File size: 23,382 Bytes
3230c19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

#pragma once

#include <atomic>  // IWYU pragma: export
#include <cassert>
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>

#include "arrow/buffer.h"
#include "arrow/result.h"
#include "arrow/type.h"
#include "arrow/type_fwd.h"
#include "arrow/util/bit_util.h"
#include "arrow/util/macros.h"
#include "arrow/util/span.h"
#include "arrow/util/visibility.h"

namespace arrow {

namespace internal {
// ----------------------------------------------------------------------
// Null handling for types without a validity bitmap and the dictionary type

ARROW_EXPORT bool IsNullSparseUnion(const ArrayData& data, int64_t i);
ARROW_EXPORT bool IsNullDenseUnion(const ArrayData& data, int64_t i);
ARROW_EXPORT bool IsNullRunEndEncoded(const ArrayData& data, int64_t i);

ARROW_EXPORT bool UnionMayHaveLogicalNulls(const ArrayData& data);
ARROW_EXPORT bool RunEndEncodedMayHaveLogicalNulls(const ArrayData& data);
ARROW_EXPORT bool DictionaryMayHaveLogicalNulls(const ArrayData& data);
}  // namespace internal

// When slicing, we do not know the null count of the sliced range without
// doing some computation. To avoid doing this eagerly, we set the null count
// to -1 (any negative number will do). When Array::null_count is called the
// first time, the null count will be computed. See ARROW-33
constexpr int64_t kUnknownNullCount = -1;

// ----------------------------------------------------------------------
// Generic array data container

/// \class ArrayData
/// \brief Mutable container for generic Arrow array data
///
/// This data structure is a self-contained representation of the memory and
/// metadata inside an Arrow array data structure (called vectors in Java). The
/// classes arrow::Array and its subclasses provide strongly-typed accessors
/// with support for the visitor pattern and other affordances.
///
/// This class is designed for easy internal data manipulation, analytical data
/// processing, and data transport to and from IPC messages. For example, we
/// could cast from int64 to float64 like so:
///
/// Int64Array arr = GetMyData();
/// auto new_data = arr.data()->Copy();
/// new_data->type = arrow::float64();
/// DoubleArray double_arr(new_data);
///
/// This object is also useful in an analytics setting where memory may be
/// reused. For example, if we had a group of operations all returning doubles,
/// say:
///
/// Log(Sqrt(Expr(arr)))
///
/// Then the low-level implementations of each of these functions could have
/// the signatures
///
/// void Log(const ArrayData& values, ArrayData* out);
///
/// As another example a function may consume one or more memory buffers in an
/// input array and replace them with newly-allocated data, changing the output
/// data type as well.
struct ARROW_EXPORT ArrayData {
  ArrayData() = default;

  ArrayData(std::shared_ptr<DataType> type, int64_t length,
            int64_t null_count = kUnknownNullCount, int64_t offset = 0)
      : type(std::move(type)), length(length), null_count(null_count), offset(offset) {}

  ArrayData(std::shared_ptr<DataType> type, int64_t length,
            std::vector<std::shared_ptr<Buffer>> buffers,
            int64_t null_count = kUnknownNullCount, int64_t offset = 0)
      : ArrayData(std::move(type), length, null_count, offset) {
    this->buffers = std::move(buffers);
  }

  ArrayData(std::shared_ptr<DataType> type, int64_t length,
            std::vector<std::shared_ptr<Buffer>> buffers,
            std::vector<std::shared_ptr<ArrayData>> child_data,
            int64_t null_count = kUnknownNullCount, int64_t offset = 0)
      : ArrayData(std::move(type), length, null_count, offset) {
    this->buffers = std::move(buffers);
    this->child_data = std::move(child_data);
  }

  static std::shared_ptr<ArrayData> Make(std::shared_ptr<DataType> type, int64_t length,
                                         std::vector<std::shared_ptr<Buffer>> buffers,
                                         int64_t null_count = kUnknownNullCount,
                                         int64_t offset = 0);

