File size: 34,652 Bytes
ac141ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from pyarrow.lib cimport *
from pyarrow.includes.libarrow_cuda cimport *
from pyarrow.lib import allocate_buffer, as_buffer, ArrowTypeError
from pyarrow.util import get_contiguous_span
cimport cpython as cp
cdef class Context(_Weakrefable):
"""
CUDA driver context.
"""
def __init__(self, *args, **kwargs):
"""
Create a CUDA driver context for a particular device.
If a CUDA context handle is passed, it is wrapped, otherwise
a default CUDA context for the given device is requested.
Parameters
----------
device_number : int (default 0)
Specify the GPU device for which the CUDA driver context is
requested.
handle : int, optional
Specify CUDA handle for a shared context that has been created
by another library.
"""
# This method exposed because autodoc doesn't pick __cinit__
def __cinit__(self, int device_number=0, uintptr_t handle=0):
cdef CCudaDeviceManager* manager
manager = GetResultValue(CCudaDeviceManager.Instance())
cdef int n = manager.num_devices()
if device_number >= n or device_number < 0:
self.context.reset()
raise ValueError('device_number argument must be '
'non-negative less than %s' % (n))
if handle == 0:
self.context = GetResultValue(manager.GetContext(device_number))
else:
self.context = GetResultValue(manager.GetSharedContext(
device_number, <void*>handle))
self.device_number = device_number
@staticmethod
def from_numba(context=None):
"""
Create a Context instance from a Numba CUDA context.
Parameters
----------
context : {numba.cuda.cudadrv.driver.Context, None}
A Numba CUDA context instance.
If None, the current Numba context is used.
Returns
-------
shared_context : pyarrow.cuda.Context
Context instance.
"""
if context is None:
import numba.cuda
context = numba.cuda.current_context()
return Context(device_number=context.device.id,
handle=context.handle.value)
def to_numba(self):
"""
Convert Context to a Numba CUDA context.
Returns
-------
context : numba.cuda.cudadrv.driver.Context
Numba CUDA context instance.
"""
import ctypes
import numba.cuda
device = numba.cuda.gpus[self.device_number]
handle = ctypes.c_void_p(self.handle)
context = numba.cuda.cudadrv.driver.Context(device, handle)
class DummyPendingDeallocs(object):
# Context is managed by pyarrow
def add_item(self, *args, **kwargs):
pass
context.deallocations = DummyPendingDeallocs()
return context
@staticmethod
def get_num_devices():
""" Return the number of GPU devices.
"""
cdef CCudaDeviceManager* manager
manager = GetResultValue(CCudaDeviceManager.Instance())
return manager.num_devices()
@property
def device_number(self):
""" Return context device number.
"""
return self.device_number
@property
def handle(self):
""" Return pointer to context handle.
"""
return <uintptr_t>self.context.get().handle()
cdef void init(self, const shared_ptr[CCudaContext]& ctx):
self.context = ctx
def synchronize(self):
"""Blocks until the device has completed all preceding requested
tasks.
"""
check_status(self.context.get().Synchronize())
@property
def bytes_allocated(self):
"""Return the number of allocated bytes.
"""
return self.context.get().bytes_allocated()
def get_device_address(self, uintptr_t address):
"""Return the device address that is reachable from kernels running in
the context
Parameters
----------
address : int
Specify memory address value
Returns
-------
device_address : int
Device address accessible from device context
Notes
-----
The device address is defined as a memory address accessible
by device. While it is often a device memory address but it
can be also a host memory address, for instance, when the
memory is allocated as host memory (using cudaMallocHost or
cudaHostAlloc) or as managed memory (using cudaMallocManaged)
or the host memory is page-locked (using cudaHostRegister).
"""
return GetResultValue(self.context.get().GetDeviceAddress(address))
def new_buffer(self, int64_t nbytes):
"""Return new device buffer.
Parameters
----------
nbytes : int
Specify the number of bytes to be allocated.
Returns
-------
buf : CudaBuffer
Allocated buffer.
