File size: 37,262 Bytes
7a1cef4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <functional>
#include <memory>
#include <optional>
#include <string>
#include <vector>
#include "arrow/acero/type_fwd.h"
#include "arrow/acero/visibility.h"
#include "arrow/compute/api_aggregate.h"
#include "arrow/compute/api_vector.h"
#include "arrow/compute/exec.h"
#include "arrow/compute/expression.h"
#include "arrow/record_batch.h"
#include "arrow/result.h"
#include "arrow/util/async_generator.h"
#include "arrow/util/async_util.h"
namespace arrow {
using compute::Aggregate;
using compute::ExecBatch;
using compute::Expression;
using compute::literal;
using compute::Ordering;
using compute::SelectKOptions;
using compute::SortOptions;
namespace internal {
class Executor;
} // namespace internal
namespace acero {
/// \brief This must not be used in release-mode
struct DebugOptions;
using AsyncExecBatchGenerator = AsyncGenerator<std::optional<ExecBatch>>;
/// \addtogroup acero-nodes
/// @{
/// \brief A base class for all options objects
///
/// The only time this is used directly is when a node has no configuration
class ARROW_ACERO_EXPORT ExecNodeOptions {
public:
virtual ~ExecNodeOptions() = default;
/// \brief This must not be used in release-mode
std::shared_ptr<DebugOptions> debug_opts;
};
/// \brief A node representing a generic source of data for Acero
///
/// The source node will start calling `generator` during StartProducing. An initial
/// task will be created that will call `generator`. It will not call `generator`
/// reentrantly. If the source can be read in parallel then those details should be
/// encapsulated within `generator`.
///
/// For each batch received a new task will be created to push that batch downstream.
/// This task will slice smaller units of size `ExecPlan::kMaxBatchSize` from the
/// parent batch and call InputReceived. Thus, if the `generator` yields a large
/// batch it may result in several calls to InputReceived.
///
/// The SourceNode will, by default, assign an implicit ordering to outgoing batches.
/// This is valid as long as the generator generates batches in a deterministic fashion.
/// Currently, the only way to override this is to subclass the SourceNode.
///
/// This node is not generally used directly but can serve as the basis for various
/// specialized nodes.
class ARROW_ACERO_EXPORT SourceNodeOptions : public ExecNodeOptions {
public:
/// Create an instance from values
SourceNodeOptions(std::shared_ptr<Schema> output_schema,
std::function<Future<std::optional<ExecBatch>>()> generator)
: output_schema(std::move(output_schema)), generator(std::move(generator)) {}
/// \brief the schema for batches that will be generated by this source
std::shared_ptr<Schema> output_schema;
/// \brief an asynchronous stream of batches ending with std::nullopt
std::function<Future<std::optional<ExecBatch>>()> generator;
};
/// \brief a node that generates data from a table already loaded in memory
///
/// The table source node will slice off chunks, defined by `max_batch_size`
/// for parallel processing. The table source node extends source node and so these
/// chunks will be iteratively processed in small batches. \see SourceNodeOptions
/// for details.
class ARROW_ACERO_EXPORT TableSourceNodeOptions : public ExecNodeOptions {
public:
static constexpr int64_t kDefaultMaxBatchSize = 1 << 20;
/// Create an instance from values
TableSourceNodeOptions(std::shared_ptr<Table> table,
int64_t max_batch_size = kDefaultMaxBatchSize)
: table(std::move(table)), max_batch_size(max_batch_size) {}
/// \brief a table which acts as the data source
std::shared_ptr<Table> table;
/// \brief size of batches to emit from this node
/// If the table is larger the node will emit multiple batches from the
/// the table to be processed in parallel.
int64_t max_batch_size;
};
/// \brief define a lazily resolved Arrow table.
///
/// The table uniquely identified by the names can typically be resolved at the time when
/// the plan is to be consumed.
///
/// This node is for serialization purposes only and can never be executed.
class ARROW_ACERO_EXPORT NamedTableNodeOptions : public ExecNodeOptions {
public:
/// Create an instance from values
NamedTableNodeOptions(std::vector<std::string> names, std::shared_ptr<Schema> schema)
: names(std::move(names)), schema(std::move(schema)) {}
/// \brief the names to put in the serialized plan
std::vector<std::string> names;
/// \brief the output schema of the table
std::shared_ptr<Schema> schema;
};
/// \brief a source node which feeds data from a synchronous iterator of batches
///
/// ItMaker is a maker of an iterator of tabular data.
