File size: 37,262 Bytes
7a1cef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

#pragma once

#include <functional>
#include <memory>
#include <optional>
#include <string>
#include <vector>

#include "arrow/acero/type_fwd.h"
#include "arrow/acero/visibility.h"
#include "arrow/compute/api_aggregate.h"
#include "arrow/compute/api_vector.h"
#include "arrow/compute/exec.h"
#include "arrow/compute/expression.h"
#include "arrow/record_batch.h"
#include "arrow/result.h"
#include "arrow/util/async_generator.h"
#include "arrow/util/async_util.h"

namespace arrow {

using compute::Aggregate;
using compute::ExecBatch;
using compute::Expression;
using compute::literal;
using compute::Ordering;
using compute::SelectKOptions;
using compute::SortOptions;

namespace internal {

class Executor;

}  // namespace internal

namespace acero {

/// \brief This must not be used in release-mode
struct DebugOptions;

using AsyncExecBatchGenerator = AsyncGenerator<std::optional<ExecBatch>>;

/// \addtogroup acero-nodes
/// @{

/// \brief A base class for all options objects
///
/// The only time this is used directly is when a node has no configuration
class ARROW_ACERO_EXPORT ExecNodeOptions {
 public:
  virtual ~ExecNodeOptions() = default;

  /// \brief This must not be used in release-mode
  std::shared_ptr<DebugOptions> debug_opts;
};

/// \brief A node representing a generic source of data for Acero
///
/// The source node will start calling `generator` during StartProducing.  An initial
/// task will be created that will call `generator`.  It will not call `generator`
/// reentrantly.  If the source can be read in parallel then those details should be
/// encapsulated within `generator`.
///
/// For each batch received a new task will be created to push that batch downstream.
/// This task will slice smaller units of size `ExecPlan::kMaxBatchSize` from the
/// parent batch and call InputReceived.  Thus, if the `generator` yields a large
/// batch it may result in several calls to InputReceived.
///
/// The SourceNode will, by default, assign an implicit ordering to outgoing batches.
/// This is valid as long as the generator generates batches in a deterministic fashion.
/// Currently, the only way to override this is to subclass the SourceNode.
///
/// This node is not generally used directly but can serve as the basis for various
/// specialized nodes.
class ARROW_ACERO_EXPORT SourceNodeOptions : public ExecNodeOptions {
 public:
  /// Create an instance from values
  SourceNodeOptions(std::shared_ptr<Schema> output_schema,
                    std::function<Future<std::optional<ExecBatch>>()> generator)
      : output_schema(std::move(output_schema)), generator(std::move(generator)) {}

  /// \brief the schema for batches that will be generated by this source
  std::shared_ptr<Schema> output_schema;
  /// \brief an asynchronous stream of batches ending with std::nullopt
  std::function<Future<std::optional<ExecBatch>>()> generator;
};

/// \brief a node that generates data from a table already loaded in memory
///
/// The table source node will slice off chunks, defined by `max_batch_size`
/// for parallel processing.  The table source node extends source node and so these
/// chunks will be iteratively processed in small batches.  \see SourceNodeOptions
/// for details.
class ARROW_ACERO_EXPORT TableSourceNodeOptions : public ExecNodeOptions {
 public:
  static constexpr int64_t kDefaultMaxBatchSize = 1 << 20;

  /// Create an instance from values
  TableSourceNodeOptions(std::shared_ptr<Table> table,
                         int64_t max_batch_size = kDefaultMaxBatchSize)
      : table(std::move(table)), max_batch_size(max_batch_size) {}

  /// \brief a table which acts as the data source
  std::shared_ptr<Table> table;
  /// \brief size of batches to emit from this node
  /// If the table is larger the node will emit multiple batches from the
  /// the table to be processed in parallel.
  int64_t max_batch_size;
};

/// \brief define a lazily resolved Arrow table.
///
/// The table uniquely identified by the names can typically be resolved at the time when
/// the plan is to be consumed.
///
/// This node is for serialization purposes only and can never be executed.
class ARROW_ACERO_EXPORT NamedTableNodeOptions : public ExecNodeOptions {
 public:
  /// Create an instance from values
  NamedTableNodeOptions(std::vector<std::string> names, std::shared_ptr<Schema> schema)
      : names(std::move(names)), schema(std::move(schema)) {}

