File size: 106,194 Bytes
fa6fb51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# cython: language_level = 3
import sys
from cpython.object cimport Py_LT, Py_EQ, Py_GT, Py_LE, Py_NE, Py_GE
from cython.operator cimport dereference as deref
from collections import namedtuple
from pyarrow.lib import frombytes, tobytes, ArrowInvalid
from pyarrow.lib cimport *
from pyarrow.includes.common cimport *
from pyarrow.includes.libarrow cimport *
import pyarrow.lib as lib
from pyarrow.util import _DEPR_MSG
from libcpp cimport bool as c_bool
import inspect
import numpy as np
import warnings
__pas = None
_substrait_msg = (
"The pyarrow installation is not built with support for Substrait."
)
def _pas():
global __pas
if __pas is None:
try:
import pyarrow.substrait as pas
__pas = pas
except ImportError:
raise ImportError(_substrait_msg)
return __pas
def _forbid_instantiation(klass, subclasses_instead=True):
msg = '{} is an abstract class thus cannot be initialized.'.format(
klass.__name__
)
if subclasses_instead:
subclasses = [cls.__name__ for cls in klass.__subclasses__]
msg += ' Use one of the subclasses instead: {}'.format(
', '.join(subclasses)
)
raise TypeError(msg)
cdef wrap_scalar_function(const shared_ptr[CFunction]& sp_func):
"""
Wrap a C++ scalar Function in a ScalarFunction object.
"""
cdef ScalarFunction func = ScalarFunction.__new__(ScalarFunction)
func.init(sp_func)
return func
cdef wrap_vector_function(const shared_ptr[CFunction]& sp_func):
"""
Wrap a C++ vector Function in a VectorFunction object.
"""
cdef VectorFunction func = VectorFunction.__new__(VectorFunction)
func.init(sp_func)
return func
cdef wrap_scalar_aggregate_function(const shared_ptr[CFunction]& sp_func):
"""
Wrap a C++ aggregate Function in a ScalarAggregateFunction object.
"""
cdef ScalarAggregateFunction func = \
ScalarAggregateFunction.__new__(ScalarAggregateFunction)
func.init(sp_func)
return func
cdef wrap_hash_aggregate_function(const shared_ptr[CFunction]& sp_func):
"""
Wrap a C++ aggregate Function in a HashAggregateFunction object.
"""
cdef HashAggregateFunction func = \
HashAggregateFunction.__new__(HashAggregateFunction)
func.init(sp_func)
return func
cdef wrap_meta_function(const shared_ptr[CFunction]& sp_func):
"""
Wrap a C++ meta Function in a MetaFunction object.
"""
cdef MetaFunction func = MetaFunction.__new__(MetaFunction)
func.init(sp_func)
return func
cdef wrap_function(const shared_ptr[CFunction]& sp_func):
"""
Wrap a C++ Function in a Function object.
This dispatches to specialized wrappers depending on the function kind.
"""
if sp_func.get() == NULL:
raise ValueError("Function was NULL")
cdef FunctionKind c_kind = sp_func.get().kind()
if c_kind == FunctionKind_SCALAR:
return wrap_scalar_function(sp_func)
elif c_kind == FunctionKind_VECTOR:
return wrap_vector_function(sp_func)
elif c_kind == FunctionKind_SCALAR_AGGREGATE:
return wrap_scalar_aggregate_function(sp_func)
elif c_kind == FunctionKind_HASH_AGGREGATE:
return wrap_hash_aggregate_function(sp_func)
elif c_kind == FunctionKind_META:
return wrap_meta_function(sp_func)
else:
raise NotImplementedError("Unknown Function::Kind")
cdef wrap_scalar_kernel(const CScalarKernel* c_kernel):
if c_kernel == NULL:
raise ValueError("Kernel was NULL")
cdef ScalarKernel kernel = ScalarKernel.__new__(ScalarKernel)
kernel.init(c_kernel)
return kernel
cdef wrap_vector_kernel(const CVectorKernel* c_kernel):
if c_kernel == NULL:
raise ValueError("Kernel was NULL")
cdef VectorKernel kernel = VectorKernel.__new__(VectorKernel)
kernel.init(c_kernel)
return kernel
cdef wrap_scalar_aggregate_kernel(const CScalarAggregateKernel* c_kernel):
if c_kernel == NULL:
raise ValueError("Kernel was NULL")
cdef ScalarAggregateKernel kernel = \
ScalarAggregateKernel.__new__(ScalarAggregateKernel)
kernel.init(c_kernel)
return kernel
cdef wrap_hash_aggregate_kernel(const CHashAggregateKernel* c_kernel):
if c_kernel == NULL:
raise ValueError("Kernel was NULL")
cdef HashAggregateKernel kernel = \
HashAggregateKernel.__new__(HashAggregateKernel)
kernel.init(c_kernel)
return kernel
cdef class Kernel(_Weakrefable):
"""
A kernel object.
Kernels handle the execution of a Function for a certain signature.
"""
def __init__(self):
raise TypeError("Do not call {}'s constructor directly"
.format(self.__class__.__name__))
cdef class ScalarKernel(Kernel):
cdef const CScalarKernel* kernel
cdef void init(self, const CScalarKernel* kernel) except *:
self.kernel = kernel
def __repr__(self):
return ("ScalarKernel<{}>"
.format(frombytes(self.kernel.signature.get().ToString())))
cdef class VectorKernel(Kernel):
cdef const CVectorKernel* kernel
cdef void init(self, const CVectorKernel* kernel) except *:
self.kernel = kernel
def __repr__(self):
return ("VectorKernel<{}>"
.format(frombytes(self.kernel.signature.get().ToString())))
cdef class ScalarAggregateKernel(Kernel):
cdef const CScalarAggregateKernel* kernel
cdef void init(self, const CScalarAggregateKernel* kernel) except *:
self.kernel = kernel
def __repr__(self):
return ("ScalarAggregateKernel<{}>"
.format(frombytes(self.kernel.signature.get().ToString())))
cdef class HashAggregateKernel(Kernel):
cdef const CHashAggregateKernel* kernel
cdef void init(self, const CHashAggregateKernel* kernel) except *:
self.kernel = kernel
def __repr__(self):
return ("HashAggregateKernel<{}>"
.format(frombytes(self.kernel.signature.get().ToString())))
FunctionDoc = namedtuple(
"FunctionDoc",
("summary", "description", "arg_names", "options_class",
"options_required"))
cdef class Function(_Weakrefable):
"""
A compute function.
A function implements a certain logical computation over a range of
possible input signatures. Each signature accepts a range of input
types and is implemented by a given Kernel.
Functions can be of different kinds:
* "scalar" functions apply an item-wise computation over all items
of their inputs. Each item in the output only depends on the values
of the inputs at the same position. Examples: addition, comparisons,
string predicates...
* "vector" functions apply a collection-wise computation, such that
each item in the output may depend on the values of several items
in each input. Examples: dictionary encoding, sorting, extracting
unique values...
* "scalar_aggregate" functions reduce the dimensionality of the inputs by
applying a reduction function. Examples: sum, min_max, mode...
* "hash_aggregate" functions apply a reduction function to an input
subdivided by grouping criteria. They may not be directly called.
Examples: hash_sum, hash_min_max...
* "meta" functions dispatch to other functions.
"""
cdef:
shared_ptr[CFunction] sp_func
CFunction* base_func
_kind_map = {
FunctionKind_SCALAR: "scalar",
FunctionKind_VECTOR: "vector",
FunctionKind_SCALAR_AGGREGATE: "scalar_aggregate",
FunctionKind_HASH_AGGREGATE: "hash_aggregate",
FunctionKind_META: "meta",
}
def __init__(self):
raise TypeError("Do not call {}'s constructor directly"
.format(self.__class__.__name__))
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
self.sp_func = sp_func
self.base_func = sp_func.get()
def __repr__(self):
return ("arrow.compute.Function<name={}, kind={}, "
"arity={}, num_kernels={}>"
.format(self.name, self.kind, self.arity, self.num_kernels))
def __reduce__(self):
# Reduction uses the global registry
return get_function, (self.name,)
@property
def name(self):
"""
The function name.
"""
return frombytes(self.base_func.name())
@property
def arity(self):
"""
The function arity.
If Ellipsis (i.e. `...`) is returned, the function takes a variable
number of arguments.
"""
cdef CArity arity = self.base_func.arity()
if arity.is_varargs:
return ...
else:
return arity.num_args
@property
def kind(self):
"""
The function kind.
"""
cdef FunctionKind c_kind = self.base_func.kind()
try:
return self._kind_map[c_kind]
except KeyError:
raise NotImplementedError("Unknown Function::Kind")
@property
def _doc(self):
"""
The C++-like function documentation (for internal use).
"""
cdef CFunctionDoc c_doc = self.base_func.doc()
return FunctionDoc(frombytes(c_doc.summary),
frombytes(c_doc.description),
[frombytes(s) for s in c_doc.arg_names],
frombytes(c_doc.options_class),
c_doc.options_required)
@property
def num_kernels(self):
"""
The number of kernels implementing this function.
"""
return self.base_func.num_kernels()
def call(self, args, FunctionOptions options=None,
MemoryPool memory_pool=None, length=None):
"""
Call the function on the given arguments.
Parameters
----------
args : iterable
The arguments to pass to the function. Accepted types depend
on the specific function.
options : FunctionOptions, optional
Options instance for executing this function. This should have
the right concrete options type.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.
length : int, optional
Batch size for execution, for nullary (no argument) functions. If
not passed, will be inferred from passed data.
"""
cdef:
const CFunctionOptions* c_options = NULL
CMemoryPool* pool = maybe_unbox_memory_pool(memory_pool)
CExecContext c_exec_ctx = CExecContext(pool)
CExecBatch c_batch
CDatum result
_pack_compute_args(args, &c_batch.values)
if options is not None:
c_options = options.get_options()
if length is not None:
c_batch.length = length
with nogil:
result = GetResultValue(
self.base_func.Execute(c_batch, c_options, &c_exec_ctx)
)
else:
with nogil:
result = GetResultValue(
self.base_func.Execute(c_batch.values, c_options,
&c_exec_ctx)
)
return wrap_datum(result)
cdef class ScalarFunction(Function):
cdef const CScalarFunction* func
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
Function.init(self, sp_func)
self.func = <const CScalarFunction*> sp_func.get()
@property
def kernels(self):
"""
The kernels implementing this function.
"""
cdef vector[const CScalarKernel*] kernels = self.func.kernels()
return [wrap_scalar_kernel(k) for k in kernels]
cdef class VectorFunction(Function):
cdef const CVectorFunction* func
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
Function.init(self, sp_func)
self.func = <const CVectorFunction*> sp_func.get()
@property
def kernels(self):
"""
The kernels implementing this function.
"""
cdef vector[const CVectorKernel*] kernels = self.func.kernels()
return [wrap_vector_kernel(k) for k in kernels]
cdef class ScalarAggregateFunction(Function):
cdef const CScalarAggregateFunction* func
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
Function.init(self, sp_func)
self.func = <const CScalarAggregateFunction*> sp_func.get()
@property
def kernels(self):
"""
The kernels implementing this function.