  static std::shared_ptr<ArrayData> Make(
      std::shared_ptr<DataType> type, int64_t length,
      std::vector<std::shared_ptr<Buffer>> buffers,
      std::vector<std::shared_ptr<ArrayData>> child_data,
      int64_t null_count = kUnknownNullCount, int64_t offset = 0);

  static std::shared_ptr<ArrayData> Make(
      std::shared_ptr<DataType> type, int64_t length,
      std::vector<std::shared_ptr<Buffer>> buffers,
      std::vector<std::shared_ptr<ArrayData>> child_data,
      std::shared_ptr<ArrayData> dictionary, int64_t null_count = kUnknownNullCount,
      int64_t offset = 0);

  static std::shared_ptr<ArrayData> Make(std::shared_ptr<DataType> type, int64_t length,
                                         int64_t null_count = kUnknownNullCount,
                                         int64_t offset = 0);

  // Move constructor
  ArrayData(ArrayData&& other) noexcept
      : type(std::move(other.type)),
        length(other.length),
        offset(other.offset),
        buffers(std::move(other.buffers)),
        child_data(std::move(other.child_data)),
        dictionary(std::move(other.dictionary)) {
    SetNullCount(other.null_count);
  }

  // Copy constructor
  ArrayData(const ArrayData& other) noexcept
      : type(other.type),
        length(other.length),
        offset(other.offset),
        buffers(other.buffers),
        child_data(other.child_data),
        dictionary(other.dictionary) {
    SetNullCount(other.null_count);
  }

  // Move assignment
  ArrayData& operator=(ArrayData&& other) {
    type = std::move(other.type);
    length = other.length;
    SetNullCount(other.null_count);
    offset = other.offset;
    buffers = std::move(other.buffers);
    child_data = std::move(other.child_data);
    dictionary = std::move(other.dictionary);
    return *this;
  }

  // Copy assignment
  ArrayData& operator=(const ArrayData& other) {
    type = other.type;
    length = other.length;
    SetNullCount(other.null_count);
    offset = other.offset;
    buffers = other.buffers;
    child_data = other.child_data;
    dictionary = other.dictionary;
    return *this;
  }

  std::shared_ptr<ArrayData> Copy() const { return std::make_shared<ArrayData>(*this); }

  /// \brief Copy all buffers and children recursively to destination MemoryManager
  ///
  /// This utilizes MemoryManager::CopyBuffer to create a new ArrayData object
  /// recursively copying the buffers and all child buffers to the destination
  /// memory manager. This includes dictionaries if applicable.
  Result<std::shared_ptr<ArrayData>> CopyTo(
      const std::shared_ptr<MemoryManager>& to) const;
  /// \brief View or Copy this ArrayData to destination memory manager.
  ///
  /// Tries to view the buffer contents on the given memory manager's device
  /// if possible (to avoid a copy) but falls back to copying if a no-copy view
  /// isn't supported.
  Result<std::shared_ptr<ArrayData>> ViewOrCopyTo(
      const std::shared_ptr<MemoryManager>& to) const;

  bool IsNull(int64_t i) const { return !IsValid(i); }

  bool IsValid(int64_t i) const {
    if (buffers[0] != NULLPTR) {
      return bit_util::GetBit(buffers[0]->data(), i + offset);
    }
    const auto type = this->type->id();
    if (type == Type::SPARSE_UNION) {
      return !internal::IsNullSparseUnion(*this, i);
    }
    if (type == Type::DENSE_UNION) {
      return !internal::IsNullDenseUnion(*this, i);
    }
    if (type == Type::RUN_END_ENCODED) {
      return !internal::IsNullRunEndEncoded(*this, i);
    }
    return null_count.load() != length;
  }