///
/// The node can be configured to use an I/O executor. If set then each time the
/// iterator is polled a new I/O thread task will be created to do the polling. This
/// allows a blocking iterator to stay off the CPU thread pool.
template <typename ItMaker>
class ARROW_ACERO_EXPORT SchemaSourceNodeOptions : public ExecNodeOptions {
public:
/// Create an instance that will create a new task on io_executor for each iteration
SchemaSourceNodeOptions(std::shared_ptr<Schema> schema, ItMaker it_maker,
arrow::internal::Executor* io_executor)
: schema(std::move(schema)),
it_maker(std::move(it_maker)),
io_executor(io_executor),
requires_io(true) {}
/// Create an instance that will either iterate synchronously or use the default I/O
/// executor
SchemaSourceNodeOptions(std::shared_ptr<Schema> schema, ItMaker it_maker,
bool requires_io = false)
: schema(std::move(schema)),
it_maker(std::move(it_maker)),
io_executor(NULLPTR),
requires_io(requires_io) {}
/// \brief The schema of the record batches from the iterator
std::shared_ptr<Schema> schema;
/// \brief A maker of an iterator which acts as the data source
ItMaker it_maker;
/// \brief The executor to use for scanning the iterator
///
/// Defaults to the default I/O executor. Only used if requires_io is true.
/// If requires_io is false then this MUST be nullptr.
arrow::internal::Executor* io_executor;
/// \brief If true then items will be fetched from the iterator on a dedicated I/O
/// thread to keep I/O off the CPU thread
bool requires_io;
};
/// a source node that reads from a RecordBatchReader
///
/// Each iteration of the RecordBatchReader will be run on a new thread task created
/// on the I/O thread pool.
class ARROW_ACERO_EXPORT RecordBatchReaderSourceNodeOptions : public ExecNodeOptions {
public:
/// Create an instance from values
RecordBatchReaderSourceNodeOptions(std::shared_ptr<RecordBatchReader> reader,
arrow::internal::Executor* io_executor = NULLPTR)
: reader(std::move(reader)), io_executor(io_executor) {}
/// \brief The RecordBatchReader which acts as the data source
std::shared_ptr<RecordBatchReader> reader;
/// \brief The executor to use for the reader
///
/// Defaults to the default I/O executor.
arrow::internal::Executor* io_executor;
};
/// a source node that reads from an iterator of array vectors
using ArrayVectorIteratorMaker = std::function<Iterator<std::shared_ptr<ArrayVector>>()>;
/// \brief An extended Source node which accepts a schema and array-vectors
class ARROW_ACERO_EXPORT ArrayVectorSourceNodeOptions
: public SchemaSourceNodeOptions<ArrayVectorIteratorMaker> {
using SchemaSourceNodeOptions::SchemaSourceNodeOptions;
};
/// a source node that reads from an iterator of ExecBatch
using ExecBatchIteratorMaker = std::function<Iterator<std::shared_ptr<ExecBatch>>()>;
/// \brief An extended Source node which accepts a schema and exec-batches
class ARROW_ACERO_EXPORT ExecBatchSourceNodeOptions
: public SchemaSourceNodeOptions<ExecBatchIteratorMaker> {
public:
using SchemaSourceNodeOptions::SchemaSourceNodeOptions;
ExecBatchSourceNodeOptions(std::shared_ptr<Schema> schema,
std::vector<ExecBatch> batches,
::arrow::internal::Executor* io_executor);
ExecBatchSourceNodeOptions(std::shared_ptr<Schema> schema,
std::vector<ExecBatch> batches, bool requires_io = false);
};
using RecordBatchIteratorMaker = std::function<Iterator<std::shared_ptr<RecordBatch>>()>;
/// a source node that reads from an iterator of RecordBatch
class ARROW_ACERO_EXPORT RecordBatchSourceNodeOptions
: public SchemaSourceNodeOptions<RecordBatchIteratorMaker> {
using SchemaSourceNodeOptions::SchemaSourceNodeOptions;
};
/// \brief a node which excludes some rows from batches passed through it
///
/// filter_expression will be evaluated against each batch which is pushed to
/// this node. Any rows for which filter_expression does not evaluate to `true` will be
/// excluded in the batch emitted by this node.