"""
cdef vector[const CScalarAggregateKernel*] kernels = \
self.func.kernels()
return [wrap_scalar_aggregate_kernel(k) for k in kernels]
cdef class HashAggregateFunction(Function):
cdef const CHashAggregateFunction* func
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
Function.init(self, sp_func)
self.func = <const CHashAggregateFunction*> sp_func.get()
@property
def kernels(self):
"""
The kernels implementing this function.
"""
cdef vector[const CHashAggregateKernel*] kernels = self.func.kernels()
return [wrap_hash_aggregate_kernel(k) for k in kernels]
cdef class MetaFunction(Function):
cdef const CMetaFunction* func
cdef void init(self, const shared_ptr[CFunction]& sp_func) except *:
Function.init(self, sp_func)
self.func = <const CMetaFunction*> sp_func.get()
# Since num_kernels is exposed, also expose a kernels property
@property
def kernels(self):
"""
The kernels implementing this function.
"""
return []
cdef _pack_compute_args(object values, vector[CDatum]* out):
for val in values:
if isinstance(val, (list, np.ndarray)):
val = lib.asarray(val)
if isinstance(val, Array):
out.push_back(CDatum((<Array> val).sp_array))
continue
elif isinstance(val, ChunkedArray):
out.push_back(CDatum((<ChunkedArray> val).sp_chunked_array))
continue
elif isinstance(val, Scalar):
out.push_back(CDatum((<Scalar> val).unwrap()))
continue
elif isinstance(val, RecordBatch):
out.push_back(CDatum((<RecordBatch> val).sp_batch))
continue
elif isinstance(val, Table):
out.push_back(CDatum((<Table> val).sp_table))
continue
else:
# Is it a Python scalar?
try:
scal = lib.scalar(val)
except Exception:
# Raise dedicated error below
pass
else:
out.push_back(CDatum((<Scalar> scal).unwrap()))
continue
raise TypeError(f"Got unexpected argument type {type(val)} "
"for compute function")
cdef class FunctionRegistry(_Weakrefable):
cdef CFunctionRegistry* registry
def __init__(self):
self.registry = GetFunctionRegistry()
def list_functions(self):
"""
Return all function names in the registry.
"""
cdef vector[c_string] names = self.registry.GetFunctionNames()
return [frombytes(name) for name in names]
def get_function(self, name):
"""
Look up a function by name in the registry.
Parameters
----------
name : str
The name of the function to lookup
"""
cdef:
c_string c_name = tobytes(name)
shared_ptr[CFunction] func
with nogil:
func = GetResultValue(self.registry.GetFunction(c_name))
return wrap_function(func)
cdef FunctionRegistry _global_func_registry = FunctionRegistry()
def function_registry():
return _global_func_registry
def get_function(name):
"""
Get a function by name.
The function is looked up in the global registry
(as returned by `function_registry()`).
Parameters
----------
name : str
The name of the function to lookup
"""
return _global_func_registry.get_function(name)
def list_functions():
"""
Return all function names in the global registry.
"""
return _global_func_registry.list_functions()
def call_function(name, args, options=None, memory_pool=None, length=None):
"""
Call a named function.
The function is looked up in the global registry
(as returned by `function_registry()`).
Parameters
----------
name : str
The name of the function to call.
args : list
The arguments to the function.
options : optional
options provided to the function.
memory_pool : MemoryPool, optional
memory pool to use for allocations during function execution.
length : int, optional
Batch size for execution, for nullary (no argument) functions. If not
passed, inferred from data.
"""
func = _global_func_registry.get_function(name)
return func.call(args, options=options, memory_pool=memory_pool,
length=length)
cdef class FunctionOptions(_Weakrefable):
__slots__ = () # avoid mistakingly creating attributes
cdef const CFunctionOptions* get_options(self) except NULL:
return self.wrapped.get()
cdef void init(self, const shared_ptr[CFunctionOptions]& sp):
self.wrapped = sp
cdef inline shared_ptr[CFunctionOptions] unwrap(self):
return self.wrapped
def serialize(self):
cdef:
CResult[shared_ptr[CBuffer]] res = self.get_options().Serialize()
shared_ptr[CBuffer] c_buf = GetResultValue(res)
return pyarrow_wrap_buffer(c_buf)
@staticmethod
def deserialize(buf):
"""
Deserialize options for a function.
Parameters
----------
buf : Buffer
The buffer containing the data to deserialize.
"""
cdef:
shared_ptr[CBuffer] c_buf = pyarrow_unwrap_buffer(buf)
CResult[unique_ptr[CFunctionOptions]] maybe_options = \
DeserializeFunctionOptions(deref(c_buf))
shared_ptr[CFunctionOptions] c_options
c_options = to_shared(GetResultValue(move(maybe_options)))
type_name = frombytes(c_options.get().options_type().type_name())
module = globals()
if type_name not in module:
raise ValueError(f'Cannot deserialize "{type_name}"')
klass = module[type_name]
options = klass.__new__(klass)
(<FunctionOptions> options).init(c_options)
return options
def __repr__(self):
type_name = self.__class__.__name__
# Remove {} so we can use our own braces
string_repr = frombytes(self.get_options().ToString())[1:-1]
return f"{type_name}({string_repr})"
def __eq__(self, FunctionOptions other):
return self.get_options().Equals(deref(other.get_options()))
def _raise_invalid_function_option(value, description, *,
exception_class=ValueError):
raise exception_class(f"\"{value}\" is not a valid {description}")
# NOTE:
# To properly expose the constructor signature of FunctionOptions
# subclasses, we use a two-level inheritance:
# 1. a C extension class that implements option validation and setting
# (won't expose function signatures because of
# https://github.com/cython/cython/issues/3873)
# 2. a Python derived class that implements the constructor
cdef class _CastOptions(FunctionOptions):
cdef CCastOptions* options
cdef void init(self, const shared_ptr[CFunctionOptions]& sp):
FunctionOptions.init(self, sp)
self.options = <CCastOptions*> self.wrapped.get()
def _set_options(self, DataType target_type, allow_int_overflow,
allow_time_truncate, allow_time_overflow,
allow_decimal_truncate, allow_float_truncate,
allow_invalid_utf8):
cdef:
shared_ptr[CCastOptions] wrapped = make_shared[CCastOptions]()
self.init(<shared_ptr[CFunctionOptions]> wrapped)
self._set_type(target_type)
if allow_int_overflow is not None:
self.allow_int_overflow = allow_int_overflow
if allow_time_truncate is not None:
self.allow_time_truncate = allow_time_truncate
if allow_time_overflow is not None:
self.allow_time_overflow = allow_time_overflow
if allow_decimal_truncate is not None:
self.allow_decimal_truncate = allow_decimal_truncate
if allow_float_truncate is not None:
self.allow_float_truncate = allow_float_truncate
if allow_invalid_utf8 is not None:
self.allow_invalid_utf8 = allow_invalid_utf8
def _set_type(self, target_type=None):
if target_type is not None:
deref(self.options).to_type = \
(<DataType> ensure_type(target_type)).sp_type
def _set_safe(self):
self.init(shared_ptr[CFunctionOptions](
new CCastOptions(CCastOptions.Safe())))
def _set_unsafe(self):
self.init(shared_ptr[CFunctionOptions](
new CCastOptions(CCastOptions.Unsafe())))
def is_safe(self):
return not (deref(self.options).allow_int_overflow or
deref(self.options).allow_time_truncate or
deref(self.options).allow_time_overflow or
deref(self.options).allow_decimal_truncate or
deref(self.options).allow_float_truncate or
deref(self.options).allow_invalid_utf8)
@property
def allow_int_overflow(self):
return deref(self.options).allow_int_overflow
@allow_int_overflow.setter
def allow_int_overflow(self, c_bool flag):
deref(self.options).allow_int_overflow = flag
@property
def allow_time_truncate(self):
return deref(self.options).allow_time_truncate
@allow_time_truncate.setter
def allow_time_truncate(self, c_bool flag):
deref(self.options).allow_time_truncate = flag
@property
def allow_time_overflow(self):
return deref(self.options).allow_time_overflow
@allow_time_overflow.setter
def allow_time_overflow(self, c_bool flag):
deref(self.options).allow_time_overflow = flag
@property
def allow_decimal_truncate(self):
return deref(self.options).allow_decimal_truncate
@allow_decimal_truncate.setter
def allow_decimal_truncate(self, c_bool flag):
deref(self.options).allow_decimal_truncate = flag
@property
def allow_float_truncate(self):
return deref(self.options).allow_float_truncate
@allow_float_truncate.setter
def allow_float_truncate(self, c_bool flag):
deref(self.options).allow_float_truncate = flag
@property
def allow_invalid_utf8(self):
return deref(self.options).allow_invalid_utf8
@allow_invalid_utf8.setter
def allow_invalid_utf8(self, c_bool flag):
deref(self.options).allow_invalid_utf8 = flag
class CastOptions(_CastOptions):
"""
Options for the `cast` function.
Parameters
----------
target_type : DataType, optional
The PyArrow type to cast to.
allow_int_overflow : bool, default False
Whether integer overflow is allowed when casting.
allow_time_truncate : bool, default False
Whether time precision truncation is allowed when casting.
allow_time_overflow : bool, default False
Whether date/time range overflow is allowed when casting.
allow_decimal_truncate : bool, default False
Whether decimal precision truncation is allowed when casting.
allow_float_truncate : bool, default False
Whether floating-point precision truncation is allowed when casting.
allow_invalid_utf8 : bool, default False
Whether producing invalid utf8 data is allowed when casting.
"""
def __init__(self, target_type=None, *, allow_int_overflow=None,
allow_time_truncate=None, allow_time_overflow=None,
allow_decimal_truncate=None, allow_float_truncate=None,
allow_invalid_utf8=None):
self._set_options(target_type, allow_int_overflow, allow_time_truncate,
allow_time_overflow, allow_decimal_truncate,
allow_float_truncate, allow_invalid_utf8)
@staticmethod
def safe(target_type=None):
""""
Create a CastOptions for a safe cast.
Parameters
----------
target_type : optional
Target cast type for the safe cast.
"""
self = CastOptions()
self._set_safe()
self._set_type(target_type)
return self
@staticmethod
def unsafe(target_type=None):
""""
Create a CastOptions for an unsafe cast.
Parameters
----------
target_type : optional
Target cast type for the unsafe cast.
"""
self = CastOptions()
self._set_unsafe()
self._set_type(target_type)
return self
def _skip_nulls_doc():
# (note the weird indent because of how the string is inserted
# by callers)
return """skip_nulls : bool, default True
Whether to skip (ignore) nulls in the input.
If False, any null in the input forces the output to null.
"""
def _min_count_doc(*, default):
return f"""min_count : int, default {default}
Minimum number of non-null values in the input. If the number
of non-null values is below `min_count`, the output is null.
"""
cdef class _ElementWiseAggregateOptions(FunctionOptions):
def _set_options(self, skip_nulls):
self.wrapped.reset(new CElementWiseAggregateOptions(skip_nulls))
class ElementWiseAggregateOptions(_ElementWiseAggregateOptions):
__doc__ = f"""
Options for element-wise aggregate functions.
