File size: 38,923 Bytes
0cee4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
"""
Implementation of learning rate schedules.

Taken and modified from PyTorch v1.0.1 source
https://github.com/pytorch/pytorch/blob/v1.1.0/torch/optim/lr_scheduler.py
"""

import argparse
from torch.optim import Optimizer
import math
from deepspeed.utils import logger

LR_SCHEDULE = 'lr_schedule'
LR_RANGE_TEST = 'LRRangeTest'
ONE_CYCLE = 'OneCycle'
WARMUP_LR = 'WarmupLR'
WARMUP_DECAY_LR = 'WarmupDecayLR'
WARMUP_COSINE_LR = 'WarmupCosineLR'
VALID_LR_SCHEDULES = [LR_RANGE_TEST, ONE_CYCLE, WARMUP_LR, WARMUP_DECAY_LR, WARMUP_COSINE_LR]

LR_RANGE_TEST_MIN_LR = 'lr_range_test_min_lr'
LR_RANGE_TEST_STEP_RATE = 'lr_range_test_step_rate'
LR_RANGE_TEST_STEP_SIZE = 'lr_range_test_step_size'
LR_RANGE_TEST_STAIRCASE = 'lr_range_test_staircase'

EDGE_VALUE = 'edge_value'
MID_VALUE = 'mid_value'

CYCLE_FIRST_STEP_SIZE = 'cycle_first_step_size'
CYCLE_FIRST_STAIR_COUNT = 'cycle_first_stair_count'
CYCLE_SECOND_STEP_SIZE = 'cycle_second_step_size'
CYCLE_SECOND_STAIR_COUNT = 'cycle_second_stair_count'
DECAY_STEP_SIZE = 'decay_step_size'

CYCLE_MIN_LR = 'cycle_min_lr'
CYCLE_MAX_LR = 'cycle_max_lr'
DECAY_LR_RATE = 'decay_lr_rate'

CYCLE_MIN_MOM = 'cycle_min_mom'
CYCLE_MAX_MOM = 'cycle_max_mom'
DECAY_MOM_RATE = 'decay_mom_rate'

WARMUP_MIN_LR = 'warmup_min_lr'
WARMUP_MAX_LR = 'warmup_max_lr'
WARMUP_NUM_STEPS = 'warmup_num_steps'
WARMUP_TYPE = 'warmup_type'
WARMUP_LOG_RATE = 'log'
WARMUP_LINEAR_RATE = 'linear'

WARMUP_MIN_RATIO = 'warmup_min_ratio'
COS_MIN_RATIO = 'cos_min_ratio'

TOTAL_NUM_STEPS = 'total_num_steps'


def add_tuning_arguments(parser):
    group = parser.add_argument_group('Convergence Tuning', 'Convergence tuning configurations')

    # LR scheduler
    group.add_argument('--lr_schedule', type=str, default=None, help='LR schedule for training.')

    # Learning rate range test
    group.add_argument("--lr_range_test_min_lr", type=float, default=0.001, help='Starting lr value.')
    group.add_argument("--lr_range_test_step_rate", type=float, default=1.0, help='scaling rate for LR range test.')
    group.add_argument("--lr_range_test_step_size", type=int, default=1000, help='training steps per LR change.')
    group.add_argument("--lr_range_test_staircase",
                       type=bool,
                       default=False,
                       help='use staircase scaling for LR range test.')

    # OneCycle schedule
    group.add_argument("--cycle_first_step_size",
                       type=int,
                       default=1000,
                       help='size of first step of 1Cycle schedule (training steps).')
    group.add_argument("--cycle_first_stair_count",
                       type=int,
                       default=-1,
                       help='first stair count for 1Cycle schedule.')
    group.add_argument("--cycle_second_step_size",
                       type=int,
                       default=-1,
                       help='size of second step of 1Cycle schedule (default first_step_size).')
    group.add_argument("--cycle_second_stair_count",
                       type=int,
                       default=-1,
                       help='second stair count for 1Cycle schedule.')
    group.add_argument("--decay_step_size",
                       type=int,
                       default=1000,
                       help='size of intervals for applying post cycle decay (training steps).')

    # 1Cycle LR
    group.add_argument("--cycle_min_lr", type=float, default=0.01, help='1Cycle LR lower bound.')
    group.add_argument("--cycle_max_lr", type=float, default=0.1, help='1Cycle LR upper bound.')
    group.add_argument("--decay_lr_rate", type=float, default=0.0, help='post cycle LR decay rate.')

    # 1Cycle Momentum
    group.add_argument('--cycle_momentum', default=False, action='store_true', help='Enable 1Cycle momentum schedule.')
    group.add_argument("--cycle_min_mom", type=float, default=0.8, help='1Cycle momentum lower bound.')
    group.add_argument("--cycle_max_mom", type=float, default=0.9, help='1Cycle momentum upper bound.')
    group.add_argument("--decay_mom_rate", type=float, default=0.0, help='post cycle momentum decay rate.')