///
/// This node will emit empty batches if all rows are excluded. This is done
/// to avoid gaps in the ordering.
class ARROW_ACERO_EXPORT FilterNodeOptions : public ExecNodeOptions {
public:
/// \brief create an instance from values
explicit FilterNodeOptions(Expression filter_expression)
: filter_expression(std::move(filter_expression)) {}
/// \brief the expression to filter batches
///
/// The return type of this expression must be boolean
Expression filter_expression;
};
/// \brief a node which selects a specified subset from the input
class ARROW_ACERO_EXPORT FetchNodeOptions : public ExecNodeOptions {
public:
static constexpr std::string_view kName = "fetch";
/// \brief create an instance from values
FetchNodeOptions(int64_t offset, int64_t count) : offset(offset), count(count) {}
/// \brief the number of rows to skip
int64_t offset;
/// \brief the number of rows to keep (not counting skipped rows)
int64_t count;
};
/// \brief a node which executes expressions on input batches, producing batches
/// of the same length with new columns.
///
/// Each expression will be evaluated against each batch which is pushed to
/// this node to produce a corresponding output column.
///
/// If names are not provided, the string representations of exprs will be used.
class ARROW_ACERO_EXPORT ProjectNodeOptions : public ExecNodeOptions {
public:
/// \brief create an instance from values
explicit ProjectNodeOptions(std::vector<Expression> expressions,
std::vector<std::string> names = {})
: expressions(std::move(expressions)), names(std::move(names)) {}
/// \brief the expressions to run on the batches
///
/// The output will have one column for each expression. If you wish to keep any of
/// the columns from the input then you should create a simple field_ref expression
/// for that column.
std::vector<Expression> expressions;
/// \brief the names of the output columns
///
/// If this is not specified then the result of calling ToString on the expression will
/// be used instead
///
/// This list should either be empty or have the same length as `expressions`
std::vector<std::string> names;
};
/// \brief a node which aggregates input batches and calculates summary statistics
///
/// The node can summarize the entire input or it can group the input with grouping keys
/// and segment keys.
///
/// By default, the aggregate node is a pipeline breaker. It must accumulate all input
/// before any output is produced. Segment keys are a performance optimization. If
/// you know your input is already partitioned by one or more columns then you can
/// specify these as segment keys. At each change in the segment keys the node will
/// emit values for all data seen so far.
///
/// Segment keys are currently limited to single-threaded mode.
///
/// Both keys and segment-keys determine the group. However segment-keys are also used
/// for determining grouping segments, which should be large, and allow streaming a
/// partial aggregation result after processing each segment. One common use-case for
/// segment-keys is ordered aggregation, in which the segment-key attribute specifies a
/// column with non-decreasing values or a lexicographically-ordered set of such columns.
///
/// If the keys attribute is a non-empty vector, then each aggregate in `aggregates` is
/// expected to be a HashAggregate function. If the keys attribute is an empty vector,
/// then each aggregate is assumed to be a ScalarAggregate function.
///
/// If the segment_keys attribute is a non-empty vector, then segmented aggregation, as
/// described above, applies.
///
/// The keys and segment_keys vectors must be disjoint.
///
/// If no measures are provided then you will simply get the list of unique keys.
///
/// This node outputs segment keys first, followed by regular keys, followed by one
/// column for each aggregate.
