = self.mpu.get_model_parallel_group() if hasattr(self.mpu, 'get_model_parallel_group') else \
self.mpu.get_tensor_model_parallel_group()
from deepspeed.module_inject import ReplaceWithTensorSlicing
self.mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group,
mp_size=self._config.hybrid_engine.inference_tp_size,
out_dim=0,
in_dim=1)
else:
self.mp_group = None
self.mp_replace = None
self.populate_all_inference_policies()
self.all_layers_params = list(self.module.parameters())
self.create_inference_containers(self.module)
if len(self._inference_containers) > 0:
self._generate = self.module.generate
self.module.generate = self.generate
self._t0 = time.time()
def _zero3_forward(self, layer_id):
def run_forward(*inputs, **kwargs):
non_active_params = get_inactive_params(self.layer_params[layer_id])
non_active_lora_params = get_inactive_params(self.layer_lora_params[layer_id])
non_active_params.extend(non_active_lora_params)
with GatheredParameters(non_active_params):
if len(self.all_lora_params) > 0:
# Use the is_lora_fused flag to prevent multiple fusion in Z3 with non-pinned memory
if not self.is_lora_fused:
self._fuse_lora_layer(layer_id)
# Set the is_lora_fused to true when reaching the last layer
if layer_id == len(self.layer_params) - 1:
self.is_lora_fused = True
return self._inference_containers[layer_id].module.forward(*inputs, **kwargs)
return run_forward
def eval(self):
if self._t_start is not None:
latency = time.time() - self._t_start
self._total_latency = self._total_latency + latency
self._iters = self._iters + 1
if not dist.is_initialized() or dist.get_rank() == 0:
if self._total_batch_size is not None:
cur_samples_p_sec = f'|CurSamplesPerSec={(1 / latency * self._total_batch_size):.2f} '
avg_samples_p_sec = f'|AvgSamplesPerSec={(1 / (self._total_latency / self._iters) * self._total_batch_size):.2f}'
else:
cur_samples_p_sec = ''
avg_samples_p_sec = ''
others = latency - (self._generate_latency + self._training_latency)
print(f'|E2E latency={(latency):.2f}s ' + \
f'|Gather latency={self._gather_latency:.2f}s ({(self._gather_latency / latency * 100):.2f}%) '
f'|Generate time={(self._generate_latency):.2f}s ({(self._generate_latency / latency * 100):.2f}%) ' + \
f'|Training time={(self._training_latency):.2f}s ({(self._training_latency / latency * 100):.2f}%) ' + \
f'|Others={others:.2f} ({(others / latency * 100):.2f}%)' + \
cur_samples_p_sec + \
avg_samples_p_sec)
self._t_start = time.time()
self._training_latency = 0
super().eval()
if len(self._inference_containers) > 0:
for i, (orig_module, inference_container) in enumerate(zip(self._orig_modules,
self._inference_containers)):
if self.Z3_enabled and not self.gather_all_layers:
orig_module.forward = self._zero3_forward(i)
else:
orig_module.forward = inference_container.module.forward
inference_container.transform_for_inference()
if not self.Z3_enabled or self.gather_all_layers:
for orig_module, inference_layer in zip(self._orig_modules_others, self._other_layers):
orig_module.forward = inference_layer.forward
if self.Z3_enabled:
gc.collect()
get_accelerator().empty_cache()
if self._t_start is None:
self._t_start = time.time()
def train(self, mode=True):
if mode and len(self._orig_modules) > 0:
for inference_container, orig_module, orig_fwd in zip(self._inference_containers, self._orig_modules,
self._orig_fwds):
inference_container.transform_for_training()
orig_module.forward = orig_fwd
for orig_module, orig_fwd in zip(self._orig_modules_others, self._orig_fwds_others):
orig_module.forward = orig_fwd
super().train(mode)
if mode:
self._training_start_time = time.time()
def step(self, lr_kwargs=None):
super().step(lr_kwargs=lr_kwargs)
if len(self._inference_containers) > 0:
if not self.Z3_enabled:
for inference_container in self._inference_containers:
inference_container.reset_params()
if self._training_start_time is not None:
self._training_latency += (time.time() - self._training_start_time)
self._training_start_time = time.time()
|