  /// \brief the names to put in the serialized plan
  std::vector<std::string> names;
  /// \brief the output schema of the table
  std::shared_ptr<Schema> schema;
};

/// \brief a source node which feeds data from a synchronous iterator of batches
///
/// ItMaker is a maker of an iterator of tabular data.
///
/// The node can be configured to use an I/O executor.  If set then each time the
/// iterator is polled a new I/O thread task will be created to do the polling.  This
/// allows a blocking iterator to stay off the CPU thread pool.
template <typename ItMaker>
class ARROW_ACERO_EXPORT SchemaSourceNodeOptions : public ExecNodeOptions {
 public:
  /// Create an instance that will create a new task on io_executor for each iteration
  SchemaSourceNodeOptions(std::shared_ptr<Schema> schema, ItMaker it_maker,
                          arrow::internal::Executor* io_executor)
      : schema(std::move(schema)),
        it_maker(std::move(it_maker)),
        io_executor(io_executor),
        requires_io(true) {}

  /// Create an instance that will either iterate synchronously or use the default I/O
  /// executor
  SchemaSourceNodeOptions(std::shared_ptr<Schema> schema, ItMaker it_maker,
                          bool requires_io = false)
      : schema(std::move(schema)),
        it_maker(std::move(it_maker)),
        io_executor(NULLPTR),
        requires_io(requires_io) {}

  /// \brief The schema of the record batches from the iterator
  std::shared_ptr<Schema> schema;

  /// \brief A maker of an iterator which acts as the data source
  ItMaker it_maker;

  /// \brief The executor to use for scanning the iterator
  ///
  /// Defaults to the default I/O executor.  Only used if requires_io is true.
  /// If requires_io is false then this MUST be nullptr.
  arrow::internal::Executor* io_executor;

  /// \brief If true then items will be fetched from the iterator on a dedicated I/O
  ///        thread to keep I/O off the CPU thread
  bool requires_io;
};

/// a source node that reads from a RecordBatchReader
///
/// Each iteration of the RecordBatchReader will be run on a new thread task created
/// on the I/O thread pool.
class ARROW_ACERO_EXPORT RecordBatchReaderSourceNodeOptions : public ExecNodeOptions {
 public:
  /// Create an instance from values
  RecordBatchReaderSourceNodeOptions(std::shared_ptr<RecordBatchReader> reader,
                                     arrow::internal::Executor* io_executor = NULLPTR)
      : reader(std::move(reader)), io_executor(io_executor) {}

  /// \brief The RecordBatchReader which acts as the data source
  std::shared_ptr<RecordBatchReader> reader;

  /// \brief The executor to use for the reader
  ///
  /// Defaults to the default I/O executor.
  arrow::internal::Executor* io_executor;
};

/// a source node that reads from an iterator of array vectors
using ArrayVectorIteratorMaker = std::function<Iterator<std::shared_ptr<ArrayVector>>()>;
/// \brief An extended Source node which accepts a schema and array-vectors
class ARROW_ACERO_EXPORT ArrayVectorSourceNodeOptions
    : public SchemaSourceNodeOptions<ArrayVectorIteratorMaker> {
  using SchemaSourceNodeOptions::SchemaSourceNodeOptions;
};

/// a source node that reads from an iterator of ExecBatch
using ExecBatchIteratorMaker = std::function<Iterator<std::shared_ptr<ExecBatch>>()>;
/// \brief An extended Source node which accepts a schema and exec-batches
class ARROW_ACERO_EXPORT ExecBatchSourceNodeOptions
    : public SchemaSourceNodeOptions<ExecBatchIteratorMaker> {
 public:
  using SchemaSourceNodeOptions::SchemaSourceNodeOptions;
  ExecBatchSourceNodeOptions(std::shared_ptr<Schema> schema,
                             std::vector<ExecBatch> batches,
                             ::arrow::internal::Executor* io_executor);
  ExecBatchSourceNodeOptions(std::shared_ptr<Schema> schema,
                             std::vector<ExecBatch> batches, bool requires_io = false);
};

using RecordBatchIteratorMaker = std::function<Iterator<std::shared_ptr<RecordBatch>>()>;
/// a source node that reads from an iterator of RecordBatch
class ARROW_ACERO_EXPORT RecordBatchSourceNodeOptions
    : public SchemaSourceNodeOptions<RecordBatchIteratorMaker> {
  using SchemaSourceNodeOptions::SchemaSourceNodeOptions;
};