  // Access a buffer's data as a typed C pointer
  template <typename T>
  inline const T* GetValues(int i, int64_t absolute_offset) const {
    if (buffers[i]) {
      return reinterpret_cast<const T*>(buffers[i]->data()) + absolute_offset;
    } else {
      return NULLPTR;
    }
  }

  template <typename T>
  inline const T* GetValues(int i) const {
    return GetValues<T>(i, offset);
  }

  // Like GetValues, but returns NULLPTR instead of aborting if the underlying
  // buffer is not a CPU buffer.
  template <typename T>
  inline const T* GetValuesSafe(int i, int64_t absolute_offset) const {
    if (buffers[i] && buffers[i]->is_cpu()) {
      return reinterpret_cast<const T*>(buffers[i]->data()) + absolute_offset;
    } else {
      return NULLPTR;
    }
  }

  template <typename T>
  inline const T* GetValuesSafe(int i) const {
    return GetValuesSafe<T>(i, offset);
  }

  // Access a buffer's data as a typed C pointer
  template <typename T>
  inline T* GetMutableValues(int i, int64_t absolute_offset) {
    if (buffers[i]) {
      return reinterpret_cast<T*>(buffers[i]->mutable_data()) + absolute_offset;
    } else {
      return NULLPTR;
    }
  }

  template <typename T>
  inline T* GetMutableValues(int i) {
    return GetMutableValues<T>(i, offset);
  }

  /// \brief Construct a zero-copy slice of the data with the given offset and length
  std::shared_ptr<ArrayData> Slice(int64_t offset, int64_t length) const;

  /// \brief Input-checking variant of Slice
  ///
  /// An Invalid Status is returned if the requested slice falls out of bounds.
  /// Note that unlike Slice, `length` isn't clamped to the available buffer size.
  Result<std::shared_ptr<ArrayData>> SliceSafe(int64_t offset, int64_t length) const;

  void SetNullCount(int64_t v) { null_count.store(v); }

  /// \brief Return physical null count, or compute and set it if it's not known
  int64_t GetNullCount() const;

  /// \brief Return true if the data has a validity bitmap and the physical null
  /// count is known to be non-zero or not yet known.
  ///
  /// Note that this is not the same as MayHaveLogicalNulls, which also checks
  /// for the presence of nulls in child data for types like unions and run-end
  /// encoded types.
  ///
  /// \see HasValidityBitmap
  /// \see MayHaveLogicalNulls
  bool MayHaveNulls() const {
    // If an ArrayData is slightly malformed it may have kUnknownNullCount set
    // but no buffer
    return null_count.load() != 0 && buffers[0] != NULLPTR;
  }

  /// \brief Return true if the data has a validity bitmap
  bool HasValidityBitmap() const { return buffers[0] != NULLPTR; }

  /// \brief Return true if the validity bitmap may have 0's in it, or if the
  /// child arrays (in the case of types without a validity bitmap) may have
  /// nulls, or if the dictionary of dictionay array may have nulls.
  ///
  /// This is not a drop-in replacement for MayHaveNulls, as historically
  /// MayHaveNulls() has been used to check for the presence of a validity
  /// bitmap that needs to be checked.
  ///
  /// Code that previously used MayHaveNulls() and then dealt with the validity
  /// bitmap directly can be fixed to handle all types correctly without
  /// performance degradation when handling most types by adopting
  /// HasValidityBitmap and MayHaveLogicalNulls.
  ///
  /// Before:
  ///
  ///     uint8_t* validity = array.MayHaveNulls() ? array.buffers[0].data : NULLPTR;
  ///     for (int64_t i = 0; i < array.length; ++i) {
  ///       if (validity && !bit_util::GetBit(validity, i)) {
  ///         continue;  // skip a NULL
  ///       }
  ///       ...
  ///     }
  ///
  /// After:
  ///
  ///     bool all_valid = !array.MayHaveLogicalNulls();
  ///     uint8_t* validity = array.HasValidityBitmap() ? array.buffers[0].data : NULLPTR;
  ///     for (int64_t i = 0; i < array.length; ++i) {
  ///       bool is_valid = all_valid ||
  ///                       (validity && bit_util::GetBit(validity, i)) ||
  ///                       array.IsValid(i);
  ///       if (!is_valid) {
  ///         continue;  // skip a NULL
  ///       }
  ///       ...
  ///     }
  bool MayHaveLogicalNulls() const {
    if (buffers[0] != NULLPTR) {
      return null_count.load() != 0;
    }
    const auto t = type->id();
    if (t == Type::SPARSE_UNION || t == Type::DENSE_UNION) {
      return internal::UnionMayHaveLogicalNulls(*this);
    }
    if (t == Type::RUN_END_ENCODED) {
      return internal::RunEndEncodedMayHaveLogicalNulls(*this);
    }
    if (t == Type::DICTIONARY) {
      return internal::DictionaryMayHaveLogicalNulls(*this);
    }
    return null_count.load() != 0;
  }