class ARROW_ACERO_EXPORT AggregateNodeOptions : public ExecNodeOptions {
public:
/// \brief create an instance from values
explicit AggregateNodeOptions(std::vector<Aggregate> aggregates,
std::vector<FieldRef> keys = {},
std::vector<FieldRef> segment_keys = {})
: aggregates(std::move(aggregates)),
keys(std::move(keys)),
segment_keys(std::move(segment_keys)) {}
// aggregations which will be applied to the targeted fields
std::vector<Aggregate> aggregates;
// keys by which aggregations will be grouped (optional)
std::vector<FieldRef> keys;
// keys by which aggregations will be segmented (optional)
std::vector<FieldRef> segment_keys;
};
/// \brief a default value at which backpressure will be applied
constexpr int32_t kDefaultBackpressureHighBytes = 1 << 30; // 1GiB
/// \brief a default value at which backpressure will be removed
constexpr int32_t kDefaultBackpressureLowBytes = 1 << 28; // 256MiB
/// \brief an interface that can be queried for backpressure statistics
class ARROW_ACERO_EXPORT BackpressureMonitor {
public:
virtual ~BackpressureMonitor() = default;
/// \brief fetches the number of bytes currently queued up
virtual uint64_t bytes_in_use() = 0;
/// \brief checks to see if backpressure is currently applied
virtual bool is_paused() = 0;
};
/// \brief Options to control backpressure behavior
struct ARROW_ACERO_EXPORT BackpressureOptions {
/// \brief Create default options that perform no backpressure
BackpressureOptions() : resume_if_below(0), pause_if_above(0) {}
/// \brief Create options that will perform backpressure
///
/// \param resume_if_below The producer should resume producing if the backpressure
/// queue has fewer than resume_if_below items.
/// \param pause_if_above The producer should pause producing if the backpressure
/// queue has more than pause_if_above items
BackpressureOptions(uint64_t resume_if_below, uint64_t pause_if_above)
: resume_if_below(resume_if_below), pause_if_above(pause_if_above) {}
/// \brief create an instance using default values for backpressure limits
static BackpressureOptions DefaultBackpressure() {
return BackpressureOptions(kDefaultBackpressureLowBytes,
kDefaultBackpressureHighBytes);
}
/// \brief helper method to determine if backpressure is disabled
/// \return true if pause_if_above is greater than zero, false otherwise
bool should_apply_backpressure() const { return pause_if_above > 0; }
/// \brief the number of bytes at which the producer should resume producing
uint64_t resume_if_below;
/// \brief the number of bytes at which the producer should pause producing
///
/// If this is <= 0 then backpressure will be disabled
uint64_t pause_if_above;
};
/// \brief a sink node which collects results in a queue
///
/// Emitted batches will only be ordered if there is a meaningful ordering
/// and sequence_output is not set to false.
class ARROW_ACERO_EXPORT SinkNodeOptions : public ExecNodeOptions {
public:
explicit SinkNodeOptions(std::function<Future<std::optional<ExecBatch>>()>* generator,
std::shared_ptr<Schema>* schema,
BackpressureOptions backpressure = {},
BackpressureMonitor** backpressure_monitor = NULLPTR,
std::optional<bool> sequence_output = std::nullopt)
: generator(generator),
schema(schema),
backpressure(backpressure),
backpressure_monitor(backpressure_monitor),
sequence_output(sequence_output) {}
explicit SinkNodeOptions(std::function<Future<std::optional<ExecBatch>>()>* generator,
BackpressureOptions backpressure = {},
BackpressureMonitor** backpressure_monitor = NULLPTR,
std::optional<bool> sequence_output = std::nullopt)
: generator(generator),
schema(NULLPTR),
backpressure(std::move(backpressure)),
backpressure_monitor(backpressure_monitor),
sequence_output(sequence_output) {}
/// \brief A pointer to a generator of batches.
///
/// This will be set when the node is added to the plan and should be used to consume
/// data from the plan. If this function is not called frequently enough then the sink
/// node will start to accumulate data and may apply backpressure.
std::function<Future<std::optional<ExecBatch>>()>* generator;
/// \brief A pointer which will be set to the schema of the generated batches
///
/// This is optional, if nullptr is passed in then it will be ignored.
/// This will be set when the node is added to the plan, before StartProducing is called
std::shared_ptr<Schema>* schema;
/// \brief Options to control when to apply backpressure
///
/// This is optional, the default is to never apply backpressure. If the plan is not
/// consumed quickly enough the system may eventually run out of memory.
BackpressureOptions backpressure;
/// \brief A pointer to a backpressure monitor
///
/// This will be set when the node is added to the plan. This can be used to inspect
/// the amount of data currently queued in the sink node. This is an optional utility
/// and backpressure can be applied even if this is not used.