/// \brief a node which excludes some rows from batches passed through it
///
/// filter_expression will be evaluated against each batch which is pushed to
/// this node. Any rows for which filter_expression does not evaluate to `true` will be
/// excluded in the batch emitted by this node.
///
/// This node will emit empty batches if all rows are excluded.  This is done
/// to avoid gaps in the ordering.
class ARROW_ACERO_EXPORT FilterNodeOptions : public ExecNodeOptions {
 public:
  /// \brief create an instance from values
  explicit FilterNodeOptions(Expression filter_expression)
      : filter_expression(std::move(filter_expression)) {}

  /// \brief the expression to filter batches
  ///
  /// The return type of this expression must be boolean
  Expression filter_expression;
};

/// \brief a node which selects a specified subset from the input
class ARROW_ACERO_EXPORT FetchNodeOptions : public ExecNodeOptions {
 public:
  static constexpr std::string_view kName = "fetch";
  /// \brief create an instance from values
  FetchNodeOptions(int64_t offset, int64_t count) : offset(offset), count(count) {}
  /// \brief the number of rows to skip
  int64_t offset;
  /// \brief the number of rows to keep (not counting skipped rows)
  int64_t count;
};

/// \brief a node which executes expressions on input batches, producing batches
/// of the same length with new columns.
///
/// Each expression will be evaluated against each batch which is pushed to
/// this node to produce a corresponding output column.
///
/// If names are not provided, the string representations of exprs will be used.
class ARROW_ACERO_EXPORT ProjectNodeOptions : public ExecNodeOptions {
 public:
  /// \brief create an instance from values
  explicit ProjectNodeOptions(std::vector<Expression> expressions,
                              std::vector<std::string> names = {})
      : expressions(std::move(expressions)), names(std::move(names)) {}

  /// \brief the expressions to run on the batches
  ///
  /// The output will have one column for each expression.  If you wish to keep any of
  /// the columns from the input then you should create a simple field_ref expression
  /// for that column.
  std::vector<Expression> expressions;
  /// \brief the names of the output columns
  ///
  /// If this is not specified then the result of calling ToString on the expression will
  /// be used instead
  ///
  /// This list should either be empty or have the same length as `expressions`
  std::vector<std::string> names;
};

/// \brief a node which aggregates input batches and calculates summary statistics
///
/// The node can summarize the entire input or it can group the input with grouping keys
/// and segment keys.
///
/// By default, the aggregate node is a pipeline breaker.  It must accumulate all input
/// before any output is produced.  Segment keys are a performance optimization.  If
/// you know your input is already partitioned by one or more columns then you can
/// specify these as segment keys.  At each change in the segment keys the node will
/// emit values for all data seen so far.
///
/// Segment keys are currently limited to single-threaded mode.
///
/// Both keys and segment-keys determine the group.  However segment-keys are also used
/// for determining grouping segments, which should be large, and allow streaming a
/// partial aggregation result after processing each segment.  One common use-case for
/// segment-keys is ordered aggregation, in which the segment-key attribute specifies a
/// column with non-decreasing values or a lexicographically-ordered set of such columns.
///
/// If the keys attribute is a non-empty vector, then each aggregate in `aggregates` is
/// expected to be a HashAggregate function. If the keys attribute is an empty vector,
/// then each aggregate is assumed to be a ScalarAggregate function.
///
/// If the segment_keys attribute is a non-empty vector, then segmented aggregation, as
/// described above, applies.
///
/// The keys and segment_keys vectors must be disjoint.
///
/// If no measures are provided then you will simply get the list of unique keys.
///
/// This node outputs segment keys first, followed by regular keys, followed by one
/// column for each aggregate.
class ARROW_ACERO_EXPORT AggregateNodeOptions : public ExecNodeOptions {
 public:
  /// \brief create an instance from values
  explicit AggregateNodeOptions(std::vector<Aggregate> aggregates,
                                std::vector<FieldRef> keys = {},
                                std::vector<FieldRef> segment_keys = {})
      : aggregates(std::move(aggregates)),
        keys(std::move(keys)),
        segment_keys(std::move(segment_keys)) {}

  // aggregations which will be applied to the targeted fields
  std::vector<Aggregate> aggregates;
  // keys by which aggregations will be grouped (optional)
  std::vector<FieldRef> keys;
  // keys by which aggregations will be segmented (optional)
  std::vector<FieldRef> segment_keys;
};

