File size: 23,382 Bytes
3230c19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <atomic> // IWYU pragma: export
#include <cassert>
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
#include "arrow/buffer.h"
#include "arrow/result.h"
#include "arrow/type.h"
#include "arrow/type_fwd.h"
#include "arrow/util/bit_util.h"
#include "arrow/util/macros.h"
#include "arrow/util/span.h"
#include "arrow/util/visibility.h"
namespace arrow {
namespace internal {
// ----------------------------------------------------------------------
// Null handling for types without a validity bitmap and the dictionary type
ARROW_EXPORT bool IsNullSparseUnion(const ArrayData& data, int64_t i);
ARROW_EXPORT bool IsNullDenseUnion(const ArrayData& data, int64_t i);
ARROW_EXPORT bool IsNullRunEndEncoded(const ArrayData& data, int64_t i);
ARROW_EXPORT bool UnionMayHaveLogicalNulls(const ArrayData& data);
ARROW_EXPORT bool RunEndEncodedMayHaveLogicalNulls(const ArrayData& data);
ARROW_EXPORT bool DictionaryMayHaveLogicalNulls(const ArrayData& data);
} // namespace internal
// When slicing, we do not know the null count of the sliced range without
// doing some computation. To avoid doing this eagerly, we set the null count
// to -1 (any negative number will do). When Array::null_count is called the
// first time, the null count will be computed. See ARROW-33
constexpr int64_t kUnknownNullCount = -1;
// ----------------------------------------------------------------------
// Generic array data container
/// \class ArrayData
/// \brief Mutable container for generic Arrow array data
///
/// This data structure is a self-contained representation of the memory and
/// metadata inside an Arrow array data structure (called vectors in Java). The
/// classes arrow::Array and its subclasses provide strongly-typed accessors
/// with support for the visitor pattern and other affordances.
///
/// This class is designed for easy internal data manipulation, analytical data
/// processing, and data transport to and from IPC messages. For example, we
/// could cast from int64 to float64 like so:
///
/// Int64Array arr = GetMyData();
/// auto new_data = arr.data()->Copy();
/// new_data->type = arrow::float64();
/// DoubleArray double_arr(new_data);
///
/// This object is also useful in an analytics setting where memory may be
/// reused. For example, if we had a group of operations all returning doubles,
/// say:
///
/// Log(Sqrt(Expr(arr)))
///
/// Then the low-level implementations of each of these functions could have
/// the signatures
///
/// void Log(const ArrayData& values, ArrayData* out);
///
/// As another example a function may consume one or more memory buffers in an
/// input array and replace them with newly-allocated data, changing the output
/// data type as well.
struct ARROW_EXPORT ArrayData {
ArrayData() = default;
ArrayData(std::shared_ptr<DataType> type, int64_t length,
int64_t null_count = kUnknownNullCount, int64_t offset = 0)
: type(std::move(type)), length(length), null_count(null_count), offset(offset) {}
ArrayData(std::shared_ptr<DataType> type, int64_t length,
std::vector<std::shared_ptr<Buffer>> buffers,
int64_t null_count = kUnknownNullCount, int64_t offset = 0)
: ArrayData(std::move(type), length, null_count, offset) {
this->buffers = std::move(buffers);
}
ArrayData(std::shared_ptr<DataType> type, int64_t length,
std::vector<std::shared_ptr<Buffer>> buffers,
std::vector<std::shared_ptr<ArrayData>> child_data,
int64_t null_count = kUnknownNullCount, int64_t offset = 0)
: ArrayData(std::move(type), length, null_count, offset) {
this->buffers = std::move(buffers);
this->child_data = std::move(child_data);
}
static std::shared_ptr<ArrayData> Make(std::shared_ptr<DataType> type, int64_t length,
std::vector<std::shared_ptr<Buffer>> buffers,
int64_t null_count = kUnknownNullCount,
int64_t offset = 0);
static std::shared_ptr<ArrayData> Make(
std::shared_ptr<DataType> type, int64_t length,
std::vector<std::shared_ptr<Buffer>> buffers,
std::vector<std::shared_ptr<ArrayData>> child_data,
int64_t null_count = kUnknownNullCount, int64_t offset = 0);
static std::shared_ptr<ArrayData> Make(
std::shared_ptr<DataType> type, int64_t length,