  /// \brief Computes the logical null count for arrays of all types including
  /// those that do not have a validity bitmap like union and run-end encoded
  /// arrays
  ///
  /// If the array has a validity bitmap, this function behaves the same as
  /// GetNullCount. For types that have no validity bitmap, this function will
  /// recompute the null count every time it is called.
  ///
  /// \see GetNullCount
  int64_t ComputeLogicalNullCount() const;

  std::shared_ptr<DataType> type;
  int64_t length = 0;
  mutable std::atomic<int64_t> null_count{0};
  // The logical start point into the physical buffers (in values, not bytes).
  // Note that, for child data, this must be *added* to the child data's own offset.
  int64_t offset = 0;
  std::vector<std::shared_ptr<Buffer>> buffers;
  std::vector<std::shared_ptr<ArrayData>> child_data;

  // The dictionary for this Array, if any. Only used for dictionary type
  std::shared_ptr<ArrayData> dictionary;
};

/// \brief A non-owning Buffer reference
struct ARROW_EXPORT BufferSpan {
  // It is the user of this class's responsibility to ensure that
  // buffers that were const originally are not written to
  // accidentally.
  uint8_t* data = NULLPTR;
  int64_t size = 0;
  // Pointer back to buffer that owns this memory
  const std::shared_ptr<Buffer>* owner = NULLPTR;

  template <typename T>
  const T* data_as() const {
    return reinterpret_cast<const T*>(data);
  }
  template <typename T>
  T* mutable_data_as() {
    return reinterpret_cast<T*>(data);
  }
};

/// \brief EXPERIMENTAL: A non-owning ArrayData reference that is cheaply
/// copyable and does not contain any shared_ptr objects. Do not use in public
/// APIs aside from compute kernels for now
struct ARROW_EXPORT ArraySpan {
  const DataType* type = NULLPTR;
  int64_t length = 0;
  mutable int64_t null_count = kUnknownNullCount;
  int64_t offset = 0;
  BufferSpan buffers[3];

  ArraySpan() = default;

  explicit ArraySpan(const DataType* type, int64_t length) : type(type), length(length) {}

  ArraySpan(const ArrayData& data) {  // NOLINT implicit conversion
    SetMembers(data);
  }
  explicit ArraySpan(const Scalar& data) { FillFromScalar(data); }

  /// If dictionary-encoded, put dictionary in the first entry
  std::vector<ArraySpan> child_data;

  /// \brief Populate ArraySpan to look like an array of length 1 pointing at
  /// the data members of a Scalar value
  void FillFromScalar(const Scalar& value);

  void SetMembers(const ArrayData& data);

  void SetBuffer(int index, const std::shared_ptr<Buffer>& buffer) {
    this->buffers[index].data = const_cast<uint8_t*>(buffer->data());
    this->buffers[index].size = buffer->size();
    this->buffers[index].owner = &buffer;
  }

  const ArraySpan& dictionary() const { return child_data[0]; }

  /// \brief Return the number of buffers (out of 3) that are used to
  /// constitute this array
  int num_buffers() const;

