File size: 19,553 Bytes
f55eed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
"""
General tests for all estimators in sklearn.
"""

# Authors: Andreas Mueller <[email protected]>
#          Gael Varoquaux [email protected]
# License: BSD 3 clause

import os
import pkgutil
import re
import sys
import warnings
from functools import partial
from inspect import isgenerator, signature
from itertools import chain, product
from pathlib import Path

import numpy as np
import pytest

import sklearn
from sklearn.cluster import (
    OPTICS,
    AffinityPropagation,
    Birch,
    MeanShift,
    SpectralClustering,
)
from sklearn.compose import ColumnTransformer
from sklearn.datasets import make_blobs
from sklearn.decomposition import PCA
from sklearn.exceptions import ConvergenceWarning, FitFailedWarning

# make it possible to discover experimental estimators when calling `all_estimators`
from sklearn.experimental import (
    enable_halving_search_cv,  # noqa
    enable_iterative_imputer,  # noqa
)
from sklearn.linear_model import LogisticRegression, Ridge
from sklearn.linear_model._base import LinearClassifierMixin
from sklearn.manifold import TSNE, Isomap, LocallyLinearEmbedding
from sklearn.model_selection import (
    GridSearchCV,
    HalvingGridSearchCV,
    HalvingRandomSearchCV,
    RandomizedSearchCV,
)
from sklearn.neighbors import (
    KNeighborsClassifier,
    KNeighborsRegressor,
    LocalOutlierFactor,
    RadiusNeighborsClassifier,
    RadiusNeighborsRegressor,
)
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.preprocessing import (
    FunctionTransformer,
    MinMaxScaler,
    OneHotEncoder,
    StandardScaler,
)
from sklearn.semi_supervised import LabelPropagation, LabelSpreading
from sklearn.utils import _IS_WASM, IS_PYPY, all_estimators
from sklearn.utils._tags import _DEFAULT_TAGS, _safe_tags
from sklearn.utils._testing import (
    SkipTest,
    ignore_warnings,
    set_random_state,
)
from sklearn.utils.estimator_checks import (
    _construct_instance,
    _get_check_estimator_ids,
    _set_checking_parameters,
    check_class_weight_balanced_linear_classifier,
    check_dataframe_column_names_consistency,
    check_estimator,
    check_get_feature_names_out_error,
    check_global_output_transform_pandas,
    check_global_set_output_transform_polars,
    check_n_features_in_after_fitting,
    check_param_validation,
    check_set_output_transform,
    check_set_output_transform_pandas,
    check_set_output_transform_polars,
    check_transformer_get_feature_names_out,
    check_transformer_get_feature_names_out_pandas,
    parametrize_with_checks,
)


def test_all_estimator_no_base_class():
    # test that all_estimators doesn't find abstract classes.
    for name, Estimator in all_estimators():
        msg = (
            "Base estimators such as {0} should not be included in all_estimators"
        ).format(name)
        assert not name.lower().startswith("base"), msg


def _sample_func(x, y=1):
    pass


@pytest.mark.parametrize(
    "val, expected",
    [
        (partial(_sample_func, y=1), "_sample_func(y=1)"),
        (_sample_func, "_sample_func"),
        (partial(_sample_func, "world"), "_sample_func"),
        (LogisticRegression(C=2.0), "LogisticRegression(C=2.0)"),
        (
            LogisticRegression(
                random_state=1,
                solver="newton-cg",
                class_weight="balanced",
                warm_start=True,
            ),
            (
                "LogisticRegression(class_weight='balanced',random_state=1,"
                "solver='newton-cg',warm_start=True)"
            ),
        ),
    ],
)
def test_get_check_estimator_ids(val, expected):
    assert _get_check_estimator_ids(val) == expected


def _tested_estimators(type_filter=None):
    for name, Estimator in all_estimators(type_filter=type_filter):
        try:
            estimator = _construct_instance(Estimator)
        except SkipTest:
            continue

        yield estimator


def _generate_pipeline():
    for final_estimator in [Ridge(), LogisticRegression()]:
        yield Pipeline(
            steps=[
                ("scaler", StandardScaler()),
                ("final_estimator", final_estimator),
            ]
        )