    # Warmup LR
    group.add_argument('--warmup_min_lr', type=float, default=0, help='WarmupLR minimum/initial LR value')
    group.add_argument('--warmup_max_lr', type=float, default=0.001, help='WarmupLR maximum LR value.')
    group.add_argument('--warmup_num_steps', type=int, default=1000, help='WarmupLR step count for LR warmup.')
    group.add_argument('--warmup_type',
                       type=str,
                       default=WARMUP_LOG_RATE,
                       help='WarmupLR increasing function during warmup')

    # WarmUP cos LR
    group.add_argument("--warmup_min_ratio", type=float, default=0.01, help='Cosine LR lower bound.')
    group.add_argument("--cos_min_ratio", type=float, default=0.01, help='Cosine LR lower bound.')

    return parser


def parse_arguments():
    parser = argparse.ArgumentParser()
    parser = add_tuning_arguments(parser)

    lr_sched_args, unknown_args = parser.parse_known_args()
    return lr_sched_args, unknown_args


def override_lr_range_test_params(args, params):
    if hasattr(args, LR_RANGE_TEST_MIN_LR) and args.lr_range_test_min_lr is not None:
        params[LR_RANGE_TEST_MIN_LR] = args.lr_range_test_min_lr

    if hasattr(args, LR_RANGE_TEST_STEP_RATE) and args.lr_range_test_step_rate is not None:
        params[LR_RANGE_TEST_STEP_RATE] = args.lr_range_test_step_rate

    if hasattr(args, LR_RANGE_TEST_STEP_SIZE) and args.lr_range_test_step_size is not None:
        params[LR_RANGE_TEST_STEP_SIZE] = args.lr_range_test_step_size

    if hasattr(args, LR_RANGE_TEST_STAIRCASE) and args.lr_range_test_staircase is not None:
        params[LR_RANGE_TEST_STAIRCASE] = args.lr_range_test_staircase


def override_1cycle_params(args, params):
    if hasattr(args, CYCLE_FIRST_STEP_SIZE) and args.cycle_first_step_size is not None:
        params[CYCLE_FIRST_STEP_SIZE] = args.cycle_first_step_size

    if hasattr(args, CYCLE_FIRST_STAIR_COUNT) and args.cycle_first_stair_count is not None:
        params[CYCLE_FIRST_STAIR_COUNT] = args.cycle_first_stair_count

    if hasattr(args, CYCLE_SECOND_STEP_SIZE) and args.cycle_second_step_size is not None:
        params[CYCLE_SECOND_STEP_SIZE] = args.cycle_second_step_size

    if hasattr(args, CYCLE_SECOND_STAIR_COUNT) and args.cycle_second_stair_count is not None:
        params[CYCLE_SECOND_STAIR_COUNT] = args.cycle_second_stair_count

    if hasattr(args, DECAY_STEP_SIZE) and args.decay_step_size is not None:
        params[DECAY_STEP_SIZE] = args.decay_step_size

    # 1Cycle LR params
    if hasattr(args, CYCLE_MIN_LR) and args.cycle_min_lr is not None:
        params[CYCLE_MIN_LR] = args.cycle_min_lr

    if hasattr(args, CYCLE_MAX_LR) and args.cycle_max_lr is not None:
        params[CYCLE_MAX_LR] = args.cycle_max_lr

    if hasattr(args, DECAY_LR_RATE) and args.decay_lr_rate is not None:
        params[DECAY_LR_RATE] = args.decay_lr_rate

    # 1Cycle MOM params
    if hasattr(args, CYCLE_MIN_MOM) and args.cycle_min_mom is not None:
        params[CYCLE_MIN_MOM] = args.cycle_min_mom

    if hasattr(args, CYCLE_MAX_MOM) and args.cycle_max_mom is not None:
        params[CYCLE_MAX_MOM] = args.cycle_max_mom

    if hasattr(args, DECAY_MOM_RATE) and args.decay_mom_rate is not None:
        params[DECAY_MOM_RATE] = args.decay_mom_rate


def override_warmupLR_params(args, params):
    if hasattr(args, WARMUP_MIN_LR) and args.warmup_min_lr is not None:
        params[WARMUP_MIN_LR] = args.warmup_min_lr

    if hasattr(args, WARMUP_MAX_LR) and args.warmup_max_lr is not None:
        params[WARMUP_MAX_LR] = args.warmup_max_lr

    if hasattr(args, WARMUP_NUM_STEPS) and args.warmup_num_steps is not None:
        params[WARMUP_NUM_STEPS] = args.warmup_num_steps

    if hasattr(args, WARMUP_TYPE) and args.warmup_type is not None:
        params[WARMUP_TYPE] = args.warmup_type


def override_params(args, params):
    # LR range test params
    override_lr_range_test_params(args, params)