std::vector<std::shared_ptr<Buffer>> buffers,
std::vector<std::shared_ptr<ArrayData>> child_data,
std::shared_ptr<ArrayData> dictionary, int64_t null_count = kUnknownNullCount,
int64_t offset = 0);
static std::shared_ptr<ArrayData> Make(std::shared_ptr<DataType> type, int64_t length,
int64_t null_count = kUnknownNullCount,
int64_t offset = 0);
// Move constructor
ArrayData(ArrayData&& other) noexcept
: type(std::move(other.type)),
length(other.length),
offset(other.offset),
buffers(std::move(other.buffers)),
child_data(std::move(other.child_data)),
dictionary(std::move(other.dictionary)) {
SetNullCount(other.null_count);
}
// Copy constructor
ArrayData(const ArrayData& other) noexcept
: type(other.type),
length(other.length),
offset(other.offset),
buffers(other.buffers),
child_data(other.child_data),
dictionary(other.dictionary) {
SetNullCount(other.null_count);
}
// Move assignment
ArrayData& operator=(ArrayData&& other) {
type = std::move(other.type);
length = other.length;
SetNullCount(other.null_count);
offset = other.offset;
buffers = std::move(other.buffers);
child_data = std::move(other.child_data);
dictionary = std::move(other.dictionary);
return *this;
}
// Copy assignment
ArrayData& operator=(const ArrayData& other) {
type = other.type;
length = other.length;
SetNullCount(other.null_count);
offset = other.offset;
buffers = other.buffers;
child_data = other.child_data;
dictionary = other.dictionary;
return *this;
}
std::shared_ptr<ArrayData> Copy() const { return std::make_shared<ArrayData>(*this); }
/// \brief Copy all buffers and children recursively to destination MemoryManager
///
/// This utilizes MemoryManager::CopyBuffer to create a new ArrayData object
/// recursively copying the buffers and all child buffers to the destination
/// memory manager. This includes dictionaries if applicable.
Result<std::shared_ptr<ArrayData>> CopyTo(
const std::shared_ptr<MemoryManager>& to) const;
/// \brief View or Copy this ArrayData to destination memory manager.
///
/// Tries to view the buffer contents on the given memory manager's device
/// if possible (to avoid a copy) but falls back to copying if a no-copy view
/// isn't supported.
Result<std::shared_ptr<ArrayData>> ViewOrCopyTo(
const std::shared_ptr<MemoryManager>& to) const;
bool IsNull(int64_t i) const { return !IsValid(i); }
bool IsValid(int64_t i) const {
if (buffers[0] != NULLPTR) {
return bit_util::GetBit(buffers[0]->data(), i + offset);
}
const auto type = this->type->id();
if (type == Type::SPARSE_UNION) {
return !internal::IsNullSparseUnion(*this, i);
}
if (type == Type::DENSE_UNION) {
return !internal::IsNullDenseUnion(*this, i);
}
if (type == Type::RUN_END_ENCODED) {
return !internal::IsNullRunEndEncoded(*this, i);
}
return null_count.load() != length;
}
// Access a buffer's data as a typed C pointer
template <typename T>
inline const T* GetValues(int i, int64_t absolute_offset) const {
if (buffers[i]) {
return reinterpret_cast<const T*>(buffers[i]->data()) + absolute_offset;
} else {
return NULLPTR;
}
}
template <typename T>
inline const T* GetValues(int i) const {
return GetValues<T>(i, offset);
}
// Like GetValues, but returns NULLPTR instead of aborting if the underlying
// buffer is not a CPU buffer.
template <typename T>
inline const T* GetValuesSafe(int i, int64_t absolute_offset) const {
if (buffers[i] && buffers[i]->is_cpu()) {
return reinterpret_cast<const T*>(buffers[i]->data()) + absolute_offset;
} else {
return NULLPTR;
}
}
template <typename T>
inline const T* GetValuesSafe(int i) const {
return GetValuesSafe<T>(i, offset);
}
// Access a buffer's data as a typed C pointer
template <typename T>
inline T* GetMutableValues(int i, int64_t absolute_offset) {
if (buffers[i]) {
return reinterpret_cast<T*>(buffers[i]->mutable_data()) + absolute_offset;
} else {
return NULLPTR;
}
}
template <typename T>
inline T* GetMutableValues(int i) {
return GetMutableValues<T>(i, offset);
}
/// \brief Construct a zero-copy slice of the data with the given offset and length
std::shared_ptr<ArrayData> Slice(int64_t offset, int64_t length) const;
/// \brief Input-checking variant of Slice
///
/// An Invalid Status is returned if the requested slice falls out of bounds.