  // Access a buffer's data as a typed C pointer
  template <typename T>
  inline T* GetValues(int i, int64_t absolute_offset) {
    return reinterpret_cast<T*>(buffers[i].data) + absolute_offset;
  }

  template <typename T>
  inline T* GetValues(int i) {
    return GetValues<T>(i, this->offset);
  }

  // Access a buffer's data as a typed C pointer
  template <typename T>
  inline const T* GetValues(int i, int64_t absolute_offset) const {
    return reinterpret_cast<const T*>(buffers[i].data) + absolute_offset;
  }

  template <typename T>
  inline const T* GetValues(int i) const {
    return GetValues<T>(i, this->offset);
  }

  /// \brief Access a buffer's data as a span
  ///
  /// \param i The buffer index
  /// \param length The required length (in number of typed values) of the requested span
  /// \pre i > 0
  /// \pre length <= the length of the buffer (in number of values) that's expected for
  /// this array type
  /// \return A span<const T> of the requested length
  template <typename T>
  util::span<const T> GetSpan(int i, int64_t length) const {
    const int64_t buffer_length = buffers[i].size / static_cast<int64_t>(sizeof(T));
    assert(i > 0 && length + offset <= buffer_length);
    ARROW_UNUSED(buffer_length);
    return util::span<const T>(buffers[i].data_as<T>() + this->offset, length);
  }

  /// \brief Access a buffer's data as a span
  ///
  /// \param i The buffer index
  /// \param length The required length (in number of typed values) of the requested span
  /// \pre i > 0
  /// \pre length <= the length of the buffer (in number of values) that's expected for
  /// this array type
  /// \return A span<T> of the requested length
  template <typename T>
  util::span<T> GetSpan(int i, int64_t length) {
    const int64_t buffer_length = buffers[i].size / static_cast<int64_t>(sizeof(T));
    assert(i > 0 && length + offset <= buffer_length);
    ARROW_UNUSED(buffer_length);
    return util::span<T>(buffers[i].mutable_data_as<T>() + this->offset, length);
  }

  inline bool IsNull(int64_t i) const { return !IsValid(i); }

  inline bool IsValid(int64_t i) const {
    if (this->buffers[0].data != NULLPTR) {
      return bit_util::GetBit(this->buffers[0].data, i + this->offset);
    } else {
      const auto type = this->type->id();
      if (type == Type::SPARSE_UNION) {
        return !IsNullSparseUnion(i);
      }
      if (type == Type::DENSE_UNION) {
        return !IsNullDenseUnion(i);
      }
      if (type == Type::RUN_END_ENCODED) {
        return !IsNullRunEndEncoded(i);
      }
      return this->null_count != this->length;
    }
  }

  std::shared_ptr<ArrayData> ToArrayData() const;

  std::shared_ptr<Array> ToArray() const;

  std::shared_ptr<Buffer> GetBuffer(int index) const {
    const BufferSpan& buf = this->buffers[index];
    if (buf.owner) {
      return *buf.owner;
    } else if (buf.data != NULLPTR) {
      // Buffer points to some memory without an owning buffer
      return std::make_shared<Buffer>(buf.data, buf.size);
    } else {
      return NULLPTR;
    }
  }

  void SetSlice(int64_t offset, int64_t length) {
    this->offset = offset;
    this->length = length;
    if (this->type->id() == Type::NA) {
      this->null_count = this->length;
    } else if (this->MayHaveNulls()) {
      this->null_count = kUnknownNullCount;
    } else {
      this->null_count = 0;
    }
  }

  /// \brief Return physical null count, or compute and set it if it's not known
  int64_t GetNullCount() const;