@parametrize_with_checks(list(chain(_tested_estimators(), _generate_pipeline())))
def test_estimators(estimator, check, request):
    # Common tests for estimator instances
    with ignore_warnings(category=(FutureWarning, ConvergenceWarning, UserWarning)):
        _set_checking_parameters(estimator)
        check(estimator)


def test_check_estimator_generate_only():
    all_instance_gen_checks = check_estimator(LogisticRegression(), generate_only=True)
    assert isgenerator(all_instance_gen_checks)


def test_configure():
    # Smoke test `python setup.py config` command run at the root of the
    # scikit-learn source tree.
    # This test requires Cython which is not necessarily there when running
    # the tests of an installed version of scikit-learn or when scikit-learn
    # is installed in editable mode by pip build isolation enabled.
    pytest.importorskip("Cython")
    cwd = os.getcwd()
    setup_path = Path(sklearn.__file__).parent.parent
    setup_filename = os.path.join(setup_path, "setup.py")
    if not os.path.exists(setup_filename):
        pytest.skip("setup.py not available")
    try:
        os.chdir(setup_path)
        old_argv = sys.argv
        sys.argv = ["setup.py", "config"]

        with warnings.catch_warnings():
            # The configuration spits out warnings when not finding
            # Blas/Atlas development headers
            warnings.simplefilter("ignore", UserWarning)
            with open("setup.py") as f:
                exec(f.read(), dict(__name__="__main__"))
    finally:
        sys.argv = old_argv
        os.chdir(cwd)


def _tested_linear_classifiers():
    classifiers = all_estimators(type_filter="classifier")

    with warnings.catch_warnings(record=True):
        for name, clazz in classifiers:
            required_parameters = getattr(clazz, "_required_parameters", [])
            if len(required_parameters):
                # FIXME
                continue

            if "class_weight" in clazz().get_params().keys() and issubclass(
                clazz, LinearClassifierMixin
            ):
                yield name, clazz


@pytest.mark.parametrize("name, Classifier", _tested_linear_classifiers())
def test_class_weight_balanced_linear_classifiers(name, Classifier):
    check_class_weight_balanced_linear_classifier(name, Classifier)


@pytest.mark.xfail(_IS_WASM, reason="importlib not supported for Pyodide packages")
@ignore_warnings
def test_import_all_consistency():
    sklearn_path = [os.path.dirname(sklearn.__file__)]
    # Smoke test to check that any name in a __all__ list is actually defined
    # in the namespace of the module or package.
    pkgs = pkgutil.walk_packages(
        path=sklearn_path, prefix="sklearn.", onerror=lambda _: None
    )
    submods = [modname for _, modname, _ in pkgs]
    for modname in submods + ["sklearn"]:
        if ".tests." in modname:
            continue
        # Avoid test suite depending on setuptools
        if "sklearn._build_utils" in modname:
            continue
        if IS_PYPY and (
            "_svmlight_format_io" in modname
            or "feature_extraction._hashing_fast" in modname
        ):
            continue
        package = __import__(modname, fromlist="dummy")
        for name in getattr(package, "__all__", ()):
            assert hasattr(package, name), "Module '{0}' has no attribute '{1}'".format(
                modname, name
            )


def test_root_import_all_completeness():
    sklearn_path = [os.path.dirname(sklearn.__file__)]
    EXCEPTIONS = ("utils", "tests", "base", "setup", "conftest")
    for _, modname, _ in pkgutil.walk_packages(
        path=sklearn_path, onerror=lambda _: None
    ):
        if "." in modname or modname.startswith("_") or modname in EXCEPTIONS:
            continue
        assert modname in sklearn.__all__


@pytest.mark.skipif(
    sklearn._BUILT_WITH_MESON,
    reason=(
        "This test fails with Meson editable installs see"
        " https://github.com/mesonbuild/meson-python/issues/557 for more details"
    ),
)
def test_all_tests_are_importable():
    # Ensure that for each contentful subpackage, there is a test directory
    # within it that is also a subpackage (i.e. a directory with __init__.py)

    HAS_TESTS_EXCEPTIONS = re.compile(r"""(?x)
                                      \.externals(\.|$)|
                                      \.tests(\.|$)|
                                      \._
                                      """)
    resource_modules = {
        "sklearn.datasets.data",
        "sklearn.datasets.descr",
        "sklearn.datasets.images",
    }
    sklearn_path = [os.path.dirname(sklearn.__file__)]
    lookup = {
        name: ispkg
        for _, name, ispkg in pkgutil.walk_packages(sklearn_path, prefix="sklearn.")
    }
    missing_tests = [
        name
        for name, ispkg in lookup.items()
        if ispkg
        and name not in resource_modules
        and not HAS_TESTS_EXCEPTIONS.search(name)
        and name + ".tests" not in lookup
    ]
    assert missing_tests == [], (
        "{0} do not have `tests` subpackages. "
        "Perhaps they require "
        "__init__.py or an add_subpackage directive "
        "in the parent "
        "setup.py".format(missing_tests)
    )


def test_class_support_removed():
    # Make sure passing classes to check_estimator or parametrize_with_checks
    # raises an error

    msg = "Passing a class was deprecated.* isn't supported anymore"
    with pytest.raises(TypeError, match=msg):
        check_estimator(LogisticRegression)

    with pytest.raises(TypeError, match=msg):
        parametrize_with_checks([LogisticRegression])