"""
cdef:
shared_ptr[CCudaBuffer] cudabuf
with nogil:
cudabuf = GetResultValue(self.context.get().Allocate(nbytes))
return pyarrow_wrap_cudabuffer(cudabuf)
def foreign_buffer(self, address, size, base=None):
"""
Create device buffer from address and size as a view.
The caller is responsible for allocating and freeing the
memory. When `address==size==0` then a new zero-sized buffer
is returned.
Parameters
----------
address : int
Specify the starting address of the buffer. The address can
refer to both device or host memory but it must be
accessible from device after mapping it with
`get_device_address` method.
size : int
Specify the size of device buffer in bytes.
base : {None, object}
Specify object that owns the referenced memory.
Returns
-------
cbuf : CudaBuffer
Device buffer as a view of device reachable memory.
"""
if not address and size == 0:
return self.new_buffer(0)
cdef:
uintptr_t c_addr = self.get_device_address(address)
int64_t c_size = size
shared_ptr[CCudaBuffer] cudabuf
cudabuf = GetResultValue(self.context.get().View(
<uint8_t*>c_addr, c_size))
return pyarrow_wrap_cudabuffer_base(cudabuf, base)
def open_ipc_buffer(self, ipc_handle):
""" Open existing CUDA IPC memory handle
Parameters
----------
ipc_handle : IpcMemHandle
Specify opaque pointer to CUipcMemHandle (driver API).
Returns
-------
buf : CudaBuffer
referencing device buffer
"""
handle = pyarrow_unwrap_cudaipcmemhandle(ipc_handle)
cdef shared_ptr[CCudaBuffer] cudabuf
with nogil:
cudabuf = GetResultValue(
self.context.get().OpenIpcBuffer(handle.get()[0]))
return pyarrow_wrap_cudabuffer(cudabuf)
def buffer_from_data(self, object data, int64_t offset=0, int64_t size=-1):
"""Create device buffer and initialize with data.
Parameters
----------
data : {CudaBuffer, HostBuffer, Buffer, array-like}
Specify data to be copied to device buffer.
offset : int
Specify the offset of input buffer for device data
buffering. Default: 0.
size : int
Specify the size of device buffer in bytes. Default: all
(starting from input offset)
Returns
-------
cbuf : CudaBuffer
Device buffer with copied data.
"""
is_host_data = not pyarrow_is_cudabuffer(data)
buf = as_buffer(data) if is_host_data else data
bsize = buf.size
if offset < 0 or (bsize and offset >= bsize):
raise ValueError('offset argument is out-of-range')
if size < 0:
size = bsize - offset
elif offset + size > bsize:
raise ValueError(
'requested larger slice than available in device buffer')
if offset != 0 or size != bsize:
buf = buf.slice(offset, size)
result = self.new_buffer(size)
if is_host_data:
result.copy_from_host(buf, position=0, nbytes=size)
else:
result.copy_from_device(buf, position=0, nbytes=size)
return result
def buffer_from_object(self, obj):
"""Create device buffer view of arbitrary object that references
device accessible memory.
When the object contains a non-contiguous view of device
accessible memory then the returned device buffer will contain
contiguous view of the memory, that is, including the
intermediate data that is otherwise invisible to the input
object.
Parameters
----------
obj : {object, Buffer, HostBuffer, CudaBuffer, ...}
Specify an object that holds (device or host) address that
can be accessed from device. This includes objects with
types defined in pyarrow.cuda as well as arbitrary objects
that implement the CUDA array interface as defined by numba.
Returns
-------
cbuf : CudaBuffer
Device buffer as a view of device accessible memory.
"""
if isinstance(obj, HostBuffer):
return self.foreign_buffer(obj.address, obj.size, base=obj)
elif isinstance(obj, Buffer):
return CudaBuffer.from_buffer(obj)
elif isinstance(obj, CudaBuffer):
return obj
elif hasattr(obj, '__cuda_array_interface__'):
desc = obj.__cuda_array_interface__
addr = desc['data'][0]
if addr is None:
return self.new_buffer(0)
import numpy as np
start, end = get_contiguous_span(
desc['shape'], desc.get('strides'),
np.dtype(desc['typestr']).itemsize)
return self.foreign_buffer(addr + start, end - start, base=obj)
raise ArrowTypeError('cannot create device buffer view from'
' `%s` object' % (type(obj)))
cdef class IpcMemHandle(_Weakrefable):
"""A serializable container for a CUDA IPC handle.