  /// \brief Return true if the array has a validity bitmap and the physical null
  /// count is known to be non-zero or not yet known
  ///
  /// Note that this is not the same as MayHaveLogicalNulls, which also checks
  /// for the presence of nulls in child data for types like unions and run-end
  /// encoded types.
  ///
  /// \see HasValidityBitmap
  /// \see MayHaveLogicalNulls
  bool MayHaveNulls() const {
    // If an ArrayData is slightly malformed it may have kUnknownNullCount set
    // but no buffer
    return null_count != 0 && buffers[0].data != NULLPTR;
  }

  /// \brief Return true if the array has a validity bitmap
  bool HasValidityBitmap() const { return buffers[0].data != NULLPTR; }

  /// \brief Return true if the validity bitmap may have 0's in it, or if the
  /// child arrays (in the case of types without a validity bitmap) may have
  /// nulls, or if the dictionary of dictionay array may have nulls.
  ///
  /// \see ArrayData::MayHaveLogicalNulls
  bool MayHaveLogicalNulls() const {
    if (buffers[0].data != NULLPTR) {
      return null_count != 0;
    }
    const auto t = type->id();
    if (t == Type::SPARSE_UNION || t == Type::DENSE_UNION) {
      return UnionMayHaveLogicalNulls();
    }
    if (t == Type::RUN_END_ENCODED) {
      return RunEndEncodedMayHaveLogicalNulls();
    }
    if (t == Type::DICTIONARY) {
      return DictionaryMayHaveLogicalNulls();
    }
    return null_count != 0;
  }

  /// \brief Compute the logical null count for arrays of all types including
  /// those that do not have a validity bitmap like union and run-end encoded
  /// arrays
  ///
  /// If the array has a validity bitmap, this function behaves the same as
  /// GetNullCount. For types that have no validity bitmap, this function will
  /// recompute the logical null count every time it is called.
  ///
  /// \see GetNullCount
  int64_t ComputeLogicalNullCount() const;

  /// Some DataTypes (StringView, BinaryView) may have an arbitrary number of variadic
  /// buffers. Since ArraySpan only has 3 buffers, we pack the variadic buffers into
  /// buffers[2]; IE buffers[2].data points to the first shared_ptr<Buffer> of the
  /// variadic set and buffers[2].size is the number of variadic buffers times
  /// sizeof(shared_ptr<Buffer>).
  ///
  /// \see HasVariadicBuffers
  util::span<const std::shared_ptr<Buffer>> GetVariadicBuffers() const;
  bool HasVariadicBuffers() const;

 private:
  ARROW_FRIEND_EXPORT friend bool internal::IsNullRunEndEncoded(const ArrayData& span,
                                                                int64_t i);

  bool IsNullSparseUnion(int64_t i) const;
  bool IsNullDenseUnion(int64_t i) const;

  /// \brief Return true if the value at logical index i is null
  ///
  /// This function uses binary-search, so it has a O(log N) cost.
  /// Iterating over the whole array and calling IsNull is O(N log N), so
  /// for better performance it is recommended to use a
  /// ree_util::RunEndEncodedArraySpan to iterate run by run instead.
  bool IsNullRunEndEncoded(int64_t i) const;

  bool UnionMayHaveLogicalNulls() const;
  bool RunEndEncodedMayHaveLogicalNulls() const;
  bool DictionaryMayHaveLogicalNulls() const;
};

namespace internal {

void FillZeroLengthArray(const DataType* type, ArraySpan* span);

/// Construct a zero-copy view of this ArrayData with the given type.
///
/// This method checks if the types are layout-compatible.
/// Nested types are traversed in depth-first order. Data buffers must have
/// the same item sizes, even though the logical types may be different.
/// An error is returned if the types are not layout-compatible.
ARROW_EXPORT
Result<std::shared_ptr<ArrayData>> GetArrayView(const std::shared_ptr<ArrayData>& data,
                                                const std::shared_ptr<DataType>& type);

}  // namespace internal
}  // namespace arrow