    # 1Cycle params
    override_1cycle_params(args, params)

    # WarmupLR params
    override_warmupLR_params(args, params)


def get_config_from_args(args):
    if not hasattr(args, LR_SCHEDULE) or args.lr_schedule is None:
        return None, '--{} not specified on command line'.format(LR_SCHEDULE)

    if not args.lr_schedule in VALID_LR_SCHEDULES:
        return None, '{} is not supported LR schedule'.format(args.lr_schedule)

    config = {}
    config['type'] = args.lr_schedule
    config['params'] = {}

    if args.lr_schedule == LR_RANGE_TEST:
        override_lr_range_test_params(args, config['params'])
    elif args.lr_schedule == ONE_CYCLE:
        override_1cycle_params(args, config['params'])
    else:
        override_warmupLR_params(args, config['params'])

    return config, None


def get_lr_from_config(config):
    if not 'type' in config:
        return None, 'LR schedule type not defined in config'

    if not 'params' in config:
        return None, 'LR schedule params not defined in config'

    lr_schedule = config['type']
    lr_params = config['params']

    if not lr_schedule in VALID_LR_SCHEDULES:
        return None, '{} is not a valid LR schedule'.format(lr_schedule)

    if lr_schedule == LR_RANGE_TEST:
        return lr_params[LR_RANGE_TEST_MIN_LR], ''
    if lr_schedule == ONE_CYCLE:
        return lr_params[CYCLE_MAX_LR], ''
    # Warmup LR
    return lr_params[WARMUP_MAX_LR], ''


"""
Only optimizers that are subclass of torch.optim.Optimizer are supported. So check the passed optimizer and wrapped
optimizer to see if requirement is satisfied.
TODO: Looking under the hood to examine the wrapped optimizer is a hack that requires a better long-term fix.
"""


def get_torch_optimizer(optimizer):
    if isinstance(optimizer, Optimizer):
        return optimizer

    if hasattr(optimizer, 'optimizer') and isinstance(optimizer.optimizer, Optimizer):
        return optimizer.optimizer

    raise TypeError('{} is not a subclass of torch.optim.Optimizer'.format(type(optimizer).__name__))


class LRRangeTest(object):
    """Sets the learning rate of each parameter group according to
    learning rate range test (LRRT) policy. The policy increases learning
    rate starting from a base value with a constant frequency, as detailed in
    the paper `A disciplined approach to neural network hyper-parameters: Part1`_.

    LRRT policy is used for finding maximum LR that trains a model without divergence, and can be used to
    configure the LR boundaries for Cyclic LR schedules.

    LRRT changes the learning rate after every batch.
    `step` should be called after a batch has been used for training.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        lr_range_test_min_lr (float or list): Initial learning rate which is the
            lower boundary in the range test for each parameter group.
        lr_range_test_step_size (int): Interval of training steps to increase learning rate. Default: 2000
        lr_range_test_step_rate (float): Scaling rate for range test. Default: 1.0
        lr_range_test_staircase (bool): Scale in staircase fashion, rather than continuous. Default: False.
        last_batch_iteration (int): The index of the last batch. This parameter is used when
            resuming a training job. Since `step()` should be invoked after each
            batch instead of after each epoch, this number represents the total
            number of *batches* computed, not the total number of epochs computed.
            When last_batch_iteration=-1, the schedule is started from the beginning.
            Default: -1

    Example:
        >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
        >>> scheduler = LRRangeTest(optimizer)
        >>> data_loader = torch.utils.data.DataLoader(...)
        >>> for epoch in range(10):
        >>>     for batch in data_loader:
        >>>         train_batch(...)
        >>>         scheduler.step()

        _A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay:
        https://arxiv.org/abs/1803.09820
"""

    def __init__(self,
                 optimizer: Optimizer,
                 lr_range_test_min_lr: float = 1e-3,
                 lr_range_test_step_size: int = 2000,
                 lr_range_test_step_rate: float = 1.0,
                 lr_range_test_staircase: bool = False,
                 last_batch_iteration: int = -1):

        self.optimizer = get_torch_optimizer(optimizer)

        if isinstance(lr_range_test_min_lr, list) or isinstance(lr_range_test_min_lr, tuple):
            if len(lr_range_test_min_lr) != len(self.optimizer.param_groups):
                raise ValueError("expected {} lr_range_test_min_lr, got {}".format(len(self.optimizer.param_groups),
                                                                                   len(lr_range_test_min_lr)))
            self.min_lr = list(lr_range_test_min_lr)
        else:
            self.min_lr = [lr_range_test_min_lr] * len(self.optimizer.param_groups)

