File size: 7,699 Bytes
0cee4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch
import math
from deepspeed.utils import logger
from deepspeed.ops.quantizer import ds_quantizer

TWO_D_PARAMS = 6


class Quantizer(object):

    def __init__(self,
                 q_groups=1,
                 q_mixed_fp16=False,
                 q_change_ratio=0.01,
                 q_type=0,
                 q_rounding=0,
                 q_verbose=False,
                 q_eigenvalue=False,
                 use_quantizer_kernel=False,
                 layer_num=0):

        self.q_groups = q_groups
        self.q_mixed_fp16 = q_mixed_fp16
        self.q_change_ratio = q_change_ratio
        self.q_type = q_type
        self.qsteps = 0
        self.quantize_real_ratio = 1.000
        self.q_verbose = q_verbose
        self.q_eigenvalue = q_eigenvalue
        self.use_quantizer_kernel = use_quantizer_kernel
        self.q_rounding = q_rounding
        self.layer_num = layer_num

    def any_precision_switch(self):
        # Temporary disabled functionality
        if self.layer_num == 0:
            return True
        result = False
        for index in range(self.layer_num):
            if self.q_start_bits[index] != self.q_target_bits:
                next_step = self.qsteps + (TWO_D_PARAMS * (self.layer_num if self.layer_num != 0 else 1))
                if next_step >= self.q_period[index]:
                    result = True
        return result

    def quantize(self, parameter_group, overflow, eigenvalue_enabled, block_eigenvalue={}):

        if overflow and not eigenvalue_enabled:
            return

        self.step()

        self.update_fp16_ratio()

        for i in range(len(parameter_group)):
            for p in parameter_group[i]:
                if len(p.size()) > 1 and hasattr(p, "start_bits") and p.start_bits:
                    param_id = id(p)
                    if block_eigenvalue is None:
                        eigenvalue, layer_id = None, 0
                    else:
                        eigenvalue, layer_id = block_eigenvalue[param_id] if param_id in block_eigenvalue else (None,
                                                                                                                0)
                    if eigenvalue is not None:
                        factor = 1 + math.floor(eigenvalue * 4)
                        p.data = self.compute_quantization(p.data, layer_id, factor)
                    else:
                        p.data = self.compute_quantization(p, layer_id)

    def step(self):
        self.qsteps += 1

    def quantize_highbit(self, inputs, num_bits):

        q_range = 2**num_bits
        input_flat = inputs.reshape(self.q_groups, -1)
        g_min = input_flat.amin(dim=-1, keepdim=True)
        g_max = input_flat.amax(dim=-1, keepdim=True)

        # Random number generator (Uniform)
        if self.q_rounding == 'nearest':
            p = 0.
        else:
            p = input_flat.new(input_flat.shape).uniform_(-0.5, 0.5)

        if self.q_type == 'symmetric':
            scale = 2 * torch.max(torch.abs(g_min), torch.abs(g_max)) / q_range
            zero_point = 0.
            input_flat = (input_flat / scale + p).round().clamp(-(q_range >> 1), (q_range >> 1) - 1) * scale
        elif self.q_type == 'asymmetric':
            scale = (g_max - g_min) / q_range
            zero_point = (g_min / scale).round() * scale
            input_flat = ((input_flat - zero_point) / scale + p).round().clamp(0, (q_range - 1)) * scale + zero_point
        output = input_flat.reshape(inputs.shape).contiguous()
        return output

    def quantize_tenary(self, inputs):
        input_flat = inputs.reshape(self.q_groups, -1)
        n = input_flat.shape[1]
        m = input_flat.norm(p=1, dim=1).div(n)
        thres = (0.7 * m).view(-1, 1)  #.expand_as(input_flat)
        pos = (input_flat > thres).type(inputs.type())
        neg = (input_flat < -thres).type(inputs.type())
        mask = (input_flat.abs() > thres).type(inputs.type())
        alpha = ((mask * input_flat).abs().sum(dim=1) / mask.sum(dim=1)).view(-1, 1)
        output = alpha * pos - alpha * neg
        output = output.reshape(inputs.shape).contiguous()
        return output

    def quantize_binary(self, inputs):
        input_flat = inputs.reshape(self.q_groups, -1)
        n = input_flat.shape[1]
        m = input_flat.norm(p=1, dim=1, keepdim=True).div(n)
        output = input_flat.sign().mul(m)
        output = output.reshape(inputs.shape).contiguous()
        return output

    def mixed_fp16_quantize(self, input, input_q, index):
        if self.q_mixed_fp16 and self.q_start_bits[index] >= (self.q_target_bits - 1):
            input_q = input * self.quantize_real_ratio + (1 - self.quantize_real_ratio) * input_q
            return input_q
        return input_q

    def compute_quantization(self, input, index=0, factor=1):
        # fixing the quantization bits based on the training steps
        # when reducing 1 bit at each period, we increase the period
        # to go slowly toward the target quantization bits
        # the period and starting bit can be configured

        if input.start_bits != input.target_bits:
            if self.qsteps >= input.q_period:
                self.quantize_real_ratio = 1.0
                input.q_period <<= 1
                input.q_period *= factor
                input.start_bits -= 1
                if self.q_verbose:
                    logger.info(
                        f'Quantization settings: current bit-precision = {input.start_bits}, step = {self.qsteps}, quantization period = {input.q_period}, index = {index}'
                    )
        assert (input.start_bits >= input.target_bits), \
            'Quantization bit is lower than target precision bits!'

        if self.use_quantizer_kernel:
            if input.start_bits <= 2:
                raise ValueError('Quantization bit is too low, please do it without quantization kernel!')
            input_q = ds_quantizer(input.data.clone(),
                                   self.q_groups,
                                   input.start_bits,
                                   asym=False if self.q_type == 'symmetric' else True,
                                   sr=False if self.q_rounding == 'nearest_neighbor' else True)
        else:
            if input.start_bits >= 3:
                input_flat = self.quantize_highbit(input.data, input.start_bits)
            elif input.start_bits == 2:
                assert self.q_type == 'symmetric', 'Quantization type is not symmetric!'
                assert self.q_rounding == 'nearest', 'Quantization rounding is not nearest_neighbor!'
                input_flat = self.quantize_tenary(input.data)
            elif input.start_bits == 1:
                assert self.q_type == 'symmetric', 'Quantization type is not symmetric!'
                assert self.q_rounding == 'nearest', 'Quantization rounding is not nearest_neighbor!'
                input_flat = self.quantize_binary(input.data)
        if self.use_quantizer_kernel:
            return self.mixed_fp16_quantize(input.data, input_q, index)
        else:
            if self.q_mixed_fp16 and input.start_bits >= input.target_bits - 1:
                input_flat = self.quantize_real_ratio * input.data + \
                              (1 - self.quantize_real_ratio) * input_flat
            return input_flat

    def update_fp16_ratio(self):
        if self.q_mixed_fp16:
            if self.quantize_real_ratio > 0:
                self.quantize_real_ratio -= self.q_change_ratio
            else:
                self.quantize_real_ratio = 0.000