/// \brief a default value at which backpressure will be applied
constexpr int32_t kDefaultBackpressureHighBytes = 1 << 30;  // 1GiB
/// \brief a default value at which backpressure will be removed
constexpr int32_t kDefaultBackpressureLowBytes = 1 << 28;  // 256MiB

/// \brief an interface that can be queried for backpressure statistics
class ARROW_ACERO_EXPORT BackpressureMonitor {
 public:
  virtual ~BackpressureMonitor() = default;
  /// \brief fetches the number of bytes currently queued up
  virtual uint64_t bytes_in_use() = 0;
  /// \brief checks to see if backpressure is currently applied
  virtual bool is_paused() = 0;
};

/// \brief Options to control backpressure behavior
struct ARROW_ACERO_EXPORT BackpressureOptions {
  /// \brief Create default options that perform no backpressure
  BackpressureOptions() : resume_if_below(0), pause_if_above(0) {}
  /// \brief Create options that will perform backpressure
  ///
  /// \param resume_if_below The producer should resume producing if the backpressure
  ///                        queue has fewer than resume_if_below items.
  /// \param pause_if_above The producer should pause producing if the backpressure
  ///                       queue has more than pause_if_above items
  BackpressureOptions(uint64_t resume_if_below, uint64_t pause_if_above)
      : resume_if_below(resume_if_below), pause_if_above(pause_if_above) {}

  /// \brief create an instance using default values for backpressure limits
  static BackpressureOptions DefaultBackpressure() {
    return BackpressureOptions(kDefaultBackpressureLowBytes,
                               kDefaultBackpressureHighBytes);
  }

  /// \brief helper method to determine if backpressure is disabled
  /// \return true if pause_if_above is greater than zero, false otherwise
  bool should_apply_backpressure() const { return pause_if_above > 0; }

  /// \brief the number of bytes at which the producer should resume producing
  uint64_t resume_if_below;
  /// \brief the number of bytes at which the producer should pause producing
  ///
  /// If this is <= 0 then backpressure will be disabled
  uint64_t pause_if_above;
};

/// \brief a sink node which collects results in a queue
///
/// Emitted batches will only be ordered if there is a meaningful ordering
/// and sequence_output is not set to false.
class ARROW_ACERO_EXPORT SinkNodeOptions : public ExecNodeOptions {
 public:
  explicit SinkNodeOptions(std::function<Future<std::optional<ExecBatch>>()>* generator,
                           std::shared_ptr<Schema>* schema,
                           BackpressureOptions backpressure = {},
                           BackpressureMonitor** backpressure_monitor = NULLPTR,
                           std::optional<bool> sequence_output = std::nullopt)
      : generator(generator),
        schema(schema),
        backpressure(backpressure),
        backpressure_monitor(backpressure_monitor),
        sequence_output(sequence_output) {}

  explicit SinkNodeOptions(std::function<Future<std::optional<ExecBatch>>()>* generator,
                           BackpressureOptions backpressure = {},
                           BackpressureMonitor** backpressure_monitor = NULLPTR,
                           std::optional<bool> sequence_output = std::nullopt)
      : generator(generator),
        schema(NULLPTR),
        backpressure(std::move(backpressure)),
        backpressure_monitor(backpressure_monitor),
        sequence_output(sequence_output) {}

  /// \brief A pointer to a generator of batches.
  ///
  /// This will be set when the node is added to the plan and should be used to consume
  /// data from the plan.  If this function is not called frequently enough then the sink
  /// node will start to accumulate data and may apply backpressure.
  std::function<Future<std::optional<ExecBatch>>()>* generator;
  /// \brief A pointer which will be set to the schema of the generated batches
  ///
  /// This is optional, if nullptr is passed in then it will be ignored.
  /// This will be set when the node is added to the plan, before StartProducing is called
  std::shared_ptr<Schema>* schema;
  /// \brief Options to control when to apply backpressure
  ///
  /// This is optional, the default is to never apply backpressure.  If the plan is not
  /// consumed quickly enough the system may eventually run out of memory.
  BackpressureOptions backpressure;
  /// \brief A pointer to a backpressure monitor
  ///
  /// This will be set when the node is added to the plan.  This can be used to inspect
  /// the amount of data currently queued in the sink node.  This is an optional utility
  /// and backpressure can be applied even if this is not used.
  BackpressureMonitor** backpressure_monitor;
  /// \brief Controls whether batches should be emitted immediately or sequenced in order
  ///
  /// \see QueryOptions for more details
  std::optional<bool> sequence_output;
};