def _generate_column_transformer_instances():
    yield ColumnTransformer(
        transformers=[
            ("trans1", StandardScaler(), [0, 1]),
        ]
    )


def _generate_search_cv_instances():
    for SearchCV, (Estimator, param_grid) in product(
        [
            GridSearchCV,
            HalvingGridSearchCV,
            RandomizedSearchCV,
            HalvingGridSearchCV,
        ],
        [
            (Ridge, {"alpha": [0.1, 1.0]}),
            (LogisticRegression, {"C": [0.1, 1.0]}),
        ],
    ):
        init_params = signature(SearchCV).parameters
        extra_params = (
            {"min_resources": "smallest"} if "min_resources" in init_params else {}
        )
        search_cv = SearchCV(Estimator(), param_grid, cv=2, **extra_params)
        set_random_state(search_cv)
        yield search_cv

    for SearchCV, (Estimator, param_grid) in product(
        [
            GridSearchCV,
            HalvingGridSearchCV,
            RandomizedSearchCV,
            HalvingRandomSearchCV,
        ],
        [
            (Ridge, {"ridge__alpha": [0.1, 1.0]}),
            (LogisticRegression, {"logisticregression__C": [0.1, 1.0]}),
        ],
    ):
        init_params = signature(SearchCV).parameters
        extra_params = (
            {"min_resources": "smallest"} if "min_resources" in init_params else {}
        )
        search_cv = SearchCV(
            make_pipeline(PCA(), Estimator()), param_grid, cv=2, **extra_params
        ).set_params(error_score="raise")
        set_random_state(search_cv)
        yield search_cv


@parametrize_with_checks(list(_generate_search_cv_instances()))
def test_search_cv(estimator, check, request):
    # Common tests for SearchCV instances
    # We have a separate test because those meta-estimators can accept a
    # wide range of base estimators (classifiers, regressors, pipelines)
    with ignore_warnings(
        category=(
            FutureWarning,
            ConvergenceWarning,
            UserWarning,
            FitFailedWarning,
        )
    ):
        check(estimator)


@pytest.mark.parametrize(
    "estimator", _tested_estimators(), ids=_get_check_estimator_ids
)
def test_valid_tag_types(estimator):
    """Check that estimator tags are valid."""
    tags = _safe_tags(estimator)

    for name, tag in tags.items():
        correct_tags = type(_DEFAULT_TAGS[name])
        if name == "_xfail_checks":
            # _xfail_checks can be a dictionary
            correct_tags = (correct_tags, dict)
        assert isinstance(tag, correct_tags)


@pytest.mark.parametrize(
    "estimator", _tested_estimators(), ids=_get_check_estimator_ids
)
def test_check_n_features_in_after_fitting(estimator):
    _set_checking_parameters(estimator)
    check_n_features_in_after_fitting(estimator.__class__.__name__, estimator)


def _estimators_that_predict_in_fit():
    for estimator in _tested_estimators():
        est_params = set(estimator.get_params())
        if "oob_score" in est_params:
            yield estimator.set_params(oob_score=True, bootstrap=True)
        elif "early_stopping" in est_params:
            est = estimator.set_params(early_stopping=True, n_iter_no_change=1)
            if est.__class__.__name__ in {"MLPClassifier", "MLPRegressor"}:
                # TODO: FIX MLP to not check validation set during MLP
                yield pytest.param(
                    est, marks=pytest.mark.xfail(msg="MLP still validates in fit")
                )
            else:
                yield est
        elif "n_iter_no_change" in est_params:
            yield estimator.set_params(n_iter_no_change=1)


# NOTE: When running `check_dataframe_column_names_consistency` on a meta-estimator that
# delegates validation to a base estimator, the check is testing that the base estimator
# is checking for column name consistency.
column_name_estimators = list(
    chain(
        _tested_estimators(),
        [make_pipeline(LogisticRegression(C=1))],
        list(_generate_search_cv_instances()),
        _estimators_that_predict_in_fit(),
    )
)


@pytest.mark.parametrize(
    "estimator", column_name_estimators, ids=_get_check_estimator_ids
)
def test_pandas_column_name_consistency(estimator):
    _set_checking_parameters(estimator)
    with ignore_warnings(category=(FutureWarning)):
        with warnings.catch_warnings(record=True) as record:
            check_dataframe_column_names_consistency(
                estimator.__class__.__name__, estimator
            )
        for warning in record:
            assert "was fitted without feature names" not in str(warning.message)


# TODO: As more modules support get_feature_names_out they should be removed
# from this list to be tested
GET_FEATURES_OUT_MODULES_TO_IGNORE = [
    "ensemble",
    "kernel_approximation",
]


def _include_in_get_feature_names_out_check(transformer):
    if hasattr(transformer, "get_feature_names_out"):
        return True
    module = transformer.__module__.split(".")[1]
    return module not in GET_FEATURES_OUT_MODULES_TO_IGNORE