        self.step_size = lr_range_test_step_size
        self.step_rate = lr_range_test_step_rate
        self.last_batch_iteration = last_batch_iteration
        self.staircase = lr_range_test_staircase
        self.interval_fn = self._staircase_interval if lr_range_test_staircase else self._continuous_interval

        if last_batch_iteration == -1:
            self._update_optimizer(self.min_lr)

    def _staircase_interval(self):
        return math.floor(float(self.last_batch_iteration + 1) / self.step_size)

    def _continuous_interval(self):
        return float(self.last_batch_iteration + 1) / self.step_size

    def _get_increase(self):
        return (1 + self.step_rate * self.interval_fn())

    def get_lr(self):
        lr_increase = self._get_increase()
        return [lr_range_test_min_lr * lr_increase for lr_range_test_min_lr in self.min_lr]

    def get_last_lr(self):
        """ Return last computed learning rate by current scheduler.
        """
        assert getattr(self, '_last_lr', None) is not None, "need to call step() first"
        return self._last_lr

    def _update_optimizer(self, group_lrs):
        for param_group, lr in zip(self.optimizer.param_groups, group_lrs):
            param_group['lr'] = lr

    def step(self, batch_iteration=None):
        if batch_iteration is None:
            batch_iteration = self.last_batch_iteration + 1
        self.last_batch_iteration = batch_iteration
        self._update_optimizer(self.get_lr())
        self._last_lr = [group['lr'] for group in self.optimizer.param_groups]

    def state_dict(self):
        return {'last_batch_iteration': self.last_batch_iteration}

    def load_state_dict(self, sd):
        self.last_batch_iteration = sd['last_batch_iteration']


class OneCycle(object):
    """Sets the learning rate of each parameter group according to
    1Cycle learning rate policy (1CLR). 1CLR is a variation of the
    Cyclical Learning Rate (CLR) policy that involves one cycle followed by
    decay. The policy simultaneously cycles the learning rate (and momentum)
    between two boundaries with a constant frequency, as detailed in
    the paper `A disciplined approach to neural network hyper-parameters`_.

    1CLR policy changes the learning rate after every batch.
    `step` should be called after a batch has been used for training.

    This implementation was adapted from the github repo: `pytorch/pytorch`_

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        cycle_min_lr (float or list): Initial learning rate which is the
            lower boundary in the cycle for each parameter group.
        cycle_max_lr (float or list): Upper learning rate boundaries in the cycle
            for each parameter group. Functionally,
            it defines the cycle amplitude (cycle_max_lr - cycle_min_lr).
            The lr at any cycle is the sum of cycle_min_lr
            and some scaling of the amplitude; therefore
            cycle_max_lr may not actually be reached depending on
            scaling function.
        decay_lr_rate(float): Decay rate for learning rate. Default: 0.
        cycle_first_step_size (int): Number of training iterations in the
            increasing half of a cycle. Default: 2000
        cycle_second_step_size (int): Number of training iterations in the
            decreasing half of a cycle. If cycle_second_step_size is None,
            it is set to cycle_first_step_size. Default: None
        cycle_first_stair_count(int): Number of stairs in first half of cycle phase. This means
        lr/mom are changed in staircase fashion. Default 0, means staircase disabled.
        cycle_second_stair_count(int): Number of stairs in second half of cycle phase. This means
        lr/mom are changed in staircase fashion. Default 0, means staircase disabled.
        decay_step_size (int): Intervals for applying decay in decay phase. Default: 0, means no decay.
        cycle_momentum (bool): If ``True``, momentum is cycled inversely
            to learning rate between 'cycle_min_mom' and 'cycle_max_mom'.
            Default: True
        cycle_min_mom (float or list): Initial momentum which is the
            lower boundary in the cycle for each parameter group.
            Default: 0.8
        cycle_max_mom (float or list): Upper momentum boundaries in the cycle
            for each parameter group. Functionally,
            it defines the cycle amplitude (cycle_max_mom - cycle_min_mom).
            The momentum at any cycle is the difference of cycle_max_mom
            and some scaling of the amplitude; therefore
            cycle_min_mom may not actually be reached depending on
            scaling function. Default: 0.9
        decay_mom_rate (float): Decay rate for momentum. Default: 0.
        last_batch_iteration (int): The index of the last batch. This parameter is used when
            resuming a training job. Since `step()` should be invoked after each
            batch instead of after each epoch, this number represents the total
            number of *batches* computed, not the total number of epochs computed.
            When last_batch_iteration=-1, the schedule is started from the beginning.
            Default: -1