/// \brief Control used by a SinkNodeConsumer to pause & resume
///
/// Callers should ensure that they do not call Pause and Resume simultaneously and they
/// should sequence things so that a call to Pause() is always followed by an eventual
/// call to Resume()
class ARROW_ACERO_EXPORT BackpressureControl {
 public:
  virtual ~BackpressureControl() = default;
  /// \brief Ask the input to pause
  ///
  /// This is best effort, batches may continue to arrive
  /// Must eventually be followed by a call to Resume() or deadlock will occur
  virtual void Pause() = 0;
  /// \brief Ask the input to resume
  virtual void Resume() = 0;
};

/// \brief a sink node that consumes the data as part of the plan using callbacks
class ARROW_ACERO_EXPORT SinkNodeConsumer {
 public:
  virtual ~SinkNodeConsumer() = default;
  /// \brief Prepare any consumer state
  ///
  /// This will be run once the schema is finalized as the plan is starting and
  /// before any calls to Consume.  A common use is to save off the schema so that
  /// batches can be interpreted.
  virtual Status Init(const std::shared_ptr<Schema>& schema,
                      BackpressureControl* backpressure_control, ExecPlan* plan) = 0;
  /// \brief Consume a batch of data
  virtual Status Consume(ExecBatch batch) = 0;
  /// \brief Signal to the consumer that the last batch has been delivered
  ///
  /// The returned future should only finish when all outstanding tasks have completed
  ///
  /// If the plan is ended early or aborts due to an error then this will not be
  /// called.
  virtual Future<> Finish() = 0;
};

/// \brief Add a sink node which consumes data within the exec plan run
class ARROW_ACERO_EXPORT ConsumingSinkNodeOptions : public ExecNodeOptions {
 public:
  explicit ConsumingSinkNodeOptions(std::shared_ptr<SinkNodeConsumer> consumer,
                                    std::vector<std::string> names = {},
                                    std::optional<bool> sequence_output = std::nullopt)
      : consumer(std::move(consumer)),
        names(std::move(names)),
        sequence_output(sequence_output) {}

  std::shared_ptr<SinkNodeConsumer> consumer;
  /// \brief Names to rename the sink's schema fields to
  ///
  /// If specified then names must be provided for all fields. Currently, only a flat
  /// schema is supported (see GH-31875).
  ///
  /// If not specified then names will be generated based on the source data.
  std::vector<std::string> names;
  /// \brief Controls whether batches should be emitted immediately or sequenced in order
  ///
  /// \see QueryOptions for more details
  std::optional<bool> sequence_output;
};

/// \brief Make a node which sorts rows passed through it
///
/// All batches pushed to this node will be accumulated, then sorted, by the given
/// fields. Then sorted batches will be forwarded to the generator in sorted order.
class ARROW_ACERO_EXPORT OrderBySinkNodeOptions : public SinkNodeOptions {
 public:
  /// \brief create an instance from values
  explicit OrderBySinkNodeOptions(
      SortOptions sort_options,
      std::function<Future<std::optional<ExecBatch>>()>* generator)
      : SinkNodeOptions(generator), sort_options(std::move(sort_options)) {}

  /// \brief options describing which columns and direction to sort
  SortOptions sort_options;
};

/// \brief Apply a new ordering to data
///
/// Currently this node works by accumulating all data, sorting, and then emitting
/// the new data with an updated batch index.
///
/// Larger-than-memory sort is not currently supported.
class ARROW_ACERO_EXPORT OrderByNodeOptions : public ExecNodeOptions {
 public:
  static constexpr std::string_view kName = "order_by";
  explicit OrderByNodeOptions(Ordering ordering) : ordering(std::move(ordering)) {}

  /// \brief The new ordering to apply to outgoing data
  Ordering ordering;
};

enum class JoinType {
  LEFT_SEMI,
  RIGHT_SEMI,
  LEFT_ANTI,
  RIGHT_ANTI,
  INNER,
  LEFT_OUTER,
  RIGHT_OUTER,
  FULL_OUTER
};

std::string ToString(JoinType t);

enum class JoinKeyCmp { EQ, IS };