BackpressureMonitor** backpressure_monitor;
/// \brief Controls whether batches should be emitted immediately or sequenced in order
///
/// \see QueryOptions for more details
std::optional<bool> sequence_output;
};
/// \brief Control used by a SinkNodeConsumer to pause & resume
///
/// Callers should ensure that they do not call Pause and Resume simultaneously and they
/// should sequence things so that a call to Pause() is always followed by an eventual
/// call to Resume()
class ARROW_ACERO_EXPORT BackpressureControl {
public:
virtual ~BackpressureControl() = default;
/// \brief Ask the input to pause
///
/// This is best effort, batches may continue to arrive
/// Must eventually be followed by a call to Resume() or deadlock will occur
virtual void Pause() = 0;
/// \brief Ask the input to resume
virtual void Resume() = 0;
};
/// \brief a sink node that consumes the data as part of the plan using callbacks
class ARROW_ACERO_EXPORT SinkNodeConsumer {
public:
virtual ~SinkNodeConsumer() = default;
/// \brief Prepare any consumer state
///
/// This will be run once the schema is finalized as the plan is starting and
/// before any calls to Consume. A common use is to save off the schema so that
/// batches can be interpreted.
virtual Status Init(const std::shared_ptr<Schema>& schema,
BackpressureControl* backpressure_control, ExecPlan* plan) = 0;
/// \brief Consume a batch of data
virtual Status Consume(ExecBatch batch) = 0;
/// \brief Signal to the consumer that the last batch has been delivered
///
/// The returned future should only finish when all outstanding tasks have completed
///
/// If the plan is ended early or aborts due to an error then this will not be
/// called.
virtual Future<> Finish() = 0;
};
/// \brief Add a sink node which consumes data within the exec plan run
class ARROW_ACERO_EXPORT ConsumingSinkNodeOptions : public ExecNodeOptions {
public:
explicit ConsumingSinkNodeOptions(std::shared_ptr<SinkNodeConsumer> consumer,
std::vector<std::string> names = {},
std::optional<bool> sequence_output = std::nullopt)
: consumer(std::move(consumer)),
names(std::move(names)),
sequence_output(sequence_output) {}
std::shared_ptr<SinkNodeConsumer> consumer;
/// \brief Names to rename the sink's schema fields to
///
/// If specified then names must be provided for all fields. Currently, only a flat
/// schema is supported (see GH-31875).
///
/// If not specified then names will be generated based on the source data.
std::vector<std::string> names;
/// \brief Controls whether batches should be emitted immediately or sequenced in order
///
/// \see QueryOptions for more details
std::optional<bool> sequence_output;
};
/// \brief Make a node which sorts rows passed through it
///
/// All batches pushed to this node will be accumulated, then sorted, by the given
/// fields. Then sorted batches will be forwarded to the generator in sorted order.
class ARROW_ACERO_EXPORT OrderBySinkNodeOptions : public SinkNodeOptions {
public:
/// \brief create an instance from values
explicit OrderBySinkNodeOptions(
SortOptions sort_options,
std::function<Future<std::optional<ExecBatch>>()>* generator)
: SinkNodeOptions(generator), sort_options(std::move(sort_options)) {}
/// \brief options describing which columns and direction to sort
SortOptions sort_options;
};
/// \brief Apply a new ordering to data
///
/// Currently this node works by accumulating all data, sorting, and then emitting
/// the new data with an updated batch index.
///
/// Larger-than-memory sort is not currently supported.