"""
cdef void init(self, shared_ptr[CCudaIpcMemHandle]& h):
self.handle = h
@staticmethod
def from_buffer(Buffer opaque_handle):
"""Create IpcMemHandle from opaque buffer (e.g. from another
process)
Parameters
----------
opaque_handle :
a CUipcMemHandle as a const void*
Returns
-------
ipc_handle : IpcMemHandle
"""
c_buf = pyarrow_unwrap_buffer(opaque_handle)
cdef:
shared_ptr[CCudaIpcMemHandle] handle
handle = GetResultValue(
CCudaIpcMemHandle.FromBuffer(c_buf.get().data()))
return pyarrow_wrap_cudaipcmemhandle(handle)
def serialize(self, pool=None):
"""Write IpcMemHandle to a Buffer
Parameters
----------
pool : {MemoryPool, None}
Specify a pool to allocate memory from
Returns
-------
buf : Buffer
The serialized buffer.
"""
cdef CMemoryPool* pool_ = maybe_unbox_memory_pool(pool)
cdef shared_ptr[CBuffer] buf
cdef CCudaIpcMemHandle* h = self.handle.get()
with nogil:
buf = GetResultValue(h.Serialize(pool_))
return pyarrow_wrap_buffer(buf)
cdef class CudaBuffer(Buffer):
"""An Arrow buffer with data located in a GPU device.
To create a CudaBuffer instance, use Context.device_buffer().
The memory allocated in a CudaBuffer is freed when the buffer object
is deleted.
"""
def __init__(self):
raise TypeError("Do not call CudaBuffer's constructor directly, use "
"`<pyarrow.Context instance>.device_buffer`"
" method instead.")
cdef void init_cuda(self,
const shared_ptr[CCudaBuffer]& buffer,
object base):
self.cuda_buffer = buffer
self.init(<shared_ptr[CBuffer]> buffer)
self.base = base
@staticmethod
def from_buffer(buf):
""" Convert back generic buffer into CudaBuffer
Parameters
----------
buf : Buffer
Specify buffer containing CudaBuffer
Returns
-------
dbuf : CudaBuffer
Resulting device buffer.
"""
c_buf = pyarrow_unwrap_buffer(buf)
cuda_buffer = GetResultValue(CCudaBuffer.FromBuffer(c_buf))
return pyarrow_wrap_cudabuffer(cuda_buffer)
@staticmethod
def from_numba(mem):
"""Create a CudaBuffer view from numba MemoryPointer instance.
Parameters
----------
mem : numba.cuda.cudadrv.driver.MemoryPointer
Returns
-------
cbuf : CudaBuffer
Device buffer as a view of numba MemoryPointer.
"""
ctx = Context.from_numba(mem.context)
if mem.device_pointer.value is None and mem.size==0:
return ctx.new_buffer(0)
return ctx.foreign_buffer(mem.device_pointer.value, mem.size, base=mem)
def to_numba(self):
"""Return numba memory pointer of CudaBuffer instance.
"""
import ctypes
from numba.cuda.cudadrv.driver import MemoryPointer
return MemoryPointer(self.context.to_numba(),
pointer=ctypes.c_void_p(self.address),
size=self.size)
cdef getitem(self, int64_t i):
return self.copy_to_host(position=i, nbytes=1)[0]
def copy_to_host(self, int64_t position=0, int64_t nbytes=-1,
Buffer buf=None,
MemoryPool memory_pool=None, c_bool resizable=False):
"""Copy memory from GPU device to CPU host
Caller is responsible for ensuring that all tasks affecting
the memory are finished. Use
`<CudaBuffer instance>.context.synchronize()`
when needed.
Parameters
----------
position : int
Specify the starting position of the source data in GPU
device buffer. Default: 0.
nbytes : int
Specify the number of bytes to copy. Default: -1 (all from
the position until host buffer is full).
buf : Buffer
Specify a pre-allocated output buffer in host. Default: None
(allocate new output buffer).
memory_pool : MemoryPool
resizable : bool
Specify extra arguments to allocate_buffer. Used only when
buf is None.