/// \brief a node which implements a join operation using a hash table
class ARROW_ACERO_EXPORT HashJoinNodeOptions : public ExecNodeOptions {
 public:
  static constexpr const char* default_output_suffix_for_left = "";
  static constexpr const char* default_output_suffix_for_right = "";
  /// \brief create an instance from values that outputs all columns
  HashJoinNodeOptions(
      JoinType in_join_type, std::vector<FieldRef> in_left_keys,
      std::vector<FieldRef> in_right_keys, Expression filter = literal(true),
      std::string output_suffix_for_left = default_output_suffix_for_left,
      std::string output_suffix_for_right = default_output_suffix_for_right,
      bool disable_bloom_filter = false)
      : join_type(in_join_type),
        left_keys(std::move(in_left_keys)),
        right_keys(std::move(in_right_keys)),
        output_all(true),
        output_suffix_for_left(std::move(output_suffix_for_left)),
        output_suffix_for_right(std::move(output_suffix_for_right)),
        filter(std::move(filter)),
        disable_bloom_filter(disable_bloom_filter) {
    this->key_cmp.resize(this->left_keys.size());
    for (size_t i = 0; i < this->left_keys.size(); ++i) {
      this->key_cmp[i] = JoinKeyCmp::EQ;
    }
  }
  /// \brief create an instance from keys
  ///
  /// This will create an inner join that outputs all columns and has no post join filter
  ///
  /// `in_left_keys` should have the same length and types as `in_right_keys`
  /// @param in_left_keys the keys in the left input
  /// @param in_right_keys the keys in the right input
  HashJoinNodeOptions(std::vector<FieldRef> in_left_keys,
                      std::vector<FieldRef> in_right_keys)
      : left_keys(std::move(in_left_keys)), right_keys(std::move(in_right_keys)) {
    this->join_type = JoinType::INNER;
    this->output_all = true;
    this->output_suffix_for_left = default_output_suffix_for_left;
    this->output_suffix_for_right = default_output_suffix_for_right;
    this->key_cmp.resize(this->left_keys.size());
    for (size_t i = 0; i < this->left_keys.size(); ++i) {
      this->key_cmp[i] = JoinKeyCmp::EQ;
    }
    this->filter = literal(true);
  }
  /// \brief create an instance from values using JoinKeyCmp::EQ for all comparisons
  HashJoinNodeOptions(
      JoinType join_type, std::vector<FieldRef> left_keys,
      std::vector<FieldRef> right_keys, std::vector<FieldRef> left_output,
      std::vector<FieldRef> right_output, Expression filter = literal(true),
      std::string output_suffix_for_left = default_output_suffix_for_left,
      std::string output_suffix_for_right = default_output_suffix_for_right,
      bool disable_bloom_filter = false)
      : join_type(join_type),
        left_keys(std::move(left_keys)),
        right_keys(std::move(right_keys)),
        output_all(false),
        left_output(std::move(left_output)),
        right_output(std::move(right_output)),
        output_suffix_for_left(std::move(output_suffix_for_left)),
        output_suffix_for_right(std::move(output_suffix_for_right)),
        filter(std::move(filter)),
        disable_bloom_filter(disable_bloom_filter) {
    this->key_cmp.resize(this->left_keys.size());
    for (size_t i = 0; i < this->left_keys.size(); ++i) {
      this->key_cmp[i] = JoinKeyCmp::EQ;
    }
  }
  /// \brief create an instance from values
  HashJoinNodeOptions(
      JoinType join_type, std::vector<FieldRef> left_keys,
      std::vector<FieldRef> right_keys, std::vector<FieldRef> left_output,
      std::vector<FieldRef> right_output, std::vector<JoinKeyCmp> key_cmp,
      Expression filter = literal(true),
      std::string output_suffix_for_left = default_output_suffix_for_left,
      std::string output_suffix_for_right = default_output_suffix_for_right,
      bool disable_bloom_filter = false)
      : join_type(join_type),
        left_keys(std::move(left_keys)),
        right_keys(std::move(right_keys)),
        output_all(false),
        left_output(std::move(left_output)),
        right_output(std::move(right_output)),
        key_cmp(std::move(key_cmp)),
        output_suffix_for_left(std::move(output_suffix_for_left)),
        output_suffix_for_right(std::move(output_suffix_for_right)),
        filter(std::move(filter)),
        disable_bloom_filter(disable_bloom_filter) {}

  HashJoinNodeOptions() = default;