Parameters
----------
{_skip_nulls_doc()}
"""
def __init__(self, *, skip_nulls=True):
self._set_options(skip_nulls)
cdef CRoundMode unwrap_round_mode(round_mode) except *:
if round_mode == "down":
return CRoundMode_DOWN
elif round_mode == "up":
return CRoundMode_UP
elif round_mode == "towards_zero":
return CRoundMode_TOWARDS_ZERO
elif round_mode == "towards_infinity":
return CRoundMode_TOWARDS_INFINITY
elif round_mode == "half_down":
return CRoundMode_HALF_DOWN
elif round_mode == "half_up":
return CRoundMode_HALF_UP
elif round_mode == "half_towards_zero":
return CRoundMode_HALF_TOWARDS_ZERO
elif round_mode == "half_towards_infinity":
return CRoundMode_HALF_TOWARDS_INFINITY
elif round_mode == "half_to_even":
return CRoundMode_HALF_TO_EVEN
elif round_mode == "half_to_odd":
return CRoundMode_HALF_TO_ODD
_raise_invalid_function_option(round_mode, "round mode")
cdef class _RoundOptions(FunctionOptions):
def _set_options(self, ndigits, round_mode):
self.wrapped.reset(
new CRoundOptions(ndigits, unwrap_round_mode(round_mode))
)
class RoundOptions(_RoundOptions):
"""
Options for rounding numbers.
Parameters
----------
ndigits : int, default 0
Number of fractional digits to round to.
round_mode : str, default "half_to_even"
Rounding and tie-breaking mode.
Accepted values are "down", "up", "towards_zero", "towards_infinity",
"half_down", "half_up", "half_towards_zero", "half_towards_infinity",
"half_to_even", "half_to_odd".
"""
def __init__(self, ndigits=0, round_mode="half_to_even"):
self._set_options(ndigits, round_mode)
cdef class _RoundBinaryOptions(FunctionOptions):
def _set_options(self, round_mode):
self.wrapped.reset(
new CRoundBinaryOptions(unwrap_round_mode(round_mode))
)
class RoundBinaryOptions(_RoundBinaryOptions):
"""
Options for rounding numbers when ndigits is provided by a second array
Parameters
----------
round_mode : str, default "half_to_even"
Rounding and tie-breaking mode.
Accepted values are "down", "up", "towards_zero", "towards_infinity",
"half_down", "half_up", "half_towards_zero", "half_towards_infinity",
"half_to_even", "half_to_odd".
"""
def __init__(self, round_mode="half_to_even"):
self._set_options(round_mode)
cdef CCalendarUnit unwrap_round_temporal_unit(unit) except *:
if unit == "nanosecond":
return CCalendarUnit_NANOSECOND
elif unit == "microsecond":
return CCalendarUnit_MICROSECOND
elif unit == "millisecond":
return CCalendarUnit_MILLISECOND
elif unit == "second":
return CCalendarUnit_SECOND
elif unit == "minute":
return CCalendarUnit_MINUTE
elif unit == "hour":
return CCalendarUnit_HOUR
elif unit == "day":
return CCalendarUnit_DAY
elif unit == "week":
return CCalendarUnit_WEEK
elif unit == "month":
return CCalendarUnit_MONTH
elif unit == "quarter":
return CCalendarUnit_QUARTER
elif unit == "year":
return CCalendarUnit_YEAR
_raise_invalid_function_option(unit, "Calendar unit")
cdef class _RoundTemporalOptions(FunctionOptions):
def _set_options(self, multiple, unit, week_starts_monday,
ceil_is_strictly_greater, calendar_based_origin):
self.wrapped.reset(
new CRoundTemporalOptions(
multiple, unwrap_round_temporal_unit(unit),
week_starts_monday, ceil_is_strictly_greater,
calendar_based_origin)
)
class RoundTemporalOptions(_RoundTemporalOptions):
"""
Options for rounding temporal values.
Parameters
----------
multiple : int, default 1
Number of units to round to.
unit : str, default "day"
The unit in which `multiple` is expressed.
Accepted values are "year", "quarter", "month", "week", "day",
"hour", "minute", "second", "millisecond", "microsecond",
"nanosecond".
week_starts_monday : bool, default True
If True, weeks start on Monday; if False, on Sunday.
ceil_is_strictly_greater : bool, default False
If True, ceil returns a rounded value that is strictly greater than the
input. For example: ceiling 1970-01-01T00:00:00 to 3 hours would
yield 1970-01-01T03:00:00 if set to True and 1970-01-01T00:00:00
if set to False.
This applies to the ceil_temporal function only.
calendar_based_origin : bool, default False
By default, the origin is 1970-01-01T00:00:00. By setting this to True,
rounding origin will be beginning of one less precise calendar unit.
E.g.: rounding to hours will use beginning of day as origin.
By default time is rounded to a multiple of units since
1970-01-01T00:00:00. By setting calendar_based_origin to true,
time will be rounded to number of units since the last greater
calendar unit.
For example: rounding to multiple of days since the beginning of the
month or to hours since the beginning of the day.
Exceptions: week and quarter are not used as greater units,
therefore days will be rounded to the beginning of the month not
week. Greater unit of week is a year.
Note that ceiling and rounding might change sorting order of an array
near greater unit change. For example rounding YYYY-mm-dd 23:00:00 to
5 hours will ceil and round to YYYY-mm-dd+1 01:00:00 and floor to
YYYY-mm-dd 20:00:00. On the other hand YYYY-mm-dd+1 00:00:00 will
ceil, round and floor to YYYY-mm-dd+1 00:00:00. This can break the
order of an already ordered array.
"""
def __init__(self, multiple=1, unit="day", *, week_starts_monday=True,
ceil_is_strictly_greater=False,
calendar_based_origin=False):
self._set_options(multiple, unit, week_starts_monday,
ceil_is_strictly_greater,
calendar_based_origin)
cdef class _RoundToMultipleOptions(FunctionOptions):
def _set_options(self, multiple, round_mode):
if not isinstance(multiple, Scalar):
try:
multiple = lib.scalar(multiple)
except Exception:
_raise_invalid_function_option(
multiple, "multiple type for RoundToMultipleOptions",
exception_class=TypeError)
self.wrapped.reset(
new CRoundToMultipleOptions(
pyarrow_unwrap_scalar(multiple), unwrap_round_mode(round_mode))
)
class RoundToMultipleOptions(_RoundToMultipleOptions):
"""
Options for rounding numbers to a multiple.
Parameters
----------
multiple : numeric scalar, default 1.0
Multiple to round to. Should be a scalar of a type compatible
with the argument to be rounded.
round_mode : str, default "half_to_even"
Rounding and tie-breaking mode.
Accepted values are "down", "up", "towards_zero", "towards_infinity",
"half_down", "half_up", "half_towards_zero", "half_towards_infinity",
"half_to_even", "half_to_odd".
"""
def __init__(self, multiple=1.0, round_mode="half_to_even"):
self._set_options(multiple, round_mode)
cdef class _JoinOptions(FunctionOptions):
_null_handling_map = {
"emit_null": CJoinNullHandlingBehavior_EMIT_NULL,
"skip": CJoinNullHandlingBehavior_SKIP,
"replace": CJoinNullHandlingBehavior_REPLACE,
}
def _set_options(self, null_handling, null_replacement):
try:
self.wrapped.reset(
new CJoinOptions(self._null_handling_map[null_handling],
tobytes(null_replacement))
)
except KeyError:
_raise_invalid_function_option(null_handling, "null handling")
class JoinOptions(_JoinOptions):
"""
Options for the `binary_join_element_wise` function.
Parameters
----------
null_handling : str, default "emit_null"
How to handle null values in the inputs.
Accepted values are "emit_null", "skip", "replace".
null_replacement : str, default ""
Replacement string to emit for null inputs if `null_handling`
is "replace".
"""
def __init__(self, null_handling="emit_null", null_replacement=""):
self._set_options(null_handling, null_replacement)
cdef class _MatchSubstringOptions(FunctionOptions):
def _set_options(self, pattern, ignore_case):
self.wrapped.reset(
new CMatchSubstringOptions(tobytes(pattern), ignore_case)
)
class MatchSubstringOptions(_MatchSubstringOptions):
"""
Options for looking for a substring.
Parameters
----------
pattern : str
Substring pattern to look for inside input values.
ignore_case : bool, default False
Whether to perform a case-insensitive match.
"""
def __init__(self, pattern, *, ignore_case=False):
self._set_options(pattern, ignore_case)
cdef class _PadOptions(FunctionOptions):
def _set_options(self, width, padding):
self.wrapped.reset(new CPadOptions(width, tobytes(padding)))
class PadOptions(_PadOptions):
"""
Options for padding strings.
Parameters
----------
width : int
Desired string length.
padding : str, default " "
What to pad the string with. Should be one byte or codepoint.
"""
def __init__(self, width, padding=' '):
self._set_options(width, padding)
cdef class _TrimOptions(FunctionOptions):
def _set_options(self, characters):
self.wrapped.reset(new CTrimOptions(tobytes(characters)))
class TrimOptions(_TrimOptions):
"""
Options for trimming characters from strings.
Parameters
----------
characters : str
Individual characters to be trimmed from the string.
"""
def __init__(self, characters):
self._set_options(tobytes(characters))
cdef class _ReplaceSubstringOptions(FunctionOptions):
def _set_options(self, pattern, replacement, max_replacements):
self.wrapped.reset(
new CReplaceSubstringOptions(tobytes(pattern),
tobytes(replacement),
max_replacements)
)
class ReplaceSubstringOptions(_ReplaceSubstringOptions):
"""
Options for replacing matched substrings.
Parameters
----------
pattern : str
Substring pattern to look for inside input values.
replacement : str
What to replace the pattern with.
max_replacements : int or None, default None
The maximum number of strings to replace in each
input value (unlimited if None).
"""
def __init__(self, pattern, replacement, *, max_replacements=None):
if max_replacements is None:
max_replacements = -1
self._set_options(pattern, replacement, max_replacements)
cdef class _ExtractRegexOptions(FunctionOptions):
def _set_options(self, pattern):
self.wrapped.reset(new CExtractRegexOptions(tobytes(pattern)))
class ExtractRegexOptions(_ExtractRegexOptions):
"""
Options for the `extract_regex` function.
Parameters
----------
pattern : str
Regular expression with named capture fields.
"""
def __init__(self, pattern):
self._set_options(pattern)
cdef class _SliceOptions(FunctionOptions):
def _set_options(self, start, stop, step):
self.wrapped.reset(new CSliceOptions(start, stop, step))
class SliceOptions(_SliceOptions):
"""
Options for slicing.
Parameters
----------
start : int
Index to start slicing at (inclusive).
stop : int or None, default None
If given, index to stop slicing at (exclusive).
If not given, slicing will stop at the end.
step : int, default 1
Slice step.