Returns
-------
buf : Buffer
Output buffer in host.
"""
if position < 0 or (self.size and position > self.size) \
or (self.size == 0 and position != 0):
raise ValueError('position argument is out-of-range')
cdef:
int64_t c_nbytes
if buf is None:
if nbytes < 0:
# copy all starting from position to new host buffer
c_nbytes = self.size - position
else:
if nbytes > self.size - position:
raise ValueError(
'requested more to copy than available from '
'device buffer')
# copy nbytes starting from position to new host buffer
c_nbytes = nbytes
buf = allocate_buffer(c_nbytes, memory_pool=memory_pool,
resizable=resizable)
else:
if nbytes < 0:
# copy all from position until given host buffer is full
c_nbytes = min(self.size - position, buf.size)
else:
if nbytes > buf.size:
raise ValueError(
'requested copy does not fit into host buffer')
# copy nbytes from position to given host buffer
c_nbytes = nbytes
cdef:
shared_ptr[CBuffer] c_buf = pyarrow_unwrap_buffer(buf)
int64_t c_position = position
with nogil:
check_status(self.cuda_buffer.get()
.CopyToHost(c_position, c_nbytes,
c_buf.get().mutable_data()))
return buf
def copy_from_host(self, data, int64_t position=0, int64_t nbytes=-1):
"""Copy data from host to device.
The device buffer must be pre-allocated.
Parameters
----------
data : {Buffer, array-like}
Specify data in host. It can be array-like that is valid
argument to py_buffer
position : int
Specify the starting position of the copy in device buffer.
Default: 0.
nbytes : int
Specify the number of bytes to copy. Default: -1 (all from
source until device buffer, starting from position, is full)
Returns
-------
nbytes : int
Number of bytes copied.
"""
if position < 0 or position > self.size:
raise ValueError('position argument is out-of-range')
cdef:
int64_t c_nbytes
buf = as_buffer(data)
if nbytes < 0:
# copy from host buffer to device buffer starting from
# position until device buffer is full
c_nbytes = min(self.size - position, buf.size)
else:
if nbytes > buf.size:
raise ValueError(
'requested more to copy than available from host buffer')
if nbytes > self.size - position:
raise ValueError(
'requested more to copy than available in device buffer')
# copy nbytes from host buffer to device buffer starting
# from position
c_nbytes = nbytes
cdef:
shared_ptr[CBuffer] c_buf = pyarrow_unwrap_buffer(buf)
int64_t c_position = position
with nogil:
check_status(self.cuda_buffer.get().
CopyFromHost(c_position, c_buf.get().data(),
c_nbytes))
return c_nbytes
def copy_from_device(self, buf, int64_t position=0, int64_t nbytes=-1):
"""Copy data from device to device.
Parameters
----------
buf : CudaBuffer
Specify source device buffer.
position : int
Specify the starting position of the copy in device buffer.
Default: 0.
nbytes : int
Specify the number of bytes to copy. Default: -1 (all from
source until device buffer, starting from position, is full)
Returns
-------
nbytes : int
Number of bytes copied.
"""
if position < 0 or position > self.size:
raise ValueError('position argument is out-of-range')
cdef:
int64_t c_nbytes
if nbytes < 0:
# copy from source device buffer to device buffer starting
# from position until device buffer is full
c_nbytes = min(self.size - position, buf.size)
else:
if nbytes > buf.size:
raise ValueError(
'requested more to copy than available from device buffer')
if nbytes > self.size - position:
raise ValueError(
'requested more to copy than available in device buffer')
# copy nbytes from source device buffer to device buffer
# starting from position
c_nbytes = nbytes
cdef:
shared_ptr[CCudaBuffer] c_buf = pyarrow_unwrap_cudabuffer(buf)
int64_t c_position = position
shared_ptr[CCudaContext] c_src_ctx = pyarrow_unwrap_cudacontext(
buf.context)
void* c_source_data = <void*>(c_buf.get().address())
if self.context.handle != buf.context.handle:
with nogil:
check_status(self.cuda_buffer.get().