  // type of join (inner, left, semi...)
  JoinType join_type = JoinType::INNER;
  // key fields from left input
  std::vector<FieldRef> left_keys;
  // key fields from right input
  std::vector<FieldRef> right_keys;
  // if set all valid fields from both left and right input will be output
  // (and field ref vectors for output fields will be ignored)
  bool output_all = false;
  // output fields passed from left input
  std::vector<FieldRef> left_output;
  // output fields passed from right input
  std::vector<FieldRef> right_output;
  // key comparison function (determines whether a null key is equal another null
  // key or not)
  std::vector<JoinKeyCmp> key_cmp;
  // suffix added to names of output fields coming from left input (used to distinguish,
  // if necessary, between fields of the same name in left and right input and can be left
  // empty if there are no name collisions)
  std::string output_suffix_for_left;
  // suffix added to names of output fields coming from right input
  std::string output_suffix_for_right;
  // residual filter which is applied to matching rows.  Rows that do not match
  // the filter are not included.  The filter is applied against the
  // concatenated input schema (left fields then right fields) and can reference
  // fields that are not included in the output.
  Expression filter = literal(true);
  // whether or not to disable Bloom filters in this join
  bool disable_bloom_filter = false;
};

/// \brief a node which implements the asof join operation
///
/// Note, this API is experimental and will change in the future
///
/// This node takes one left table and any number of right tables, and asof joins them
/// together. Batches produced by each input must be ordered by the "on" key.
/// This node will output one row for each row in the left table.
class ARROW_ACERO_EXPORT AsofJoinNodeOptions : public ExecNodeOptions {
 public:
  /// \brief Keys for one input table of the AsofJoin operation
  ///
  /// The keys must be consistent across the input tables:
  /// Each "on" key must refer to a field of the same type and units across the tables.
  /// Each "by" key must refer to a list of fields of the same types across the tables.
  struct Keys {
    /// \brief "on" key for the join.
    ///
    /// The input table must be sorted by the "on" key. Must be a single field of a common
    /// type. Inexact match is used on the "on" key. i.e., a row is considered a match iff
    /// left_on - tolerance <= right_on <= left_on.
    /// Currently, the "on" key must be of an integer, date, or timestamp type.
    FieldRef on_key;
    /// \brief "by" key for the join.
    ///
    /// Each input table must have each field of the "by" key.  Exact equality is used for
    /// each field of the "by" key.
    /// Currently, each field of the "by" key must be of an integer, date, timestamp, or
    /// base-binary type.
    std::vector<FieldRef> by_key;
  };

  AsofJoinNodeOptions(std::vector<Keys> input_keys, int64_t tolerance)
      : input_keys(std::move(input_keys)), tolerance(tolerance) {}

  /// \brief AsofJoin keys per input table. At least two keys must be given. The first key
  /// corresponds to a left table and all other keys correspond to right tables for the
  /// as-of-join.
  ///
  /// \see `Keys` for details.
  std::vector<Keys> input_keys;
  /// \brief Tolerance for inexact "on" key matching. A right row is considered a match
  /// with the left row if `right.on - left.on <= tolerance`. The `tolerance` may be:
  /// - negative, in which case a past-as-of-join occurs;
  /// - or positive, in which case a future-as-of-join occurs;
  /// - or zero, in which case an exact-as-of-join occurs.
  ///
  /// The tolerance is interpreted in the same units as the "on" key.
  int64_t tolerance;
};

/// \brief a node which select top_k/bottom_k rows passed through it
///
/// All batches pushed to this node will be accumulated, then selected, by the given
/// fields. Then sorted batches will be forwarded to the generator in sorted order.
class ARROW_ACERO_EXPORT SelectKSinkNodeOptions : public SinkNodeOptions {
 public:
  explicit SelectKSinkNodeOptions(
      SelectKOptions select_k_options,
      std::function<Future<std::optional<ExecBatch>>()>* generator)
      : SinkNodeOptions(generator), select_k_options(std::move(select_k_options)) {}

  /// SelectK options
  SelectKOptions select_k_options;
};

/// \brief a sink node which accumulates all output into a table
class ARROW_ACERO_EXPORT TableSinkNodeOptions : public ExecNodeOptions {
 public:
  /// \brief create an instance from values
  explicit TableSinkNodeOptions(std::shared_ptr<Table>* output_table,
                                std::optional<bool> sequence_output = std::nullopt)
      : output_table(output_table), sequence_output(sequence_output) {}