    Example:
        >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
        >>> scheduler = OneCycle(optimizer, 0.0001, 0.0010)
        >>> data_loader = torch.utils.data.DataLoader(...)
        >>> for epoch in range(10):
        >>>     for batch in data_loader:
        >>>         train_batch(...)
        >>>         scheduler.step()


    .. _A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay: https://arxiv.org/abs/1803.09820
    """

    def __init__(self,
                 optimizer,
                 cycle_min_lr,
                 cycle_max_lr,
                 decay_lr_rate=0.,
                 cycle_first_step_size=2000,
                 cycle_second_step_size=None,
                 cycle_first_stair_count=0,
                 cycle_second_stair_count=None,
                 decay_step_size=0,
                 cycle_momentum=True,
                 cycle_min_mom=0.8,
                 cycle_max_mom=0.9,
                 decay_mom_rate=0.,
                 last_batch_iteration=-1):

        self.optimizer = get_torch_optimizer(optimizer)

        # Initialize cycle shape
        self._initialize_cycle(cycle_first_step_size, cycle_second_step_size, cycle_first_stair_count,
                               cycle_second_stair_count, decay_step_size)

        # Initialize cycle lr
        self._initialize_lr(self.optimizer, cycle_min_lr, cycle_max_lr, decay_lr_rate, last_batch_iteration)

        # Initialize cyclic momentum
        self.cycle_momentum = cycle_momentum
        if cycle_momentum:
            self._initialize_momentum(self.optimizer, cycle_min_mom, cycle_max_mom, decay_mom_rate,
                                      last_batch_iteration)
        # Initialize batch iteration tracker
        self.last_batch_iteration = last_batch_iteration

    # Configure cycle shape

    def _initialize_cycle(self, cycle_first_step_size, cycle_second_step_size, cycle_first_stair_count,
                          cycle_second_stair_count, decay_step_size):
        cycle_first_step_size = float(cycle_first_step_size)
        cycle_second_step_size = float(
            cycle_second_step_size) if cycle_second_step_size is not None else cycle_first_step_size

        self.total_size = cycle_first_step_size + cycle_second_step_size
        self.step_ratio = cycle_first_step_size / self.total_size
        self.first_stair_count = cycle_first_stair_count
        self.second_stair_count = cycle_first_stair_count if cycle_second_stair_count is None else cycle_second_stair_count
        self.decay_step_size = decay_step_size

        if math.isclose(self.decay_step_size, 0):
            self.skip_lr_decay = True
            self.skip_mom_decay = True
        else:
            self.skip_lr_decay = False
            self.skip_mom_decay = False

    # Configure lr schedule
    def _initialize_lr(self, optimizer, cycle_min_lr, cycle_max_lr, decay_lr_rate, last_batch_iteration):
        self.min_lrs = [cycle_min_lr] * len(optimizer.param_groups)
        if last_batch_iteration == -1:
            for lr, group in zip(self.min_lrs, optimizer.param_groups):
                group['lr'] = lr

        self.max_lrs = [cycle_max_lr] * len(optimizer.param_groups)
        self.decay_lr_rate = decay_lr_rate

        if math.isclose(self.decay_lr_rate, 0):
            self.skip_lr_decay = True

    # Configure momentum schedule
    def _initialize_momentum(self, optimizer, cycle_min_mom, cycle_max_mom, decay_mom_rate, last_batch_iteration):
        if 'betas' not in optimizer.defaults:
            optimizer_name = type(optimizer).__name__
            logger.warn(
                f"cycle_momentum is disabled because optimizer {optimizer_name} does not support momentum, no betas attribute in defaults"
            )
            self.cycle_momentum = False
            return

        self.decay_mom_rate = decay_mom_rate
        self.min_moms = [(cycle_min_mom, 0.99)] * len(optimizer.param_groups)
        self.max_moms = [(cycle_max_mom, 0.99)] * len(optimizer.param_groups)

        if last_batch_iteration == -1:
            for momentum, group in zip(self.min_moms, optimizer.param_groups):
                group['betas'] = momentum

        if math.isclose(self.decay_mom_rate, 0):
            self.skip_mom_decay = True

    def _get_scale_factor(self):
        batch_iteration = (self.last_batch_iteration + 1)
        cycle = math.floor(1 + batch_iteration / self.total_size)
        x = 1. + batch_iteration / self.total_size - cycle
        if x <= self.step_ratio:
            scale_factor = x / self.step_ratio
        else:
            scale_factor = (x - 1) / (self.step_ratio - 1)

        return scale_factor

    def _get_cycle_mom(self):
        scale_factor = self._get_scale_factor()
        momentums = []
        for base_betas, max_betas in zip(self.min_moms, self.max_moms):
            cycle_min_mom = base_betas[0]
            cycle_max_mom = max_betas[0]
            base_height = (cycle_max_mom - cycle_min_mom) * scale_factor
            momentum = cycle_max_mom - base_height
            momentums.append((momentum, base_betas[1]))
        return momentums