GET_FEATURES_OUT_ESTIMATORS = [
    est
    for est in _tested_estimators("transformer")
    if _include_in_get_feature_names_out_check(est)
]


@pytest.mark.parametrize(
    "transformer", GET_FEATURES_OUT_ESTIMATORS, ids=_get_check_estimator_ids
)
def test_transformers_get_feature_names_out(transformer):
    _set_checking_parameters(transformer)

    with ignore_warnings(category=(FutureWarning)):
        check_transformer_get_feature_names_out(
            transformer.__class__.__name__, transformer
        )
        check_transformer_get_feature_names_out_pandas(
            transformer.__class__.__name__, transformer
        )


ESTIMATORS_WITH_GET_FEATURE_NAMES_OUT = [
    est for est in _tested_estimators() if hasattr(est, "get_feature_names_out")
]


@pytest.mark.parametrize(
    "estimator", ESTIMATORS_WITH_GET_FEATURE_NAMES_OUT, ids=_get_check_estimator_ids
)
def test_estimators_get_feature_names_out_error(estimator):
    estimator_name = estimator.__class__.__name__
    _set_checking_parameters(estimator)
    check_get_feature_names_out_error(estimator_name, estimator)


@pytest.mark.parametrize(
    "Estimator",
    [est for name, est in all_estimators()],
)
def test_estimators_do_not_raise_errors_in_init_or_set_params(Estimator):
    """Check that init or set_param does not raise errors."""
    params = signature(Estimator).parameters

    smoke_test_values = [-1, 3.0, "helloworld", np.array([1.0, 4.0]), [1], {}, []]
    for value in smoke_test_values:
        new_params = {key: value for key in params}

        # Does not raise
        est = Estimator(**new_params)

        # Also do does not raise
        est.set_params(**new_params)


@pytest.mark.parametrize(
    "estimator",
    chain(
        _tested_estimators(),
        _generate_pipeline(),
        _generate_column_transformer_instances(),
        _generate_search_cv_instances(),
    ),
    ids=_get_check_estimator_ids,
)
def test_check_param_validation(estimator):
    name = estimator.__class__.__name__
    _set_checking_parameters(estimator)
    check_param_validation(name, estimator)


@pytest.mark.parametrize(
    "Estimator",
    [
        AffinityPropagation,
        Birch,
        MeanShift,
        KNeighborsClassifier,
        KNeighborsRegressor,
        RadiusNeighborsClassifier,
        RadiusNeighborsRegressor,
        LabelPropagation,
        LabelSpreading,
        OPTICS,
        SpectralClustering,
        LocalOutlierFactor,
        LocallyLinearEmbedding,
        Isomap,
        TSNE,
    ],
)
def test_f_contiguous_array_estimator(Estimator):
    # Non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/23988
    # https://github.com/scikit-learn/scikit-learn/issues/24013

    X, _ = make_blobs(n_samples=80, n_features=4, random_state=0)
    X = np.asfortranarray(X)
    y = np.round(X[:, 0])

    est = Estimator()
    est.fit(X, y)

    if hasattr(est, "transform"):
        est.transform(X)

    if hasattr(est, "predict"):
        est.predict(X)


SET_OUTPUT_ESTIMATORS = list(
    chain(
        _tested_estimators("transformer"),
        [
            make_pipeline(StandardScaler(), MinMaxScaler()),
            OneHotEncoder(sparse_output=False),
            FunctionTransformer(feature_names_out="one-to-one"),
        ],
    )
)


@pytest.mark.parametrize(
    "estimator", SET_OUTPUT_ESTIMATORS, ids=_get_check_estimator_ids
)
def test_set_output_transform(estimator):
    name = estimator.__class__.__name__
    if not hasattr(estimator, "set_output"):
        pytest.skip(
            f"Skipping check_set_output_transform for {name}: Does not support"
            " set_output API"
        )
    _set_checking_parameters(estimator)
    with ignore_warnings(category=(FutureWarning)):
        check_set_output_transform(estimator.__class__.__name__, estimator)


@pytest.mark.parametrize(
    "estimator", SET_OUTPUT_ESTIMATORS, ids=_get_check_estimator_ids
)
@pytest.mark.parametrize(
    "check_func",
    [
        check_set_output_transform_pandas,
        check_global_output_transform_pandas,
        check_set_output_transform_polars,
        check_global_set_output_transform_polars,
    ],
)
def test_set_output_transform_configured(estimator, check_func):
    name = estimator.__class__.__name__
    if not hasattr(estimator, "set_output"):
        pytest.skip(
            f"Skipping {check_func.__name__} for {name}: Does not support"
            " set_output API yet"
        )
    _set_checking_parameters(estimator)
    with ignore_warnings(category=(FutureWarning)):
        check_func(estimator.__class__.__name__, estimator)