CopyFromAnotherDevice(c_src_ctx, c_position,
c_source_data, c_nbytes))
else:
with nogil:
check_status(self.cuda_buffer.get().
CopyFromDevice(c_position, c_source_data,
c_nbytes))
return c_nbytes
def export_for_ipc(self):
"""
Expose this device buffer as IPC memory which can be used in other
processes.
After calling this function, this device memory will not be
freed when the CudaBuffer is destructed.
Returns
-------
ipc_handle : IpcMemHandle
The exported IPC handle
"""
cdef shared_ptr[CCudaIpcMemHandle] handle
with nogil:
handle = GetResultValue(self.cuda_buffer.get().ExportForIpc())
return pyarrow_wrap_cudaipcmemhandle(handle)
@property
def context(self):
"""Returns the CUDA driver context of this buffer.
"""
return pyarrow_wrap_cudacontext(self.cuda_buffer.get().context())
def slice(self, offset=0, length=None):
"""Return slice of device buffer
Parameters
----------
offset : int, default 0
Specify offset from the start of device buffer to slice
length : int, default None
Specify the length of slice (default is until end of device
buffer starting from offset). If the length is larger than
the data available, the returned slice will have a size of
the available data starting from the offset.
Returns
-------
sliced : CudaBuffer
Zero-copy slice of device buffer.
"""
if offset < 0 or (self.size and offset >= self.size):
raise ValueError('offset argument is out-of-range')
cdef int64_t offset_ = offset
cdef int64_t size
if length is None:
size = self.size - offset_
elif offset + length <= self.size:
size = length
else:
size = self.size - offset
parent = pyarrow_unwrap_cudabuffer(self)
return pyarrow_wrap_cudabuffer(make_shared[CCudaBuffer](parent,
offset_, size))
def to_pybytes(self):
"""Return device buffer content as Python bytes.
"""
return self.copy_to_host().to_pybytes()
def __getbuffer__(self, cp.Py_buffer* buffer, int flags):
# Device buffer contains data pointers on the device. Hence,
# cannot support buffer protocol PEP-3118 for CudaBuffer.
raise BufferError('buffer protocol for device buffer not supported')
cdef class HostBuffer(Buffer):
"""Device-accessible CPU memory created using cudaHostAlloc.
To create a HostBuffer instance, use
cuda.new_host_buffer(<nbytes>)
"""
def __init__(self):
raise TypeError("Do not call HostBuffer's constructor directly,"
" use `cuda.new_host_buffer` function instead.")
cdef void init_host(self, const shared_ptr[CCudaHostBuffer]& buffer):
self.host_buffer = buffer
self.init(<shared_ptr[CBuffer]> buffer)
@property
def size(self):
return self.host_buffer.get().size()
cdef class BufferReader(NativeFile):
"""File interface for zero-copy read from CUDA buffers.
Note: Read methods return pointers to device memory. This means
you must be careful using this interface with any Arrow code which
may expect to be able to do anything other than pointer arithmetic
on the returned buffers.
"""
def __cinit__(self, CudaBuffer obj):
self.buffer = obj
self.reader = new CCudaBufferReader(self.buffer.buffer)
self.set_random_access_file(
shared_ptr[CRandomAccessFile](self.reader))
self.is_readable = True
def read_buffer(self, nbytes=None):
"""Return a slice view of the underlying device buffer.
The slice will start at the current reader position and will
have specified size in bytes.
Parameters
----------
nbytes : int, default None
Specify the number of bytes to read. Default: None (read all
remaining bytes).
Returns
-------
cbuf : CudaBuffer
New device buffer.
"""
cdef:
int64_t c_nbytes
shared_ptr[CCudaBuffer] output
if nbytes is None:
c_nbytes = self.size() - self.tell()
else:
c_nbytes = nbytes
with nogil:
output = static_pointer_cast[CCudaBuffer, CBuffer](
GetResultValue(self.reader.Read(c_nbytes)))
return pyarrow_wrap_cudabuffer(output)
cdef class BufferWriter(NativeFile):
"""File interface for writing to CUDA buffers.
