File size: 4,289 Bytes
71e7840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from typing import Dict, Iterator, List, Optional, Tuple, Union

from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers
from tokenizers.models import BPE
from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str

from .base_tokenizer import BaseTokenizer


class ByteLevelBPETokenizer(BaseTokenizer):
    """ByteLevelBPETokenizer

    Represents a Byte-level BPE as introduced by OpenAI with their GPT-2 model
    """

    def __init__(
        self,
        vocab: Optional[Union[str, Dict[str, int]]] = None,
        merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
        add_prefix_space: bool = False,
        lowercase: bool = False,
        dropout: Optional[float] = None,
        unicode_normalizer: Optional[str] = None,
        continuing_subword_prefix: Optional[str] = None,
        end_of_word_suffix: Optional[str] = None,
        trim_offsets: bool = False,
    ):
        if vocab is not None and merges is not None:
            tokenizer = Tokenizer(
                BPE(
                    vocab,
                    merges,
                    dropout=dropout,
                    continuing_subword_prefix=continuing_subword_prefix or "",
                    end_of_word_suffix=end_of_word_suffix or "",
                )
            )
        else:
            tokenizer = Tokenizer(BPE())

        # Check for Unicode normalization first (before everything else)
        normalizers = []

        if unicode_normalizer:
            normalizers += [unicode_normalizer_from_str(unicode_normalizer)]

        if lowercase:
            normalizers += [Lowercase()]

        # Create the normalizer structure
        if len(normalizers) > 0:
            if len(normalizers) > 1:
                tokenizer.normalizer = Sequence(normalizers)
            else:
                tokenizer.normalizer = normalizers[0]

        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space)
        tokenizer.decoder = decoders.ByteLevel()
        tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets)

        parameters = {
            "model": "ByteLevelBPE",
            "add_prefix_space": add_prefix_space,
            "lowercase": lowercase,
            "dropout": dropout,
            "unicode_normalizer": unicode_normalizer,
            "continuing_subword_prefix": continuing_subword_prefix,
            "end_of_word_suffix": end_of_word_suffix,
            "trim_offsets": trim_offsets,
        }

        super().__init__(tokenizer, parameters)

    @staticmethod
    def from_file(vocab_filename: str, merges_filename: str, **kwargs):
        vocab, merges = BPE.read_file(vocab_filename, merges_filename)
        return ByteLevelBPETokenizer(vocab, merges, **kwargs)

    def train(
        self,
        files: Union[str, List[str]],
        vocab_size: int = 30000,
        min_frequency: int = 2,
        show_progress: bool = True,
        special_tokens: List[Union[str, AddedToken]] = [],
    ):
        """Train the model using the given files"""

        trainer = trainers.BpeTrainer(
            vocab_size=vocab_size,
            min_frequency=min_frequency,
            show_progress=show_progress,
            special_tokens=special_tokens,
            initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
        )
        if isinstance(files, str):
            files = [files]
        self._tokenizer.train(files, trainer=trainer)

    def train_from_iterator(
        self,
        iterator: Union[Iterator[str], Iterator[Iterator[str]]],
        vocab_size: int = 30000,
        min_frequency: int = 2,
        show_progress: bool = True,
        special_tokens: List[Union[str, AddedToken]] = [],
        length: Optional[int] = None,
    ):
        """Train the model using the given iterator"""

        trainer = trainers.BpeTrainer(
            vocab_size=vocab_size,
            min_frequency=min_frequency,
            show_progress=show_progress,
            special_tokens=special_tokens,
            initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
        )
        self._tokenizer.train_from_iterator(
            iterator,
            trainer=trainer,
            length=length,
        )