  /// \brief an "out parameter" specifying the table that will be created
  ///
  /// Must not be null and remain valid for the entirety of the plan execution.  After the
  /// plan has completed this will be set to point to the result table
  std::shared_ptr<Table>* output_table;
  /// \brief Controls whether batches should be emitted immediately or sequenced in order
  ///
  /// \see QueryOptions for more details
  std::optional<bool> sequence_output;
  /// \brief Custom names to use for the columns.
  ///
  /// If specified then names must be provided for all fields. Currently, only a flat
  /// schema is supported (see GH-31875).
  ///
  /// If not specified then names will be generated based on the source data.
  std::vector<std::string> names;
};

/// \brief a row template that describes one row that will be generated for each input row
struct ARROW_ACERO_EXPORT PivotLongerRowTemplate {
  PivotLongerRowTemplate(std::vector<std::string> feature_values,
                         std::vector<std::optional<FieldRef>> measurement_values)
      : feature_values(std::move(feature_values)),
        measurement_values(std::move(measurement_values)) {}
  /// A (typically unique) set of feature values for the template, usually derived from a
  /// column name
  ///
  /// These will be used to populate the feature columns
  std::vector<std::string> feature_values;
  /// The fields containing the measurements to use for this row
  ///
  /// These will be used to populate the measurement columns.  If nullopt then nulls
  /// will be inserted for the given value.
  std::vector<std::optional<FieldRef>> measurement_values;
};

/// \brief Reshape a table by turning some columns into additional rows
///
/// This operation is sometimes also referred to as UNPIVOT
///
/// This is typically done when there are multiple observations in each row in order to
/// transform to a table containing a single observation per row.
///
/// For example:
///
/// | time | left_temp | right_temp |
/// | ---- | --------- | ---------- |
/// | 1    | 10        | 20         |
/// | 2    | 15        | 18         |
///
/// The above table contains two observations per row.  There is an implicit feature
/// "location" (left vs right) and a measurement "temp".  What we really want is:
///
/// | time | location | temp |
/// | ---  | ---      | ---  |
/// | 1    | left     | 10   |
/// | 1    | right    | 20   |
/// | 2    | left     | 15   |
/// | 2    | right    | 18   |
///
/// For a more complex example consider:
///
/// | time | ax1 | ay1 | bx1 | ay2 |
/// | ---- | --- | --- | --- | --- |
/// | 0    | 1   | 2   | 3   | 4   |
///
/// We can pretend a vs b and x vs y are features while 1 and 2 are two different
/// kinds of measurements.  We thus want to pivot to
///
/// | time | a/b | x/y |  f1  |  f2  |
/// | ---- | --- | --- | ---- | ---- |
/// | 0    | a   | x   | 1    | null |
/// | 0    | a   | y   | 2    | 4    |
/// | 0    | b   | x   | 3    | null |
///
/// To do this we create a row template for each combination of features.  One should
/// be able to do this purely by looking at the column names.  For example, given the
/// above columns "ax1", "ay1", "bx1", and "ay2" we know we have three feature
/// combinations (a, x), (a, y), and (b, x).  Similarly, we know we have two possible
/// measurements, "1" and "2".
///
/// For each combination of features we create a row template.  In each row template we
/// describe the combination and then list which columns to use for the measurements.
/// If a measurement doesn't exist for a given combination then we use nullopt.
///
/// So, for our above example, we have:
///
/// (a, x): names={"a", "x"}, values={"ax1", nullopt}
/// (a, y): names={"a", "y"}, values={"ay1", "ay2"}
/// (b, x): names={"b", "x"}, values={"bx1", nullopt}
///
/// Finishing it off we name our new columns:
/// feature_field_names={"a/b","x/y"}
/// measurement_field_names={"f1", "f2"}
class ARROW_ACERO_EXPORT PivotLongerNodeOptions : public ExecNodeOptions {
 public:
  static constexpr std::string_view kName = "pivot_longer";
  /// One or more row templates to create new output rows
  ///
  /// Normally there are at least two row templates.  The output # of rows
  /// will be the input # of rows * the number of row templates
  std::vector<PivotLongerRowTemplate> row_templates;
  /// The names of the columns which describe the new features
  std::vector<std::string> feature_field_names;
  /// The names of the columns which represent the measurements
  std::vector<std::string> measurement_field_names;
};

/// @}

}  // namespace acero
}  // namespace arrow