By default writes are unbuffered. Use set_buffer_size to enable
buffering.
"""
def __cinit__(self, CudaBuffer buffer):
self.buffer = buffer
self.writer = new CCudaBufferWriter(self.buffer.cuda_buffer)
self.set_output_stream(shared_ptr[COutputStream](self.writer))
self.is_writable = True
def writeat(self, int64_t position, object data):
"""Write data to buffer starting from position.
Parameters
----------
position : int
Specify device buffer position where the data will be
written.
data : array-like
Specify data, the data instance must implement buffer
protocol.
"""
cdef:
Buffer buf = as_buffer(data)
const uint8_t* c_data = buf.buffer.get().data()
int64_t c_size = buf.buffer.get().size()
with nogil:
check_status(self.writer.WriteAt(position, c_data, c_size))
def flush(self):
""" Flush the buffer stream """
with nogil:
check_status(self.writer.Flush())
def seek(self, int64_t position, int whence=0):
# TODO: remove this method after NativeFile.seek supports
# writable files.
cdef int64_t offset
with nogil:
if whence == 0:
offset = position
elif whence == 1:
offset = GetResultValue(self.writer.Tell())
offset = offset + position
else:
with gil:
raise ValueError("Invalid value of whence: {0}"
.format(whence))
check_status(self.writer.Seek(offset))
return self.tell()
@property
def buffer_size(self):
"""Returns size of host (CPU) buffer, 0 for unbuffered
"""
return self.writer.buffer_size()
@buffer_size.setter
def buffer_size(self, int64_t buffer_size):
"""Set CPU buffer size to limit calls to cudaMemcpy
Parameters
----------
buffer_size : int
Specify the size of CPU buffer to allocate in bytes.
"""
with nogil:
check_status(self.writer.SetBufferSize(buffer_size))
@property
def num_bytes_buffered(self):
"""Returns number of bytes buffered on host
"""
return self.writer.num_bytes_buffered()
# Functions
def new_host_buffer(const int64_t size, int device=0):
"""Return buffer with CUDA-accessible memory on CPU host
Parameters
----------
size : int
Specify the number of bytes to be allocated.
device : int
Specify GPU device number.
Returns
-------
dbuf : HostBuffer
Allocated host buffer
"""
cdef shared_ptr[CCudaHostBuffer] buffer
with nogil:
buffer = GetResultValue(AllocateCudaHostBuffer(device, size))
return pyarrow_wrap_cudahostbuffer(buffer)
def serialize_record_batch(object batch, object ctx):
""" Write record batch message to GPU device memory
Parameters
----------
batch : RecordBatch
Record batch to write
ctx : Context
CUDA Context to allocate device memory from
Returns
-------
dbuf : CudaBuffer
device buffer which contains the record batch message
"""
cdef shared_ptr[CCudaBuffer] buffer
cdef CRecordBatch* batch_ = pyarrow_unwrap_batch(batch).get()
cdef CCudaContext* ctx_ = pyarrow_unwrap_cudacontext(ctx).get()
with nogil:
buffer = GetResultValue(CudaSerializeRecordBatch(batch_[0], ctx_))
return pyarrow_wrap_cudabuffer(buffer)
def read_message(object source, pool=None):
""" Read Arrow IPC message located on GPU device
Parameters
----------
source : {CudaBuffer, cuda.BufferReader}
Device buffer or reader of device buffer.
pool : MemoryPool (optional)
Pool to allocate CPU memory for the metadata
Returns
-------
message : Message
The deserialized message, body still on device
"""
cdef:
Message result = Message.__new__(Message)
cdef CMemoryPool* pool_ = maybe_unbox_memory_pool(pool)
if not isinstance(source, BufferReader):
reader = BufferReader(source)
with nogil:
result.message = move(
GetResultValue(ReadMessage(reader.reader, pool_)))
return result
def read_record_batch(object buffer, object schema, *,
DictionaryMemo dictionary_memo=None, pool=None):
"""Construct RecordBatch referencing IPC message located on CUDA device.
While the metadata is copied to host memory for deserialization,
the record batch data remains on the device.