    def _get_cycle_lr(self):
        scale_factor = self._get_scale_factor()
        lrs = []
        for cycle_min_lr, cycle_max_lr in zip(self.min_lrs, self.max_lrs):
            base_height = (cycle_max_lr - cycle_min_lr) * scale_factor
            lr = cycle_min_lr + base_height
            lrs.append(lr)

        return lrs

    def _get_decay_mom(self, decay_batch_iteration):
        if self.skip_mom_decay:
            return self.max_moms

        decay_interval = decay_batch_iteration / self.decay_step_size
        mom_decay_factor = (1 + self.decay_mom_rate * decay_interval)
        momentums = [(beta0 * mom_decay_factor, beta1) for beta0, beta1 in self.max_moms]

        return momentums

    def _get_decay_lr(self, decay_batch_iteration):
        """Calculates the learning rate at batch index. This function is used
        after the cycle completes and post cycle decaying of lr/mom is enabled.
        This function treats `self.last_batch_iteration` as the last batch index.
        """
        if self.skip_lr_decay:
            return self.min_lrs

        decay_interval = decay_batch_iteration / self.decay_step_size
        lr_decay_factor = (1 + self.decay_lr_rate * decay_interval)
        lrs = [cycle_min_lr / lr_decay_factor for cycle_min_lr in self.min_lrs]

        return lrs

    def get_lr(self):
        """Calculates the learning rate at batch index. This function treats
        `self.last_batch_iteration` as the last batch index.
        """
        if self.last_batch_iteration < self.total_size:
            return self._get_cycle_lr()
        return self._get_decay_lr(self.last_batch_iteration - self.total_size + 1)

    def get_mom(self):
        """Calculates the momentum at batch index. This function treats
        `self.last_batch_iteration` as the last batch index.
        """
        if not self.cycle_momentum:
            return None

        if self.last_batch_iteration < self.total_size:
            return self._get_cycle_mom()
        return self._get_decay_mom(self.last_batch_iteration - self.total_size + 1)

    def get_last_lr(self):
        """ Return last computed learning rate by current scheduler.
        """
        assert getattr(self, '_last_lr', None) is not None, "need to call step() first"
        return self._last_lr

    def step(self, batch_iteration=None):
        """ Updates the optimizer with the learning rate for the last batch index.
        `self.last_batch_iteration` is treated as the last batch index.

        If self.cycle_momentum is true, also updates optimizer momentum.
        """
        if batch_iteration is None:
            batch_iteration = self.last_batch_iteration + 1

        self.last_batch_iteration = batch_iteration
        for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
            param_group['lr'] = lr
        self._last_lr = [group['lr'] for group in self.optimizer.param_groups]

        if self.cycle_momentum:
            momentums = self.get_mom()
            for param_group, momentum in zip(self.optimizer.param_groups, momentums):
                param_group['betas'] = momentum

    def state_dict(self):
        return {'last_batch_iteration': self.last_batch_iteration}

    def load_state_dict(self, sd):
        self.last_batch_iteration = sd['last_batch_iteration']


class WarmupLR(object):
    """Increase the learning rate of each parameter group from min lr to max lr
        over warmup_num_steps steps, and then fix at max lr.

        Args:
            optimizer (Optimizer): Wrapped optimizer.
            warmup_min_lr (float or list): minimum learning rate. Default: 0
            warmup_max_lr (float or list): maximum learning rate. Default: 0.001
            warmup_num_steps (int): number of steps to warm up from min_lr to max_lr. Default: 1000
            warmup_type {‘log’, ‘linear’}: increasing function from min_lr to max_lr during warmup. Default: log
            last_batch_iteration (int): The index of the last batch. Default: -1.
        Example:
            >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
            >>> scheduler = WarmupLR(optimizer)
            >>> data_loader = torch.utils.data.DataLoader(...)
            >>> for epoch in range(10):
            >>>     for batch in data_loader:
            >>>         train_batch(...)
            >>>         scheduler.step()