"""
def __init__(self, start, stop=None, step=1):
if stop is None:
stop = sys.maxsize
if step < 0:
stop = -stop
self._set_options(start, stop, step)
cdef class _ListSliceOptions(FunctionOptions):
cpdef _set_options(self, start, stop=None, step=1, return_fixed_size_list=None):
cdef:
CListSliceOptions* opts
opts = new CListSliceOptions(
start,
<optional[int64_t]>nullopt if stop is None
else <optional[int64_t]>(<int64_t>stop),
step,
<optional[c_bool]>nullopt if return_fixed_size_list is None
else <optional[c_bool]>(<c_bool>return_fixed_size_list)
)
self.wrapped.reset(opts)
class ListSliceOptions(_ListSliceOptions):
"""
Options for list array slicing.
Parameters
----------
start : int
Index to start slicing inner list elements (inclusive).
stop : Optional[int], default None
If given, index to stop slicing at (exclusive).
If not given, slicing will stop at the end. (NotImplemented)
step : int, default 1
Slice step.
return_fixed_size_list : Optional[bool], default None
Whether to return a FixedSizeListArray. If true _and_ stop is after
a list element's length, nulls will be appended to create the
requested slice size. The default of `None` will return the same
type which was passed in.
"""
def __init__(self, start, stop=None, step=1, return_fixed_size_list=None):
self._set_options(start, stop, step, return_fixed_size_list)
cdef class _ReplaceSliceOptions(FunctionOptions):
def _set_options(self, start, stop, replacement):
self.wrapped.reset(
new CReplaceSliceOptions(start, stop, tobytes(replacement))
)
class ReplaceSliceOptions(_ReplaceSliceOptions):
"""
Options for replacing slices.
Parameters
----------
start : int
Index to start slicing at (inclusive).
stop : int
Index to stop slicing at (exclusive).
replacement : str
What to replace the slice with.
"""
def __init__(self, start, stop, replacement):
self._set_options(start, stop, replacement)
cdef class _FilterOptions(FunctionOptions):
_null_selection_map = {
"drop": CFilterNullSelectionBehavior_DROP,
"emit_null": CFilterNullSelectionBehavior_EMIT_NULL,
}
def _set_options(self, null_selection_behavior):
try:
self.wrapped.reset(
new CFilterOptions(
self._null_selection_map[null_selection_behavior]
)
)
except KeyError:
_raise_invalid_function_option(null_selection_behavior,
"null selection behavior")
class FilterOptions(_FilterOptions):
"""
Options for selecting with a boolean filter.
Parameters
----------
null_selection_behavior : str, default "drop"
How to handle nulls in the selection filter.
Accepted values are "drop", "emit_null".
"""
def __init__(self, null_selection_behavior="drop"):
self._set_options(null_selection_behavior)
cdef class _DictionaryEncodeOptions(FunctionOptions):
_null_encoding_map = {
"encode": CDictionaryEncodeNullEncodingBehavior_ENCODE,
"mask": CDictionaryEncodeNullEncodingBehavior_MASK,
}
def _set_options(self, null_encoding):
try:
self.wrapped.reset(
new CDictionaryEncodeOptions(
self._null_encoding_map[null_encoding]
)
)
except KeyError:
_raise_invalid_function_option(null_encoding, "null encoding")
class DictionaryEncodeOptions(_DictionaryEncodeOptions):
"""
Options for dictionary encoding.
Parameters
----------
null_encoding : str, default "mask"
How to encode nulls in the input.
Accepted values are "mask" (null inputs emit a null in the indices
array), "encode" (null inputs emit a non-null index pointing to
a null value in the dictionary array).
"""
def __init__(self, null_encoding="mask"):
self._set_options(null_encoding)
cdef class _RunEndEncodeOptions(FunctionOptions):
def _set_options(self, run_end_type):
run_end_ty = ensure_type(run_end_type)
self.wrapped.reset(new CRunEndEncodeOptions(pyarrow_unwrap_data_type(run_end_ty)))
class RunEndEncodeOptions(_RunEndEncodeOptions):
"""
Options for run-end encoding.
Parameters
----------
run_end_type : DataType, default pyarrow.int32()
The data type of the run_ends array.
Accepted values are pyarrow.{int16(), int32(), int64()}.
"""
def __init__(self, run_end_type=lib.int32()):
self._set_options(run_end_type)
cdef class _TakeOptions(FunctionOptions):
def _set_options(self, boundscheck):
self.wrapped.reset(new CTakeOptions(boundscheck))
class TakeOptions(_TakeOptions):
"""
Options for the `take` and `array_take` functions.
Parameters
----------
boundscheck : boolean, default True
Whether to check indices are within bounds. If False and an
index is out of bounds, behavior is undefined (the process
may crash).
"""
def __init__(self, *, boundscheck=True):
self._set_options(boundscheck)
cdef class _MakeStructOptions(FunctionOptions):
def _set_options(self, field_names, field_nullability, field_metadata):
cdef:
vector[c_string] c_field_names
vector[shared_ptr[const CKeyValueMetadata]] c_field_metadata
for name in field_names:
c_field_names.push_back(tobytes(name))
for metadata in field_metadata:
c_field_metadata.push_back(pyarrow_unwrap_metadata(metadata))
self.wrapped.reset(
new CMakeStructOptions(c_field_names, field_nullability,
c_field_metadata)
)
class MakeStructOptions(_MakeStructOptions):
"""
Options for the `make_struct` function.
Parameters
----------
field_names : sequence of str
Names of the struct fields to create.
field_nullability : sequence of bool, optional
Nullability information for each struct field.
If omitted, all fields are nullable.
field_metadata : sequence of KeyValueMetadata, optional
Metadata for each struct field.
"""
def __init__(self, field_names=(), *, field_nullability=None,
field_metadata=None):
if field_nullability is None:
field_nullability = [True] * len(field_names)
if field_metadata is None:
field_metadata = [None] * len(field_names)
self._set_options(field_names, field_nullability, field_metadata)
cdef CFieldRef _ensure_field_ref(value) except *:
cdef:
CFieldRef field_ref
const CFieldRef* field_ref_ptr
if isinstance(value, (list, tuple)):
value = Expression._nested_field(tuple(value))
if isinstance(value, Expression):
field_ref_ptr = (<Expression>value).unwrap().field_ref()
if field_ref_ptr is NULL:
raise ValueError("Unable to get FieldRef from Expression")
field_ref = <CFieldRef>deref(field_ref_ptr)
elif isinstance(value, (bytes, str)):
if value.startswith(b'.' if isinstance(value, bytes) else '.'):
field_ref = GetResultValue(
CFieldRef.FromDotPath(<c_string>tobytes(value)))
else:
field_ref = CFieldRef(<c_string>tobytes(value))
elif isinstance(value, int):
field_ref = CFieldRef(<int> value)
else:
raise TypeError("Expected a field reference as a str or int, list of "
f"str or int, or Expression. Got {type(value)} instead.")
return field_ref
cdef class _StructFieldOptions(FunctionOptions):
def _set_options(self, indices):
if isinstance(indices, (list, tuple)) and not len(indices):
# Allow empty indices; effectively return same array
self.wrapped.reset(
new CStructFieldOptions(<vector[int]>indices))
return
cdef CFieldRef field_ref = _ensure_field_ref(indices)
self.wrapped.reset(new CStructFieldOptions(field_ref))
class StructFieldOptions(_StructFieldOptions):
"""
Options for the `struct_field` function.
Parameters
----------
indices : List[str], List[bytes], List[int], Expression, bytes, str, or int
List of indices for chained field lookup, for example `[4, 1]`
will look up the second nested field in the fifth outer field.
"""
def __init__(self, indices):
self._set_options(indices)
cdef class _ScalarAggregateOptions(FunctionOptions):
def _set_options(self, skip_nulls, min_count):
self.wrapped.reset(new CScalarAggregateOptions(skip_nulls, min_count))
class ScalarAggregateOptions(_ScalarAggregateOptions):
__doc__ = f"""
Options for scalar aggregations.
Parameters
----------
{_skip_nulls_doc()}
{_min_count_doc(default=1)}
"""
def __init__(self, *, skip_nulls=True, min_count=1):
self._set_options(skip_nulls, min_count)
cdef class _CountOptions(FunctionOptions):
_mode_map = {
"only_valid": CCountMode_ONLY_VALID,
"only_null": CCountMode_ONLY_NULL,
"all": CCountMode_ALL,
}
def _set_options(self, mode):
try:
self.wrapped.reset(new CCountOptions(self._mode_map[mode]))
except KeyError:
_raise_invalid_function_option(mode, "count mode")
class CountOptions(_CountOptions):
"""
Options for the `count` function.
Parameters
----------
mode : str, default "only_valid"
Which values to count in the input.
Accepted values are "only_valid", "only_null", "all".
"""
def __init__(self, mode="only_valid"):
self._set_options(mode)
cdef class _IndexOptions(FunctionOptions):
def _set_options(self, scalar):
self.wrapped.reset(new CIndexOptions(pyarrow_unwrap_scalar(scalar)))
class IndexOptions(_IndexOptions):
"""
Options for the `index` function.
Parameters
----------
value : Scalar
The value to search for.
"""
def __init__(self, value):
self._set_options(value)
cdef class _MapLookupOptions(FunctionOptions):
_occurrence_map = {
"all": CMapLookupOccurrence_ALL,
"first": CMapLookupOccurrence_FIRST,
"last": CMapLookupOccurrence_LAST,
}
def _set_options(self, query_key, occurrence):
try:
self.wrapped.reset(
new CMapLookupOptions(
pyarrow_unwrap_scalar(query_key),
self._occurrence_map[occurrence]
)
)
except KeyError:
_raise_invalid_function_option(occurrence,
"Should either be first, last, or all")
class MapLookupOptions(_MapLookupOptions):
"""
Options for the `map_lookup` function.
Parameters
----------
query_key : Scalar or Object can be converted to Scalar
The key to search for.
occurrence : str
The occurrence(s) to return from the Map
Accepted values are "first", "last", or "all".
"""
def __init__(self, query_key, occurrence):
if not isinstance(query_key, lib.Scalar):
query_key = lib.scalar(query_key)
self._set_options(query_key, occurrence)
cdef class _ModeOptions(FunctionOptions):
def _set_options(self, n, skip_nulls, min_count):
self.wrapped.reset(new CModeOptions(n, skip_nulls, min_count))
class ModeOptions(_ModeOptions):
__doc__ = f"""
Options for the `mode` function.
Parameters
----------
n : int, default 1
Number of distinct most-common values to return.
{_skip_nulls_doc()}
{_min_count_doc(default=0)}
"""
def __init__(self, n=1, *, skip_nulls=True, min_count=0):
self._set_options(n, skip_nulls, min_count)
cdef class _SetLookupOptions(FunctionOptions):
def _set_options(self, value_set, c_bool skip_nulls):
cdef unique_ptr[CDatum] valset
if isinstance(value_set, Array):
valset.reset(new CDatum((<Array> value_set).sp_array))
elif isinstance(value_set, ChunkedArray):
valset.reset(
new CDatum((<ChunkedArray> value_set).sp_chunked_array)
)
elif isinstance(value_set, Scalar):
valset.reset(new CDatum((<Scalar> value_set).unwrap()))
else:
_raise_invalid_function_option(value_set, "value set",
exception_class=TypeError)
self.wrapped.reset(new CSetLookupOptions(deref(valset), skip_nulls))
class SetLookupOptions(_SetLookupOptions):
"""
Options for the `is_in` and `index_in` functions.