Parameters
----------
buffer :
Device buffer containing the complete IPC message
schema : Schema
The schema for the record batch
dictionary_memo : DictionaryMemo, optional
If message contains dictionaries, must pass a populated
DictionaryMemo
pool : MemoryPool (optional)
Pool to allocate metadata from
Returns
-------
batch : RecordBatch
Reconstructed record batch, with device pointers
"""
cdef:
shared_ptr[CSchema] schema_ = pyarrow_unwrap_schema(schema)
shared_ptr[CCudaBuffer] buffer_ = pyarrow_unwrap_cudabuffer(buffer)
CDictionaryMemo temp_memo
CDictionaryMemo* arg_dict_memo
CMemoryPool* pool_ = maybe_unbox_memory_pool(pool)
shared_ptr[CRecordBatch] batch
if dictionary_memo is not None:
arg_dict_memo = dictionary_memo.memo
else:
arg_dict_memo = &temp_memo
with nogil:
batch = GetResultValue(CudaReadRecordBatch(
schema_, arg_dict_memo, buffer_, pool_))
return pyarrow_wrap_batch(batch)
# Public API
cdef public api bint pyarrow_is_buffer(object buffer):
return isinstance(buffer, Buffer)
# cudabuffer
cdef public api bint pyarrow_is_cudabuffer(object buffer):
return isinstance(buffer, CudaBuffer)
cdef public api object \
pyarrow_wrap_cudabuffer_base(const shared_ptr[CCudaBuffer]& buf, base):
cdef CudaBuffer result = CudaBuffer.__new__(CudaBuffer)
result.init_cuda(buf, base)
return result
cdef public api object \
pyarrow_wrap_cudabuffer(const shared_ptr[CCudaBuffer]& buf):
cdef CudaBuffer result = CudaBuffer.__new__(CudaBuffer)
result.init_cuda(buf, None)
return result
cdef public api shared_ptr[CCudaBuffer] pyarrow_unwrap_cudabuffer(object obj):
if pyarrow_is_cudabuffer(obj):
return (<CudaBuffer>obj).cuda_buffer
raise TypeError('expected CudaBuffer instance, got %s'
% (type(obj).__name__))
# cudahostbuffer
cdef public api bint pyarrow_is_cudahostbuffer(object buffer):
return isinstance(buffer, HostBuffer)
cdef public api object \
pyarrow_wrap_cudahostbuffer(const shared_ptr[CCudaHostBuffer]& buf):
cdef HostBuffer result = HostBuffer.__new__(HostBuffer)
result.init_host(buf)
return result
cdef public api shared_ptr[CCudaHostBuffer] \
pyarrow_unwrap_cudahostbuffer(object obj):
if pyarrow_is_cudahostbuffer(obj):
return (<HostBuffer>obj).host_buffer
raise TypeError('expected HostBuffer instance, got %s'
% (type(obj).__name__))
# cudacontext
cdef public api bint pyarrow_is_cudacontext(object ctx):
return isinstance(ctx, Context)
cdef public api object \
pyarrow_wrap_cudacontext(const shared_ptr[CCudaContext]& ctx):
cdef Context result = Context.__new__(Context)
result.init(ctx)
return result
cdef public api shared_ptr[CCudaContext] \
pyarrow_unwrap_cudacontext(object obj):
if pyarrow_is_cudacontext(obj):
return (<Context>obj).context
raise TypeError('expected Context instance, got %s'
% (type(obj).__name__))
# cudaipcmemhandle
cdef public api bint pyarrow_is_cudaipcmemhandle(object handle):
return isinstance(handle, IpcMemHandle)
cdef public api object \
pyarrow_wrap_cudaipcmemhandle(shared_ptr[CCudaIpcMemHandle]& h):
cdef IpcMemHandle result = IpcMemHandle.__new__(IpcMemHandle)
result.init(h)
return result
cdef public api shared_ptr[CCudaIpcMemHandle] \
pyarrow_unwrap_cudaipcmemhandle(object obj):
if pyarrow_is_cudaipcmemhandle(obj):
return (<IpcMemHandle>obj).handle
raise TypeError('expected IpcMemHandle instance, got %s'
% (type(obj).__name__))
|