class ARROW_ACERO_EXPORT OrderByNodeOptions : public ExecNodeOptions {
public:
static constexpr std::string_view kName = "order_by";
explicit OrderByNodeOptions(Ordering ordering) : ordering(std::move(ordering)) {}
/// \brief The new ordering to apply to outgoing data
Ordering ordering;
};
enum class JoinType {
LEFT_SEMI,
RIGHT_SEMI,
LEFT_ANTI,
RIGHT_ANTI,
INNER,
LEFT_OUTER,
RIGHT_OUTER,
FULL_OUTER
};
std::string ToString(JoinType t);
enum class JoinKeyCmp { EQ, IS };
/// \brief a node which implements a join operation using a hash table
class ARROW_ACERO_EXPORT HashJoinNodeOptions : public ExecNodeOptions {
public:
static constexpr const char* default_output_suffix_for_left = "";
static constexpr const char* default_output_suffix_for_right = "";
/// \brief create an instance from values that outputs all columns
HashJoinNodeOptions(
JoinType in_join_type, std::vector<FieldRef> in_left_keys,
std::vector<FieldRef> in_right_keys, Expression filter = literal(true),
std::string output_suffix_for_left = default_output_suffix_for_left,
std::string output_suffix_for_right = default_output_suffix_for_right,
bool disable_bloom_filter = false)
: join_type(in_join_type),
left_keys(std::move(in_left_keys)),
right_keys(std::move(in_right_keys)),
output_all(true),
output_suffix_for_left(std::move(output_suffix_for_left)),
output_suffix_for_right(std::move(output_suffix_for_right)),
filter(std::move(filter)),
disable_bloom_filter(disable_bloom_filter) {
this->key_cmp.resize(this->left_keys.size());
for (size_t i = 0; i < this->left_keys.size(); ++i) {
this->key_cmp[i] = JoinKeyCmp::EQ;
}
}
/// \brief create an instance from keys
///
/// This will create an inner join that outputs all columns and has no post join filter
///
/// `in_left_keys` should have the same length and types as `in_right_keys`
/// @param in_left_keys the keys in the left input
/// @param in_right_keys the keys in the right input
HashJoinNodeOptions(std::vector<FieldRef> in_left_keys,
std::vector<FieldRef> in_right_keys)
: left_keys(std::move(in_left_keys)), right_keys(std::move(in_right_keys)) {
this->join_type = JoinType::INNER;
this->output_all = true;
this->output_suffix_for_left = default_output_suffix_for_left;
this->output_suffix_for_right = default_output_suffix_for_right;
this->key_cmp.resize(this->left_keys.size());
for (size_t i = 0; i < this->left_keys.size(); ++i) {
this->key_cmp[i] = JoinKeyCmp::EQ;
}
this->filter = literal(true);
}
/// \brief create an instance from values using JoinKeyCmp::EQ for all comparisons
HashJoinNodeOptions(
JoinType join_type, std::vector<FieldRef> left_keys,
std::vector<FieldRef> right_keys, std::vector<FieldRef> left_output,
std::vector<FieldRef> right_output, Expression filter = literal(true),
std::string output_suffix_for_left = default_output_suffix_for_left,
std::string output_suffix_for_right = default_output_suffix_for_right,
bool disable_bloom_filter = false)
: join_type(join_type),
left_keys(std::move(left_keys)),
right_keys(std::move(right_keys)),
output_all(false),
left_output(std::move(left_output)),
right_output(std::move(right_output)),
output_suffix_for_left(std::move(output_suffix_for_left)),
output_suffix_for_right(std::move(output_suffix_for_right)),
filter(std::move(filter)),
disable_bloom_filter(disable_bloom_filter) {
this->key_cmp.resize(this->left_keys.size());
for (size_t i = 0; i < this->left_keys.size(); ++i) {
this->key_cmp[i] = JoinKeyCmp::EQ;
}
}
/// \brief create an instance from values
HashJoinNodeOptions(
JoinType join_type, std::vector<FieldRef> left_keys,
std::vector<FieldRef> right_keys, std::vector<FieldRef> left_output,
std::vector<FieldRef> right_output, std::vector<JoinKeyCmp> key_cmp,
Expression filter = literal(true),
std::string output_suffix_for_left = default_output_suffix_for_left,
std::string output_suffix_for_right = default_output_suffix_for_right,
bool disable_bloom_filter = false)
: join_type(join_type),
left_keys(std::move(left_keys)),
right_keys(std::move(right_keys)),
output_all(false),
left_output(std::move(left_output)),
right_output(std::move(right_output)),
key_cmp(std::move(key_cmp)),
output_suffix_for_left(std::move(output_suffix_for_left)),
output_suffix_for_right(std::move(output_suffix_for_right)),
filter(std::move(filter)),
disable_bloom_filter(disable_bloom_filter) {}
HashJoinNodeOptions() = default;
// type of join (inner, left, semi...)