Parameters
----------
value_set : Array
Set of values to look for in the input.
skip_nulls : bool, default False
If False, nulls in the input are matched in the value_set just
like regular values.
If True, nulls in the input always fail matching.
"""
def __init__(self, value_set, *, skip_nulls=False):
self._set_options(value_set, skip_nulls)
cdef class _StrptimeOptions(FunctionOptions):
_unit_map = {
"s": TimeUnit_SECOND,
"ms": TimeUnit_MILLI,
"us": TimeUnit_MICRO,
"ns": TimeUnit_NANO,
}
def _set_options(self, format, unit, error_is_null):
try:
self.wrapped.reset(
new CStrptimeOptions(tobytes(format), self._unit_map[unit],
error_is_null)
)
except KeyError:
_raise_invalid_function_option(unit, "time unit")
class StrptimeOptions(_StrptimeOptions):
"""
Options for the `strptime` function.
Parameters
----------
format : str
Pattern for parsing input strings as timestamps, such as "%Y/%m/%d".
Note that the semantics of the format follow the C/C++ strptime, not the Python one.
There are differences in behavior, for example how the "%y" placeholder
handles years with less than four digits.
unit : str
Timestamp unit of the output.
Accepted values are "s", "ms", "us", "ns".
error_is_null : boolean, default False
Return null on parsing errors if true or raise if false.
"""
def __init__(self, format, unit, error_is_null=False):
self._set_options(format, unit, error_is_null)
cdef class _StrftimeOptions(FunctionOptions):
def _set_options(self, format, locale):
self.wrapped.reset(
new CStrftimeOptions(tobytes(format), tobytes(locale))
)
class StrftimeOptions(_StrftimeOptions):
"""
Options for the `strftime` function.
Parameters
----------
format : str, default "%Y-%m-%dT%H:%M:%S"
Pattern for formatting input values.
locale : str, default "C"
Locale to use for locale-specific format specifiers.
"""
def __init__(self, format="%Y-%m-%dT%H:%M:%S", locale="C"):
self._set_options(format, locale)
cdef class _DayOfWeekOptions(FunctionOptions):
def _set_options(self, count_from_zero, week_start):
self.wrapped.reset(
new CDayOfWeekOptions(count_from_zero, week_start)
)
class DayOfWeekOptions(_DayOfWeekOptions):
"""
Options for the `day_of_week` function.
Parameters
----------
count_from_zero : bool, default True
If True, number days from 0, otherwise from 1.
week_start : int, default 1
Which day does the week start with (Monday=1, Sunday=7).
How this value is numbered is unaffected by `count_from_zero`.
"""
def __init__(self, *, count_from_zero=True, week_start=1):
self._set_options(count_from_zero, week_start)
cdef class _WeekOptions(FunctionOptions):
def _set_options(self, week_starts_monday, count_from_zero,
first_week_is_fully_in_year):
self.wrapped.reset(
new CWeekOptions(week_starts_monday, count_from_zero,
first_week_is_fully_in_year)
)
class WeekOptions(_WeekOptions):
"""
Options for the `week` function.
Parameters
----------
week_starts_monday : bool, default True
If True, weeks start on Monday; if False, on Sunday.
count_from_zero : bool, default False
If True, dates at the start of a year that fall into the last week
of the previous year emit 0.
If False, they emit 52 or 53 (the week number of the last week
of the previous year).
first_week_is_fully_in_year : bool, default False
If True, week number 0 is fully in January.
If False, a week that begins on December 29, 30 or 31 is considered
to be week number 0 of the following year.
"""
def __init__(self, *, week_starts_monday=True, count_from_zero=False,
first_week_is_fully_in_year=False):
self._set_options(week_starts_monday,
count_from_zero, first_week_is_fully_in_year)
cdef class _AssumeTimezoneOptions(FunctionOptions):
_ambiguous_map = {
"raise": CAssumeTimezoneAmbiguous_AMBIGUOUS_RAISE,
"earliest": CAssumeTimezoneAmbiguous_AMBIGUOUS_EARLIEST,
"latest": CAssumeTimezoneAmbiguous_AMBIGUOUS_LATEST,
}
_nonexistent_map = {
"raise": CAssumeTimezoneNonexistent_NONEXISTENT_RAISE,
"earliest": CAssumeTimezoneNonexistent_NONEXISTENT_EARLIEST,
"latest": CAssumeTimezoneNonexistent_NONEXISTENT_LATEST,
}
def _set_options(self, timezone, ambiguous, nonexistent):
if ambiguous not in self._ambiguous_map:
_raise_invalid_function_option(ambiguous,
"'ambiguous' timestamp handling")
if nonexistent not in self._nonexistent_map:
_raise_invalid_function_option(nonexistent,
"'nonexistent' timestamp handling")
self.wrapped.reset(
new CAssumeTimezoneOptions(tobytes(timezone),
self._ambiguous_map[ambiguous],
self._nonexistent_map[nonexistent])
)
class AssumeTimezoneOptions(_AssumeTimezoneOptions):
"""
Options for the `assume_timezone` function.
Parameters
----------
timezone : str
Timezone to assume for the input.
ambiguous : str, default "raise"
How to handle timestamps that are ambiguous in the assumed timezone.
Accepted values are "raise", "earliest", "latest".
nonexistent : str, default "raise"
How to handle timestamps that don't exist in the assumed timezone.
Accepted values are "raise", "earliest", "latest".
"""
def __init__(self, timezone, *, ambiguous="raise", nonexistent="raise"):
self._set_options(timezone, ambiguous, nonexistent)
cdef class _NullOptions(FunctionOptions):
def _set_options(self, nan_is_null):
self.wrapped.reset(new CNullOptions(nan_is_null))
class NullOptions(_NullOptions):
"""
Options for the `is_null` function.
Parameters
----------
nan_is_null : bool, default False
Whether floating-point NaN values are considered null.
"""
def __init__(self, *, nan_is_null=False):
self._set_options(nan_is_null)
cdef class _VarianceOptions(FunctionOptions):
def _set_options(self, ddof, skip_nulls, min_count):
self.wrapped.reset(new CVarianceOptions(ddof, skip_nulls, min_count))
class VarianceOptions(_VarianceOptions):
__doc__ = f"""
Options for the `variance` and `stddev` functions.
Parameters
----------
ddof : int, default 0
Number of degrees of freedom.
{_skip_nulls_doc()}
{_min_count_doc(default=0)}
"""
def __init__(self, *, ddof=0, skip_nulls=True, min_count=0):
self._set_options(ddof, skip_nulls, min_count)
cdef class _SplitOptions(FunctionOptions):
def _set_options(self, max_splits, reverse):
self.wrapped.reset(new CSplitOptions(max_splits, reverse))
class SplitOptions(_SplitOptions):
"""
Options for splitting on whitespace.
Parameters
----------
max_splits : int or None, default None
Maximum number of splits for each input value (unlimited if None).
reverse : bool, default False
Whether to start splitting from the end of each input value.
This only has an effect if `max_splits` is not None.
"""
def __init__(self, *, max_splits=None, reverse=False):
if max_splits is None:
max_splits = -1
self._set_options(max_splits, reverse)
cdef class _SplitPatternOptions(FunctionOptions):
def _set_options(self, pattern, max_splits, reverse):
self.wrapped.reset(
new CSplitPatternOptions(tobytes(pattern), max_splits, reverse)
)
class SplitPatternOptions(_SplitPatternOptions):
"""
Options for splitting on a string pattern.
Parameters
----------
pattern : str
String pattern to split on.
max_splits : int or None, default None
Maximum number of splits for each input value (unlimited if None).
reverse : bool, default False
Whether to start splitting from the end of each input value.
This only has an effect if `max_splits` is not None.
"""
def __init__(self, pattern, *, max_splits=None, reverse=False):
if max_splits is None:
max_splits = -1
self._set_options(pattern, max_splits, reverse)
cdef CSortOrder unwrap_sort_order(order) except *:
if order == "ascending":
return CSortOrder_Ascending
elif order == "descending":
return CSortOrder_Descending
_raise_invalid_function_option(order, "sort order")
cdef CNullPlacement unwrap_null_placement(null_placement) except *:
if null_placement == "at_start":
return CNullPlacement_AtStart
elif null_placement == "at_end":
return CNullPlacement_AtEnd
_raise_invalid_function_option(null_placement, "null placement")
cdef class _PartitionNthOptions(FunctionOptions):
def _set_options(self, pivot, null_placement):
self.wrapped.reset(new CPartitionNthOptions(
pivot, unwrap_null_placement(null_placement)))
class PartitionNthOptions(_PartitionNthOptions):
"""
Options for the `partition_nth_indices` function.
Parameters
----------
pivot : int
Index into the equivalent sorted array of the pivot element.
null_placement : str, default "at_end"
Where nulls in the input should be partitioned.
Accepted values are "at_start", "at_end".
"""
def __init__(self, pivot, *, null_placement="at_end"):
self._set_options(pivot, null_placement)
cdef class _CumulativeOptions(FunctionOptions):
def _set_options(self, start, skip_nulls):
if start is None:
self.wrapped.reset(new CCumulativeOptions(skip_nulls))
elif isinstance(start, Scalar):
self.wrapped.reset(new CCumulativeOptions(
pyarrow_unwrap_scalar(start), skip_nulls))
else:
try:
start = lib.scalar(start)
self.wrapped.reset(new CCumulativeOptions(
pyarrow_unwrap_scalar(start), skip_nulls))
except Exception:
_raise_invalid_function_option(
start, "`start` type for CumulativeOptions", TypeError)
class CumulativeOptions(_CumulativeOptions):
"""
Options for `cumulative_*` functions.
- cumulative_sum
- cumulative_sum_checked
- cumulative_prod
- cumulative_prod_checked
- cumulative_max
- cumulative_min
Parameters
----------
start : Scalar, default None
Starting value for the cumulative operation. If none is given,
a default value depending on the operation and input type is used.
skip_nulls : bool, default False
When false, the first encountered null is propagated.
"""
def __init__(self, start=None, *, skip_nulls=False):
self._set_options(start, skip_nulls)
class CumulativeSumOptions(_CumulativeOptions):
"""
Options for `cumulative_sum` function.
Parameters
----------
start : Scalar, default None
Starting value for sum computation
skip_nulls : bool, default False
When false, the first encountered null is propagated.
"""
def __init__(self, start=None, *, skip_nulls=False):
warnings.warn(
_DEPR_MSG.format("CumulativeSumOptions", "14.0", "CumulativeOptions"),
FutureWarning,
stacklevel=2
)
self._set_options(start, skip_nulls)
cdef class _PairwiseOptions(FunctionOptions):
def _set_options(self, period):
self.wrapped.reset(new CPairwiseOptions(period))
class PairwiseOptions(_PairwiseOptions):
"""
Options for `pairwise` functions.