    """

    def __init__(self,
                 optimizer: Optimizer,
                 warmup_min_lr: float = 0.0,
                 warmup_max_lr: float = 0.001,
                 warmup_num_steps: int = 1000,
                 warmup_type: str = WARMUP_LOG_RATE,
                 last_batch_iteration: int = -1):

        self.optimizer = get_torch_optimizer(optimizer)

        self.min_lrs = self._format_param(self.optimizer, warmup_min_lr, "min_lr")
        self.max_lrs = self._format_param(self.optimizer, warmup_max_lr, "max_lr")
        self.delta_lrs = [big - small for big, small in zip(self.max_lrs, self.min_lrs)]
        self.warmup_num_steps = max(2, warmup_num_steps)
        # Currently only support linear and log function
        if warmup_type not in {WARMUP_LOG_RATE, WARMUP_LINEAR_RATE}:
            logger.warning(f"Using unknown warmup_type: {warmup_type}. The increasing function "
                           f"is set to default (log)")
            warmup_type = WARMUP_LOG_RATE
        self.warmup_type = warmup_type
        self.inverse_log_warm_up = 1.0 / math.log(self.warmup_num_steps)
        self.last_batch_iteration = last_batch_iteration

    def get_lr(self):
        if self.last_batch_iteration < 0:
            logger.warning("Attempting to get learning rate from scheduler before it has started")
            return [0.0]
        gamma = self._get_gamma()
        return [min_lr + (delta_lr * gamma) for min_lr, delta_lr in zip(self.min_lrs, self.delta_lrs)]

    def get_last_lr(self):
        """ Return last computed learning rate by current scheduler.
        """
        assert getattr(self, '_last_lr', None) is not None, "need to call step() first"
        return self._last_lr

    def step(self, last_batch_iteration=None):
        if last_batch_iteration is None:
            last_batch_iteration = self.last_batch_iteration + 1
        self.last_batch_iteration = last_batch_iteration
        for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
            param_group['lr'] = lr
        self._last_lr = [group['lr'] for group in self.optimizer.param_groups]

    def state_dict(self):
        return {'last_batch_iteration': self.last_batch_iteration}

    def load_state_dict(self, sd):
        self.last_batch_iteration = sd['last_batch_iteration']

    def _get_gamma(self):
        if self.last_batch_iteration < self.warmup_num_steps:
            if self.warmup_type == WARMUP_LOG_RATE:
                return self.inverse_log_warm_up * math.log(self.last_batch_iteration + 1)
            elif self.warmup_type == WARMUP_LINEAR_RATE:
                return self.last_batch_iteration / self.warmup_num_steps
        return 1.0

    def _format_param(self, optimizer, param_value, param_name):
        if isinstance(param_value, list) or isinstance(param_value, tuple):
            if len(param_value) != len(optimizer.param_groups):
                raise ValueError("expected {} value for {}, got {}".format(len(optimizer.param_groups), param_name,
                                                                           FileNotFoundError(param_value)))
            return list(param_value)
        return [param_value] * len(optimizer.param_groups)


class WarmupDecayLR(WarmupLR):
    """Increase the learning rate of each parameter group from min lr to max lr
        over warmup_num_steps steps, and then decay at linear rate over the remaining training steps.

        Args:
            optimizer (Optimizer): Wrapped optimizer.
            total_num_steps (int): total number of training steps
            warmup_min_lr (float or list): minimum learning rate. Default: 0
            warmup_max_lr (float or list): maximum learning rate. Default: 0.001
            warmup_num_steps (int): number of steps to warm up from min_lr to max_lr. Default: 1000
            warmup_type {‘log’, ‘linear’}: increasing function from min_lr to max_lr during warmup. Default: log
            last_batch_iteration (int): The index of the last batch. Default: -1.
        Example:
            >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
            >>> scheduler = WarmupDecayLR(optimizer, 1000000)
            >>> data_loader = torch.utils.data.DataLoader(...)
            >>> for epoch in range(10):
            >>>     for batch in data_loader:
            >>>         train_batch(...)
            >>>         scheduler.step()

    """

    def __init__(self,
                 optimizer: Optimizer,
                 total_num_steps: int,
                 warmup_min_lr: float = 0.0,
                 warmup_max_lr: float = 0.001,
                 warmup_num_steps: int = 1000,
                 warmup_type: str = WARMUP_LOG_RATE,
                 last_batch_iteration: int = -1):

        self.total_num_steps = total_num_steps
        super(WarmupDecayLR, self).__init__(optimizer, warmup_min_lr, warmup_max_lr, warmup_num_steps, warmup_type,
                                            last_batch_iteration)
        if self.total_num_steps < self.warmup_num_steps:
            logger.warning('total_num_steps {} is less than warmup_num_steps {}'.format(
                total_num_steps, warmup_num_steps))

    def _get_gamma(self):
        if self.last_batch_iteration < self.warmup_num_steps:
            if self.warmup_type == WARMUP_LOG_RATE:
                return self.inverse_log_warm_up * math.log(self.last_batch_iteration + 1)
            elif self.warmup_type == WARMUP_LINEAR_RATE:
                return self.last_batch_iteration / self.warmup_num_steps
        return max(
            0.0,
            float(self.total_num_steps - self.last_batch_iteration) /
            float(max(1.0, self.total_num_steps - self.warmup_num_steps)))


class WarmupCosineLR(object):
    """Increase the learning rate of each parameter group from min lr ratio to max lr ratio
        over warmup_num_steps steps, and then decay at cosine rate over the remaining training steps to min cosine ratio.