JoinType join_type = JoinType::INNER;
// key fields from left input
std::vector<FieldRef> left_keys;
// key fields from right input
std::vector<FieldRef> right_keys;
// if set all valid fields from both left and right input will be output
// (and field ref vectors for output fields will be ignored)
bool output_all = false;
// output fields passed from left input
std::vector<FieldRef> left_output;
// output fields passed from right input
std::vector<FieldRef> right_output;
// key comparison function (determines whether a null key is equal another null
// key or not)
std::vector<JoinKeyCmp> key_cmp;
// suffix added to names of output fields coming from left input (used to distinguish,
// if necessary, between fields of the same name in left and right input and can be left
// empty if there are no name collisions)
std::string output_suffix_for_left;
// suffix added to names of output fields coming from right input
std::string output_suffix_for_right;
// residual filter which is applied to matching rows. Rows that do not match
// the filter are not included. The filter is applied against the
// concatenated input schema (left fields then right fields) and can reference
// fields that are not included in the output.
Expression filter = literal(true);
// whether or not to disable Bloom filters in this join
bool disable_bloom_filter = false;
};
/// \brief a node which implements the asof join operation
///
/// Note, this API is experimental and will change in the future
///
/// This node takes one left table and any number of right tables, and asof joins them
/// together. Batches produced by each input must be ordered by the "on" key.
/// This node will output one row for each row in the left table.
class ARROW_ACERO_EXPORT AsofJoinNodeOptions : public ExecNodeOptions {
public:
/// \brief Keys for one input table of the AsofJoin operation
///
/// The keys must be consistent across the input tables:
/// Each "on" key must refer to a field of the same type and units across the tables.
/// Each "by" key must refer to a list of fields of the same types across the tables.
struct Keys {
/// \brief "on" key for the join.
///
/// The input table must be sorted by the "on" key. Must be a single field of a common
/// type. Inexact match is used on the "on" key. i.e., a row is considered a match iff
/// left_on - tolerance <= right_on <= left_on.
/// Currently, the "on" key must be of an integer, date, or timestamp type.
FieldRef on_key;
/// \brief "by" key for the join.
///
/// Each input table must have each field of the "by" key. Exact equality is used for
/// each field of the "by" key.
/// Currently, each field of the "by" key must be of an integer, date, timestamp, or
/// base-binary type.
std::vector<FieldRef> by_key;
};
AsofJoinNodeOptions(std::vector<Keys> input_keys, int64_t tolerance)
: input_keys(std::move(input_keys)), tolerance(tolerance) {}
/// \brief AsofJoin keys per input table. At least two keys must be given. The first key
/// corresponds to a left table and all other keys correspond to right tables for the
/// as-of-join.
///
/// \see `Keys` for details.
std::vector<Keys> input_keys;
/// \brief Tolerance for inexact "on" key matching. A right row is considered a match
/// with the left row if `right.on - left.on <= tolerance`. The `tolerance` may be:
/// - negative, in which case a past-as-of-join occurs;
/// - or positive, in which case a future-as-of-join occurs;
/// - or zero, in which case an exact-as-of-join occurs.
///
/// The tolerance is interpreted in the same units as the "on" key.
int64_t tolerance;
};
/// \brief a node which select top_k/bottom_k rows passed through it
///
/// All batches pushed to this node will be accumulated, then selected, by the given
/// fields. Then sorted batches will be forwarded to the generator in sorted order.
class ARROW_ACERO_EXPORT SelectKSinkNodeOptions : public SinkNodeOptions {
public:
explicit SelectKSinkNodeOptions(
SelectKOptions select_k_options,
std::function<Future<std::optional<ExecBatch>>()>* generator)
: SinkNodeOptions(generator), select_k_options(std::move(select_k_options)) {}
/// SelectK options
SelectKOptions select_k_options;
};
/// \brief a sink node which accumulates all output into a table
class ARROW_ACERO_EXPORT TableSinkNodeOptions : public ExecNodeOptions {
public:
/// \brief create an instance from values
explicit TableSinkNodeOptions(std::shared_ptr<Table>* output_table,
std::optional<bool> sequence_output = std::nullopt)
: output_table(output_table), sequence_output(sequence_output) {}
/// \brief an "out parameter" specifying the table that will be created
///
/// Must not be null and remain valid for the entirety of the plan execution. After the
/// plan has completed this will be set to point to the result table
std::shared_ptr<Table>* output_table;
/// \brief Controls whether batches should be emitted immediately or sequenced in order
///
/// \see QueryOptions for more details
std::optional<bool> sequence_output;
/// \brief Custom names to use for the columns.