Parameters
----------
period : int, default 1
Period for applying the period function.
"""
def __init__(self, period=1):
self._set_options(period)
cdef class _ArraySortOptions(FunctionOptions):
def _set_options(self, order, null_placement):
self.wrapped.reset(new CArraySortOptions(
unwrap_sort_order(order), unwrap_null_placement(null_placement)))
class ArraySortOptions(_ArraySortOptions):
"""
Options for the `array_sort_indices` function.
Parameters
----------
order : str, default "ascending"
Which order to sort values in.
Accepted values are "ascending", "descending".
null_placement : str, default "at_end"
Where nulls in the input should be sorted.
Accepted values are "at_start", "at_end".
"""
def __init__(self, order="ascending", *, null_placement="at_end"):
self._set_options(order, null_placement)
cdef class _SortOptions(FunctionOptions):
def _set_options(self, sort_keys, null_placement):
cdef vector[CSortKey] c_sort_keys
for name, order in sort_keys:
c_sort_keys.push_back(
CSortKey(_ensure_field_ref(name), unwrap_sort_order(order))
)
self.wrapped.reset(new CSortOptions(
c_sort_keys, unwrap_null_placement(null_placement)))
class SortOptions(_SortOptions):
"""
Options for the `sort_indices` function.
Parameters
----------
sort_keys : sequence of (name, order) tuples
Names of field/column keys to sort the input on,
along with the order each field/column is sorted in.
Accepted values for `order` are "ascending", "descending".
The field name can be a string column name or expression.
null_placement : str, default "at_end"
Where nulls in input should be sorted, only applying to
columns/fields mentioned in `sort_keys`.
Accepted values are "at_start", "at_end".
"""
def __init__(self, sort_keys=(), *, null_placement="at_end"):
self._set_options(sort_keys, null_placement)
cdef class _SelectKOptions(FunctionOptions):
def _set_options(self, k, sort_keys):
cdef vector[CSortKey] c_sort_keys
for name, order in sort_keys:
c_sort_keys.push_back(
CSortKey(_ensure_field_ref(name), unwrap_sort_order(order))
)
self.wrapped.reset(new CSelectKOptions(k, c_sort_keys))
class SelectKOptions(_SelectKOptions):
"""
Options for top/bottom k-selection.
Parameters
----------
k : int
Number of leading values to select in sorted order
(i.e. the largest values if sort order is "descending",
the smallest otherwise).
sort_keys : sequence of (name, order) tuples
Names of field/column keys to sort the input on,
along with the order each field/column is sorted in.
Accepted values for `order` are "ascending", "descending".
The field name can be a string column name or expression.
"""
def __init__(self, k, sort_keys):
self._set_options(k, sort_keys)
cdef class _QuantileOptions(FunctionOptions):
_interp_map = {
"linear": CQuantileInterp_LINEAR,
"lower": CQuantileInterp_LOWER,
"higher": CQuantileInterp_HIGHER,
"nearest": CQuantileInterp_NEAREST,
"midpoint": CQuantileInterp_MIDPOINT,
}
def _set_options(self, quantiles, interp, skip_nulls, min_count):
try:
self.wrapped.reset(
new CQuantileOptions(quantiles, self._interp_map[interp],
skip_nulls, min_count)
)
except KeyError:
_raise_invalid_function_option(interp, "quantile interpolation")
class QuantileOptions(_QuantileOptions):
__doc__ = f"""
Options for the `quantile` function.
Parameters
----------
q : double or sequence of double, default 0.5
Probability levels of the quantiles to compute. All values must be in
[0, 1].
interpolation : str, default "linear"
How to break ties between competing data points for a given quantile.
Accepted values are:
- "linear": compute an interpolation
- "lower": always use the smallest of the two data points
- "higher": always use the largest of the two data points
- "nearest": select the data point that is closest to the quantile
- "midpoint": compute the (unweighted) mean of the two data points
{_skip_nulls_doc()}
{_min_count_doc(default=0)}
"""
def __init__(self, q=0.5, *, interpolation="linear", skip_nulls=True,
min_count=0):
if not isinstance(q, (list, tuple, np.ndarray)):
q = [q]
self._set_options(q, interpolation, skip_nulls, min_count)
cdef class _TDigestOptions(FunctionOptions):
def _set_options(self, quantiles, delta, buffer_size, skip_nulls,
min_count):
self.wrapped.reset(
new CTDigestOptions(quantiles, delta, buffer_size, skip_nulls,
min_count)
)
class TDigestOptions(_TDigestOptions):
__doc__ = f"""
Options for the `tdigest` function.
Parameters
----------
q : double or sequence of double, default 0.5
Probability levels of the quantiles to approximate. All values must be
in [0, 1].
delta : int, default 100
Compression parameter for the T-digest algorithm.
buffer_size : int, default 500
Buffer size for the T-digest algorithm.
{_skip_nulls_doc()}
{_min_count_doc(default=0)}
"""
def __init__(self, q=0.5, *, delta=100, buffer_size=500, skip_nulls=True,
min_count=0):
if not isinstance(q, (list, tuple, np.ndarray)):
q = [q]
self._set_options(q, delta, buffer_size, skip_nulls, min_count)
cdef class _Utf8NormalizeOptions(FunctionOptions):
_form_map = {
"NFC": CUtf8NormalizeForm_NFC,
"NFKC": CUtf8NormalizeForm_NFKC,
"NFD": CUtf8NormalizeForm_NFD,
"NFKD": CUtf8NormalizeForm_NFKD,
}
def _set_options(self, form):
try:
self.wrapped.reset(
new CUtf8NormalizeOptions(self._form_map[form])
)
except KeyError:
_raise_invalid_function_option(form,
"Unicode normalization form")
class Utf8NormalizeOptions(_Utf8NormalizeOptions):
"""
Options for the `utf8_normalize` function.
Parameters
----------
form : str
Unicode normalization form.
Accepted values are "NFC", "NFKC", "NFD", NFKD".
"""
def __init__(self, form):
self._set_options(form)
cdef class _RandomOptions(FunctionOptions):
def _set_options(self, initializer):
if initializer == 'system':
self.wrapped.reset(new CRandomOptions(
CRandomOptions.FromSystemRandom()))
return
if not isinstance(initializer, int):
try:
initializer = hash(initializer)
except TypeError:
raise TypeError(
f"initializer should be 'system', an integer, "
f"or a hashable object; got {initializer!r}")
if initializer < 0:
initializer += 2**64
self.wrapped.reset(new CRandomOptions(
CRandomOptions.FromSeed(initializer)))
class RandomOptions(_RandomOptions):
"""
Options for random generation.
Parameters
----------
initializer : int or str
How to initialize the underlying random generator.
If an integer is given, it is used as a seed.
If "system" is given, the random generator is initialized with
a system-specific source of (hopefully true) randomness.
Other values are invalid.
"""
def __init__(self, *, initializer='system'):
self._set_options(initializer)
cdef class _RankOptions(FunctionOptions):
_tiebreaker_map = {
"min": CRankOptionsTiebreaker_Min,
"max": CRankOptionsTiebreaker_Max,
"first": CRankOptionsTiebreaker_First,
"dense": CRankOptionsTiebreaker_Dense,
}
def _set_options(self, sort_keys, null_placement, tiebreaker):
cdef vector[CSortKey] c_sort_keys
if isinstance(sort_keys, str):
c_sort_keys.push_back(
CSortKey(_ensure_field_ref(""), unwrap_sort_order(sort_keys))
)
else:
for name, order in sort_keys:
c_sort_keys.push_back(
CSortKey(_ensure_field_ref(name), unwrap_sort_order(order))
)
try:
self.wrapped.reset(
new CRankOptions(c_sort_keys,
unwrap_null_placement(null_placement),
self._tiebreaker_map[tiebreaker])
)
except KeyError:
_raise_invalid_function_option(tiebreaker, "tiebreaker")
class RankOptions(_RankOptions):
"""
Options for the `rank` function.
Parameters
----------
sort_keys : sequence of (name, order) tuples or str, default "ascending"
Names of field/column keys to sort the input on,
along with the order each field/column is sorted in.
Accepted values for `order` are "ascending", "descending".
The field name can be a string column name or expression.
Alternatively, one can simply pass "ascending" or "descending" as a string
if the input is array-like.
null_placement : str, default "at_end"
Where nulls in input should be sorted.
Accepted values are "at_start", "at_end".
tiebreaker : str, default "first"
Configure how ties between equal values are handled.
Accepted values are:
- "min": Ties get the smallest possible rank in sorted order.
- "max": Ties get the largest possible rank in sorted order.
- "first": Ranks are assigned in order of when ties appear in the
input. This ensures the ranks are a stable permutation
of the input.
- "dense": The ranks span a dense [1, M] interval where M is the
number of distinct values in the input.
"""
def __init__(self, sort_keys="ascending", *, null_placement="at_end", tiebreaker="first"):
self._set_options(sort_keys, null_placement, tiebreaker)
cdef class Expression(_Weakrefable):
"""
A logical expression to be evaluated against some input.
To create an expression:
- Use the factory function ``pyarrow.compute.scalar()`` to create a
scalar (not necessary when combined, see example below).
- Use the factory function ``pyarrow.compute.field()`` to reference
a field (column in table).
- Compare fields and scalars with ``<``, ``<=``, ``==``, ``>=``, ``>``.
- Combine expressions using python operators ``&`` (logical and),
``|`` (logical or) and ``~`` (logical not).
Note: python keywords ``and``, ``or`` and ``not`` cannot be used
to combine expressions.
- Create expression predicates using Expression methods such as
``pyarrow.compute.Expression.isin()``.
Examples
--------
>>> import pyarrow.compute as pc
>>> (pc.field("a") < pc.scalar(3)) | (pc.field("b") > 7)
<pyarrow.compute.Expression ((a < 3) or (b > 7))>
>>> pc.field('a') != 3
<pyarrow.compute.Expression (a != 3)>
>>> pc.field('a').isin([1, 2, 3])
<pyarrow.compute.Expression is_in(a, {value_set=int64:[
1,
2,
3
], null_matching_behavior=MATCH})>
"""
def __init__(self):
msg = 'Expression is an abstract class thus cannot be initialized.'
raise TypeError(msg)
cdef void init(self, const CExpression& sp):
self.expr = sp
@staticmethod
cdef wrap(const CExpression& sp):
cdef Expression self = Expression.__new__(Expression)
self.init(sp)
return self
cdef inline CExpression unwrap(self):
return self.expr
def equals(self, Expression other):
"""
Parameters
----------
other : pyarrow.dataset.Expression
Returns
-------
bool
"""
return self.expr.Equals(other.unwrap())
def __str__(self):
return frombytes(self.expr.ToString())
def __repr__(self):
return "<pyarrow.compute.{0} {1}>".format(
self.__class__.__name__, str(self)
)
@staticmethod
def from_substrait(object buffer not None):
"""
Deserialize an expression from Substrait
The serialized message must be an ExtendedExpression message that has
only a single expression. The name of the expression and the schema
the expression was bound to will be ignored. Use
pyarrow.substrait.deserialize_expressions if this information is needed
or if the message might contain multiple expressions.