        Args:
            optimizer (Optimizer): Wrapped optimizer.
            total_num_steps (int): total number of training steps
            warmup_min_ratio (float or list): warmup start learning rate ratio. Default: 0
            warmup_num_steps (int): number of steps to warm up from warmup_min_ratio to 1.0. Default: 1000
            warmup_type {‘log’, ‘linear’}: increasing function from min_lr to max_lr during warmup. Default: log
            cos_min_ratio (float): cosine end learning rate ratio. Default: 0.0001
            last_batch_iteration (int): The index of the last batch. Default: -1.
        Example:
            >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
            >>> scheduler = WarmupCosineLR(optimizer, 1000000)
            >>> data_loader = torch.utils.data.DataLoader(...)
            >>> for epoch in range(10):
            >>>     for batch in data_loader:
            >>>         train_batch(...)
            >>>         scheduler.step()

    """

    def __init__(self,
                 optimizer: Optimizer,
                 total_num_steps: int,
                 warmup_min_ratio: float = 0.0,
                 warmup_num_steps: int = 1000,
                 cos_min_ratio: float = 0.0001,
                 warmup_type: str = WARMUP_LOG_RATE,
                 last_batch_iteration: int = -1):

        self.optimizer = get_torch_optimizer(optimizer)

        self.total_num_steps = total_num_steps
        self.last_batch_iteration = last_batch_iteration
        self.cos_min_ratio = cos_min_ratio

        self.warmup_type = warmup_type
        self.warmup_min_ratio = warmup_min_ratio
        self.warmup_num_steps = max(2, warmup_num_steps)
        self.inverse_log_warm_up = 1.0 / math.log(self.warmup_num_steps)

        if self.total_num_steps < self.warmup_num_steps:
            logger.warning('total_num_steps {} is less than warmup_num_steps {}'.format(
                total_num_steps, warmup_num_steps))
        self.org_lrs = [group['lr'] for group in self.optimizer.param_groups]

    def get_lr_ratio(self):
        if self.last_batch_iteration < 0:
            logger.warning("Attempting to get learning rate from scheduler before it has started")
            return [0.0]

        if self.last_batch_iteration < self.warmup_num_steps:
            if self.warmup_type == WARMUP_LOG_RATE:
                ratio = self.inverse_log_warm_up * math.log(self.last_batch_iteration + 1)
            elif self.warmup_type == WARMUP_LINEAR_RATE:
                ratio = self.last_batch_iteration / self.warmup_num_steps
            ratio_delta = 1. - self.warmup_min_ratio
            ratio = self.warmup_min_ratio + ratio * ratio_delta
            return ratio

        real_last_step = self.last_batch_iteration - self.warmup_num_steps + 1
        real_total_steps = self.total_num_steps - self.warmup_num_steps
        ratio_delta = 1. - self.cos_min_ratio
        ratio = (1 + math.cos(math.pi * real_last_step / real_total_steps)) / 2
        ratio = max(0.0, self.cos_min_ratio + ratio_delta * ratio)
        return ratio

    def step(self, last_batch_iteration=None):
        if last_batch_iteration is None:
            last_batch_iteration = self.last_batch_iteration + 1
        self.last_batch_iteration = last_batch_iteration

        lrs = self.get_lr()
        for param_group, lr in zip(self.optimizer.param_groups, lrs):
            param_group['lr'] = lr
        self._last_lr = [group['lr'] for group in self.optimizer.param_groups]

    def get_lr(self):
        if self.last_batch_iteration < 0:
            logger.warning("Attempting to get learning rate from scheduler before it has started")
            return [0.0]
        lr_ratio = self.get_lr_ratio()
        return [org_lr * lr_ratio for org_lr in self.org_lrs]

    def get_last_lr(self):
        """ Return last computed learning rate by current scheduler.
        """
        assert getattr(self, '_last_lr', None) is not None, "need to call step() first"
        return self._last_lr

    def state_dict(self):
        return {'last_batch_iteration': self.last_batch_iteration}

    def load_state_dict(self, sd):
        self.last_batch_iteration = sd['last_batch_iteration']

    def _format_param(self, optimizer, param_value, param_name):
        if isinstance(param_value, list) or isinstance(param_value, tuple):
            if len(param_value) != len(optimizer.param_groups):
                raise ValueError("expected {} value for {}, got {}".format(len(optimizer.param_groups), param_name,
                                                                           FileNotFoundError(param_value)))
            return list(param_value)
        return [param_value] * len(optimizer.param_groups)