///
/// If specified then names must be provided for all fields. Currently, only a flat
/// schema is supported (see GH-31875).
///
/// If not specified then names will be generated based on the source data.
std::vector<std::string> names;
};
/// \brief a row template that describes one row that will be generated for each input row
struct ARROW_ACERO_EXPORT PivotLongerRowTemplate {
PivotLongerRowTemplate(std::vector<std::string> feature_values,
std::vector<std::optional<FieldRef>> measurement_values)
: feature_values(std::move(feature_values)),
measurement_values(std::move(measurement_values)) {}
/// A (typically unique) set of feature values for the template, usually derived from a
/// column name
///
/// These will be used to populate the feature columns
std::vector<std::string> feature_values;
/// The fields containing the measurements to use for this row
///
/// These will be used to populate the measurement columns. If nullopt then nulls
/// will be inserted for the given value.
std::vector<std::optional<FieldRef>> measurement_values;
};
/// \brief Reshape a table by turning some columns into additional rows
///
/// This operation is sometimes also referred to as UNPIVOT
///
/// This is typically done when there are multiple observations in each row in order to
/// transform to a table containing a single observation per row.
///
/// For example:
///
/// | time | left_temp | right_temp |
/// | ---- | --------- | ---------- |
/// | 1 | 10 | 20 |
/// | 2 | 15 | 18 |
///
/// The above table contains two observations per row. There is an implicit feature
/// "location" (left vs right) and a measurement "temp". What we really want is:
///
/// | time | location | temp |
/// | --- | --- | --- |
/// | 1 | left | 10 |
/// | 1 | right | 20 |
/// | 2 | left | 15 |
/// | 2 | right | 18 |
///
/// For a more complex example consider:
///
/// | time | ax1 | ay1 | bx1 | ay2 |
/// | ---- | --- | --- | --- | --- |
/// | 0 | 1 | 2 | 3 | 4 |
///
/// We can pretend a vs b and x vs y are features while 1 and 2 are two different
/// kinds of measurements. We thus want to pivot to
///
/// | time | a/b | x/y | f1 | f2 |
/// | ---- | --- | --- | ---- | ---- |
/// | 0 | a | x | 1 | null |
/// | 0 | a | y | 2 | 4 |
/// | 0 | b | x | 3 | null |
///
/// To do this we create a row template for each combination of features. One should
/// be able to do this purely by looking at the column names. For example, given the
/// above columns "ax1", "ay1", "bx1", and "ay2" we know we have three feature
/// combinations (a, x), (a, y), and (b, x). Similarly, we know we have two possible
/// measurements, "1" and "2".
///
/// For each combination of features we create a row template. In each row template we
/// describe the combination and then list which columns to use for the measurements.
/// If a measurement doesn't exist for a given combination then we use nullopt.
///
/// So, for our above example, we have:
///
/// (a, x): names={"a", "x"}, values={"ax1", nullopt}
/// (a, y): names={"a", "y"}, values={"ay1", "ay2"}
/// (b, x): names={"b", "x"}, values={"bx1", nullopt}
///
/// Finishing it off we name our new columns:
/// feature_field_names={"a/b","x/y"}
/// measurement_field_names={"f1", "f2"}
class ARROW_ACERO_EXPORT PivotLongerNodeOptions : public ExecNodeOptions {
public:
static constexpr std::string_view kName = "pivot_longer";
/// One or more row templates to create new output rows
///
/// Normally there are at least two row templates. The output # of rows
/// will be the input # of rows * the number of row templates
std::vector<PivotLongerRowTemplate> row_templates;
/// The names of the columns which describe the new features
std::vector<std::string> feature_field_names;
/// The names of the columns which represent the measurements
std::vector<std::string> measurement_field_names;
};
/// @}
} // namespace acero
} // namespace arrow
|