Parameters
----------
buffer : bytes or Buffer
The Substrait message to deserialize
Returns
-------
Expression
The deserialized expression
"""
expressions = _pas().deserialize_expressions(buffer).expressions
if len(expressions) == 0:
raise ValueError("Substrait message did not contain any expressions")
if len(expressions) > 1:
raise ValueError(
"Substrait message contained multiple expressions. Use pyarrow.substrait.deserialize_expressions instead")
return next(iter(expressions.values()))
def to_substrait(self, Schema schema not None, c_bool allow_arrow_extensions=False):
"""
Serialize the expression using Substrait
The expression will be serialized as an ExtendedExpression message that has a
single expression named "expression"
Parameters
----------
schema : Schema
The input schema the expression will be bound to
allow_arrow_extensions : bool, default False
If False then only functions that are part of the core Substrait function
definitions will be allowed. Set this to True to allow pyarrow-specific functions
but the result may not be accepted by other compute libraries.
Returns
-------
Buffer
A buffer containing the serialized Protobuf plan.
"""
return _pas().serialize_expressions([self], ["expression"], schema, allow_arrow_extensions=allow_arrow_extensions)
@staticmethod
def _deserialize(Buffer buffer not None):
return Expression.wrap(GetResultValue(CDeserializeExpression(
pyarrow_unwrap_buffer(buffer))))
def __reduce__(self):
buffer = pyarrow_wrap_buffer(GetResultValue(
CSerializeExpression(self.expr)))
return Expression._deserialize, (buffer,)
@staticmethod
cdef Expression _expr_or_scalar(object expr):
if isinstance(expr, Expression):
return (<Expression> expr)
return (<Expression> Expression._scalar(expr))
@staticmethod
def _call(str function_name, list arguments, FunctionOptions options=None):
cdef:
vector[CExpression] c_arguments
shared_ptr[CFunctionOptions] c_options
for argument in arguments:
if not isinstance(argument, Expression):
# Attempt to help convert this to an expression
try:
argument = Expression._scalar(argument)
except ArrowInvalid:
raise TypeError(
"only other expressions allowed as arguments")
c_arguments.push_back((<Expression> argument).expr)
if options is not None:
c_options = options.unwrap()
return Expression.wrap(CMakeCallExpression(
tobytes(function_name), move(c_arguments), c_options))
def __richcmp__(self, other, int op):
other = Expression._expr_or_scalar(other)
return Expression._call({
Py_EQ: "equal",
Py_NE: "not_equal",
Py_GT: "greater",
Py_GE: "greater_equal",
Py_LT: "less",
Py_LE: "less_equal",
}[op], [self, other])
def __bool__(self):
raise ValueError(
"An Expression cannot be evaluated to python True or False. "
"If you are using the 'and', 'or' or 'not' operators, use '&', "
"'|' or '~' instead."
)
def __invert__(self):
return Expression._call("invert", [self])
def __and__(Expression self, other):
other = Expression._expr_or_scalar(other)
return Expression._call("and_kleene", [self, other])
def __or__(Expression self, other):
other = Expression._expr_or_scalar(other)
return Expression._call("or_kleene", [self, other])
def __add__(Expression self, other):
other = Expression._expr_or_scalar(other)
return Expression._call("add_checked", [self, other])
def __mul__(Expression self, other):
other = Expression._expr_or_scalar(other)
return Expression._call("multiply_checked", [self, other])
def __sub__(Expression self, other):
other = Expression._expr_or_scalar(other)
return Expression._call("subtract_checked", [self, other])
def __truediv__(Expression self, other):
other = Expression._expr_or_scalar(other)
return Expression._call("divide_checked", [self, other])
def is_valid(self):
"""
Check whether the expression is not-null (valid).
This creates a new expression equivalent to calling the
`is_valid` compute function on this expression.
Returns
-------
is_valid : Expression
"""
return Expression._call("is_valid", [self])
def is_null(self, bint nan_is_null=False):
"""
Check whether the expression is null.
This creates a new expression equivalent to calling the
`is_null` compute function on this expression.
Parameters
----------
nan_is_null : boolean, default False
Whether floating-point NaNs are considered null.
Returns
-------
is_null : Expression
"""
options = NullOptions(nan_is_null=nan_is_null)
return Expression._call("is_null", [self], options)
def is_nan(self):
"""
Check whether the expression is NaN.
This creates a new expression equivalent to calling the
`is_nan` compute function on this expression.
Returns
-------
is_nan : Expression
"""
return Expression._call("is_nan", [self])
def cast(self, type=None, safe=None, options=None):
"""
Explicitly set or change the expression's data type.
This creates a new expression equivalent to calling the
`cast` compute function on this expression.
Parameters
----------
type : DataType, default None
Type to cast array to.
safe : boolean, default True
Whether to check for conversion errors such as overflow.
options : CastOptions, default None
Additional checks pass by CastOptions
Returns
-------
cast : Expression
"""
safe_vars_passed = (safe is not None) or (type is not None)
if safe_vars_passed and (options is not None):
raise ValueError("Must either pass values for 'type' and 'safe' or pass a "
"value for 'options'")
if options is None:
type = ensure_type(type, allow_none=False)
if safe is False:
options = CastOptions.unsafe(type)
else:
options = CastOptions.safe(type)
return Expression._call("cast", [self], options)
def isin(self, values):
"""
Check whether the expression is contained in values.
This creates a new expression equivalent to calling the
`is_in` compute function on this expression.
Parameters
----------
values : Array or iterable
The values to check for.
Returns
-------
isin : Expression
A new expression that, when evaluated, checks whether
this expression's value is contained in `values`.
"""
if not isinstance(values, Array):
values = lib.array(values)
options = SetLookupOptions(values)
return Expression._call("is_in", [self], options)
@staticmethod
def _field(name_or_idx not None):
cdef:
CFieldRef c_field
if isinstance(name_or_idx, int):
return Expression.wrap(CMakeFieldExpressionByIndex(name_or_idx))
else:
c_field = CFieldRef(<c_string> tobytes(name_or_idx))
return Expression.wrap(CMakeFieldExpression(c_field))
@staticmethod
def _nested_field(tuple names not None):
cdef:
vector[CFieldRef] nested
if len(names) == 0:
raise ValueError("nested field reference should be non-empty")
nested.reserve(len(names))
for name in names:
if isinstance(name, int):
nested.push_back(CFieldRef(<int>name))
else:
nested.push_back(CFieldRef(<c_string> tobytes(name)))
return Expression.wrap(CMakeFieldExpression(CFieldRef(move(nested))))
@staticmethod
def _scalar(value):
cdef:
Scalar scalar
if isinstance(value, Scalar):
scalar = value
else:
scalar = lib.scalar(value)
return Expression.wrap(CMakeScalarExpression(scalar.unwrap()))
_deserialize = Expression._deserialize
cdef CExpression _true = CMakeScalarExpression(
<shared_ptr[CScalar]> make_shared[CBooleanScalar](True)
)
cdef CExpression _bind(Expression filter, Schema schema) except *:
assert schema is not None
if filter is None:
return _true
return GetResultValue(filter.unwrap().Bind(
deref(pyarrow_unwrap_schema(schema).get())))
cdef class UdfContext:
"""
Per-invocation function context/state.
This object will always be the first argument to a user-defined
function. It should not be used outside of a call to the function.
"""
def __init__(self):
raise TypeError("Do not call {}'s constructor directly"
.format(self.__class__.__name__))
cdef void init(self, const CUdfContext &c_context):
self.c_context = c_context
@property
def batch_length(self):
"""
The common length of all input arguments (int).
In the case that all arguments are scalars, this value
is used to pass the "actual length" of the arguments,
e.g. because the scalar values are encoding a column
with a constant value.
"""
return self.c_context.batch_length
@property
def memory_pool(self):
"""
A memory pool for allocations (:class:`MemoryPool`).
This is the memory pool supplied by the user when they invoked
the function and it should be used in any calls to arrow that the
UDF makes if that call accepts a memory_pool.
"""
return box_memory_pool(self.c_context.pool)
cdef inline CFunctionDoc _make_function_doc(dict func_doc) except *:
"""
Helper function to generate the FunctionDoc
This function accepts a dictionary and expects the
summary(str), description(str) and arg_names(List[str]) keys.
"""
cdef:
CFunctionDoc f_doc
vector[c_string] c_arg_names
f_doc.summary = tobytes(func_doc["summary"])
f_doc.description = tobytes(func_doc["description"])
for arg_name in func_doc["arg_names"]:
c_arg_names.push_back(tobytes(arg_name))
f_doc.arg_names = c_arg_names
# UDFOptions integration:
# TODO: https://issues.apache.org/jira/browse/ARROW-16041
f_doc.options_class = b""
f_doc.options_required = False
return f_doc
cdef object box_udf_context(const CUdfContext& c_context):
cdef UdfContext context = UdfContext.__new__(UdfContext)
context.init(c_context)
return context
cdef _udf_callback(user_function, const CUdfContext& c_context, inputs):
"""
Helper callback function used to wrap the UdfContext from Python to C++
execution.
"""
context = box_udf_context(c_context)
return user_function(context, *inputs)
def _get_udf_context(memory_pool, batch_length):
cdef CUdfContext c_context
c_context.pool = maybe_unbox_memory_pool(memory_pool)
c_context.batch_length = batch_length
context = box_udf_context(c_context)
return context
ctypedef CStatus (*CRegisterUdf)(PyObject* function, function[CallbackUdf] wrapper,
const CUdfOptions& options, CFunctionRegistry* registry)
cdef class RegisterUdf(_Weakrefable):
cdef CRegisterUdf register_func
cdef void init(self, const CRegisterUdf register_func):
self.register_func = register_func
cdef get_register_scalar_function():
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf)
reg.register_func = RegisterScalarFunction
return reg
cdef get_register_tabular_function():
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf)
reg.register_func = RegisterTabularFunction
return reg
cdef get_register_aggregate_function():
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf)
reg.register_func = RegisterAggregateFunction
return reg
cdef get_register_vector_function():
cdef RegisterUdf reg = RegisterUdf.__new__(RegisterUdf)
reg.register_func = RegisterVectorFunction
return reg
def register_scalar_function(func, function_name, function_doc, in_types, out_type,
func_registry=None):
"""
Register a user-defined scalar function.
This API is EXPERIMENTAL.
A scalar function is a function that executes elementwise
operations on arrays or scalars, i.e. a scalar function must
be computed row-by-row with no state where each output row
is computed only from its corresponding input row.
In other words, all argument arrays have the same length,
and the output array is of the same length as the arguments.
Scalar functions are the only functions allowed in query engine
expressions.
Parameters
----------
func : callable
A callable implementing the user-defined function.
The first argument is the context argument of type
UdfContext.
Then, it must take arguments equal to the number of
in_types defined. It must return an Array or Scalar
matching the out_type. It must return a Scalar if
all arguments are scalar, else it must return an Array.
To define a varargs function, pass a callable that takes
*args. The last in_type will be the type of all varargs
arguments.
function_name : str
Name of the function. There should only be one function
registered with this name in the function registry.
function_doc : dict
A dictionary object with keys "summary" (str),
and "description" (str).
in_types : Dict[str, DataType]
A dictionary mapping function argument names to
their respective DataType.
The argument names will be used to generate
documentation for the function. The number of
arguments specified here determines the function
arity.
out_type : DataType
Output type of the function.
func_registry : FunctionRegistry
Optional function registry to use instead of the default global one.
Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>>
>>> func_doc = {}
>>> func_doc["summary"] = "simple udf"
>>> func_doc["description"] = "add a constant to a scalar"
>>>
>>> def add_constant(ctx, array):
... return pc.add(array, 1, memory_pool=ctx.memory_pool)
>>>
>>> func_name = "py_add_func"
>>> in_types = {"array": pa.int64()}
>>> out_type = pa.int64()
>>> pc.register_scalar_function(add_constant, func_name, func_doc,
... in_types, out_type)
>>>
>>> func = pc.get_function(func_name)
>>> func.name
'py_add_func'
>>> answer = pc.call_function(func_name, [pa.array([20])])
>>> answer
<pyarrow.lib.Int64Array object at ...>
[
21
]
"""
return _register_user_defined_function(get_register_scalar_function(),
func, function_name, function_doc, in_types,
out_type, func_registry)
def register_vector_function(func, function_name, function_doc, in_types, out_type,
func_registry=None):
"""
Register a user-defined vector function.
This API is EXPERIMENTAL.
A vector function is a function that executes vector
operations on arrays. Vector function is often used
when compute doesn't fit other more specific types of
functions (e.g., scalar and aggregate).
Parameters
----------
func : callable
A callable implementing the user-defined function.
The first argument is the context argument of type
UdfContext.
Then, it must take arguments equal to the number of
in_types defined. It must return an Array or Scalar
matching the out_type. It must return a Scalar if
all arguments are scalar, else it must return an Array.
To define a varargs function, pass a callable that takes
*args. The last in_type will be the type of all varargs
arguments.
function_name : str
Name of the function. There should only be one function
registered with this name in the function registry.
function_doc : dict
A dictionary object with keys "summary" (str),
and "description" (str).
in_types : Dict[str, DataType]
A dictionary mapping function argument names to
their respective DataType.
The argument names will be used to generate
documentation for the function. The number of
arguments specified here determines the function
arity.
out_type : DataType
Output type of the function.
func_registry : FunctionRegistry
Optional function registry to use instead of the default global one.
Examples
--------
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>>
>>> func_doc = {}
>>> func_doc["summary"] = "percent rank"
>>> func_doc["description"] = "compute percent rank"
>>>
>>> def list_flatten_udf(ctx, x):
... return pc.list_flatten(x)
>>>
>>> func_name = "list_flatten_udf"
>>> in_types = {"array": pa.list_(pa.int64())}
>>> out_type = pa.int64()
>>> pc.register_vector_function(list_flatten_udf, func_name, func_doc,
... in_types, out_type)
>>>
>>> answer = pc.call_function(func_name, [pa.array([[1, 2], [3, 4]])])
>>> answer
<pyarrow.lib.Int64Array object at ...>
[
1,
2,
3,
4
]
"""
return _register_user_defined_function(get_register_vector_function(),
func, function_name, function_doc, in_types,
out_type, func_registry)
def register_aggregate_function(func, function_name, function_doc, in_types, out_type,
func_registry=None):
"""
Register a user-defined non-decomposable aggregate function.
This API is EXPERIMENTAL.
A non-decomposable aggregation function is a function that executes
aggregate operations on the whole data that it is aggregating.
In other words, non-decomposable aggregate function cannot be
split into consume/merge/finalize steps.
This is often used with ordered or segmented aggregation where groups
can be emit before accumulating all of the input data.
Note that currently the size of any input column cannot exceed 2 GB
for a single segment (all groups combined).
Parameters
----------
func : callable
A callable implementing the user-defined function.
The first argument is the context argument of type
UdfContext.
Then, it must take arguments equal to the number of
in_types defined. It must return a Scalar matching the
out_type.
To define a varargs function, pass a callable that takes
*args. The in_type needs to match in type of inputs when
the function gets called.
function_name : str
Name of the function. This name must be unique, i.e.,
there should only be one function registered with
this name in the function registry.
function_doc : dict
A dictionary object with keys "summary" (str),
and "description" (str).
in_types : Dict[str, DataType]
A dictionary mapping function argument names to
their respective DataType.
The argument names will be used to generate
documentation for the function. The number of
arguments specified here determines the function
arity.
out_type : DataType
Output type of the function.
func_registry : FunctionRegistry
Optional function registry to use instead of the default global one.
Examples
--------
>>> import numpy as np
>>> import pyarrow as pa
>>> import pyarrow.compute as pc
>>>
>>> func_doc = {}
>>> func_doc["summary"] = "simple median udf"
>>> func_doc["description"] = "compute median"
>>>
>>> def compute_median(ctx, array):
... return pa.scalar(np.median(array))
>>>
>>> func_name = "py_compute_median"
>>> in_types = {"array": pa.int64()}
>>> out_type = pa.float64()
>>> pc.register_aggregate_function(compute_median, func_name, func_doc,
... in_types, out_type)
>>>
>>> func = pc.get_function(func_name)
>>> func.name
'py_compute_median'
>>> answer = pc.call_function(func_name, [pa.array([20, 40])])
>>> answer
<pyarrow.DoubleScalar: 30.0>
>>> table = pa.table([pa.array([1, 1, 2, 2]), pa.array([10, 20, 30, 40])], names=['k', 'v'])
>>> result = table.group_by('k').aggregate([('v', 'py_compute_median')])
>>> result
pyarrow.Table
k: int64
v_py_compute_median: double
----
k: [[1,2]]
v_py_compute_median: [[15,35]]
"""
return _register_user_defined_function(get_register_aggregate_function(),
func, function_name, function_doc, in_types,
out_type, func_registry)
def register_tabular_function(func, function_name, function_doc, in_types, out_type,
func_registry=None):
"""
Register a user-defined tabular function.
This API is EXPERIMENTAL.
A tabular function is one accepting a context argument of type
UdfContext and returning a generator of struct arrays.
The in_types argument must be empty and the out_type argument
specifies a schema. Each struct array must have field types
corresponding to the schema.
Parameters
----------
func : callable
A callable implementing the user-defined function.
The only argument is the context argument of type
UdfContext. It must return a callable that
returns on each invocation a StructArray matching
the out_type, where an empty array indicates end.
function_name : str
Name of the function. There should only be one function
registered with this name in the function registry.
function_doc : dict
A dictionary object with keys "summary" (str),
and "description" (str).
in_types : Dict[str, DataType]
Must be an empty dictionary (reserved for future use).
out_type : Union[Schema, DataType]
Schema of the function's output, or a corresponding flat struct type.
func_registry : FunctionRegistry
Optional function registry to use instead of the default global one.
"""
cdef:
shared_ptr[CSchema] c_schema
shared_ptr[CDataType] c_type
if isinstance(out_type, Schema):
c_schema = pyarrow_unwrap_schema(out_type)
with nogil:
c_type = <shared_ptr[CDataType]>make_shared[CStructType](deref(c_schema).fields())
out_type = pyarrow_wrap_data_type(c_type)
return _register_user_defined_function(get_register_tabular_function(),
func, function_name, function_doc, in_types,
out_type, func_registry)
def _register_user_defined_function(register_func, func, function_name, function_doc, in_types,
out_type, func_registry=None):
"""
Register a user-defined function.
This method itself doesn't care about the type of the UDF
(i.e., scalar vs tabular vs aggregate)
Parameters
----------
register_func: object
An object holding a CRegisterUdf in a "register_func" attribute.
func : callable
A callable implementing the user-defined function.
function_name : str
Name of the function. There should only be one function
registered with this name in the function registry.
function_doc : dict
A dictionary object with keys "summary" (str),
and "description" (str).
in_types : Dict[str, DataType]
A dictionary mapping function argument names to
their respective DataType.
out_type : DataType
Output type of the function.
func_registry : FunctionRegistry
Optional function registry to use instead of the default global one.
"""
cdef:
CRegisterUdf c_register_func
c_string c_func_name
CArity c_arity
CFunctionDoc c_func_doc
vector[shared_ptr[CDataType]] c_in_types
PyObject* c_function
shared_ptr[CDataType] c_out_type
CUdfOptions c_options
CFunctionRegistry* c_func_registry
if callable(func):
c_function = <PyObject*>func
else:
raise TypeError("func must be a callable")
c_func_name = tobytes(function_name)
func_spec = inspect.getfullargspec(func)
num_args = -1
if isinstance(in_types, dict):
for in_type in in_types.values():
c_in_types.push_back(
pyarrow_unwrap_data_type(ensure_type(in_type)))
function_doc["arg_names"] = in_types.keys()
num_args = len(in_types)
else:
raise TypeError(
"in_types must be a dictionary of DataType")
c_arity = CArity(<int> num_args, func_spec.varargs)
if "summary" not in function_doc:
raise ValueError("Function doc must contain a summary")
if "description" not in function_doc:
raise ValueError("Function doc must contain a description")
if "arg_names" not in function_doc:
raise ValueError("Function doc must contain arg_names")
c_func_doc = _make_function_doc(function_doc)
c_out_type = pyarrow_unwrap_data_type(ensure_type(out_type))
c_options.func_name = c_func_name
c_options.arity = c_arity
c_options.func_doc = c_func_doc
c_options.input_types = c_in_types
c_options.output_type = c_out_type
if func_registry is None:
c_func_registry = NULL
else:
c_func_registry = (<FunctionRegistry>func_registry).registry
c_register_func = (<RegisterUdf>register_func).register_func
check_status(c_register_func(c_function,
<function[CallbackUdf]> &_udf_callback,
c_options, c_func_registry))
def call_tabular_function(function_name, args=None, func_registry=None):
"""
Get a record batch iterator from a tabular function.
Parameters
----------
function_name : str
Name of the function.
args : iterable
The arguments to pass to the function. Accepted types depend
on the specific function. Currently, only an empty args is supported.
func_registry : FunctionRegistry
Optional function registry to use instead of the default global one.
"""
cdef:
c_string c_func_name
vector[CDatum] c_args
CFunctionRegistry* c_func_registry
shared_ptr[CRecordBatchReader] c_reader
RecordBatchReader reader
c_func_name = tobytes(function_name)
if func_registry is None:
c_func_registry = NULL
else:
c_func_registry = (<FunctionRegistry>func_registry).registry
if args is None:
args = []
_pack_compute_args(args, &c_args)
with nogil:
c_reader = GetResultValue(CallTabularFunction(
c_func_name, c_args, c_func_registry))
reader = RecordBatchReader.__new__(RecordBatchReader)
reader.reader = c_reader
return RecordBatchReader.from_batches(pyarrow_wrap_schema(deref(c_reader).schema()), reader)
|