/// Note that unlike Slice, `length` isn't clamped to the available buffer size.
Result<std::shared_ptr<ArrayData>> SliceSafe(int64_t offset, int64_t length) const;
void SetNullCount(int64_t v) { null_count.store(v); }
/// \brief Return physical null count, or compute and set it if it's not known
int64_t GetNullCount() const;
/// \brief Return true if the data has a validity bitmap and the physical null
/// count is known to be non-zero or not yet known.
///
/// Note that this is not the same as MayHaveLogicalNulls, which also checks
/// for the presence of nulls in child data for types like unions and run-end
/// encoded types.
///
/// \see HasValidityBitmap
/// \see MayHaveLogicalNulls
bool MayHaveNulls() const {
// If an ArrayData is slightly malformed it may have kUnknownNullCount set
// but no buffer
return null_count.load() != 0 && buffers[0] != NULLPTR;
}
/// \brief Return true if the data has a validity bitmap
bool HasValidityBitmap() const { return buffers[0] != NULLPTR; }
/// \brief Return true if the validity bitmap may have 0's in it, or if the
/// child arrays (in the case of types without a validity bitmap) may have
/// nulls, or if the dictionary of dictionay array may have nulls.
///
/// This is not a drop-in replacement for MayHaveNulls, as historically
/// MayHaveNulls() has been used to check for the presence of a validity
/// bitmap that needs to be checked.
///
/// Code that previously used MayHaveNulls() and then dealt with the validity
/// bitmap directly can be fixed to handle all types correctly without
/// performance degradation when handling most types by adopting
/// HasValidityBitmap and MayHaveLogicalNulls.
///
/// Before:
///
/// uint8_t* validity = array.MayHaveNulls() ? array.buffers[0].data : NULLPTR;
/// for (int64_t i = 0; i < array.length; ++i) {
/// if (validity && !bit_util::GetBit(validity, i)) {
/// continue; // skip a NULL
/// }
/// ...
/// }
///
/// After:
///
/// bool all_valid = !array.MayHaveLogicalNulls();
/// uint8_t* validity = array.HasValidityBitmap() ? array.buffers[0].data : NULLPTR;
/// for (int64_t i = 0; i < array.length; ++i) {
/// bool is_valid = all_valid ||
/// (validity && bit_util::GetBit(validity, i)) ||
/// array.IsValid(i);
/// if (!is_valid) {
/// continue; // skip a NULL
/// }
/// ...
/// }
bool MayHaveLogicalNulls() const {
if (buffers[0] != NULLPTR) {
return null_count.load() != 0;
}
const auto t = type->id();
if (t == Type::SPARSE_UNION || t == Type::DENSE_UNION) {
return internal::UnionMayHaveLogicalNulls(*this);
}
if (t == Type::RUN_END_ENCODED) {
return internal::RunEndEncodedMayHaveLogicalNulls(*this);
}
if (t == Type::DICTIONARY) {
return internal::DictionaryMayHaveLogicalNulls(*this);
}
return null_count.load() != 0;
}
/// \brief Computes the logical null count for arrays of all types including
/// those that do not have a validity bitmap like union and run-end encoded
/// arrays
///
/// If the array has a validity bitmap, this function behaves the same as
/// GetNullCount. For types that have no validity bitmap, this function will
/// recompute the null count every time it is called.
///
/// \see GetNullCount
int64_t ComputeLogicalNullCount() const;
std::shared_ptr<DataType> type;
int64_t length = 0;
mutable std::atomic<int64_t> null_count{0};
// The logical start point into the physical buffers (in values, not bytes).
// Note that, for child data, this must be *added* to the child data's own offset.
int64_t offset = 0;
std::vector<std::shared_ptr<Buffer>> buffers;
std::vector<std::shared_ptr<ArrayData>> child_data;
// The dictionary for this Array, if any. Only used for dictionary type
std::shared_ptr<ArrayData> dictionary;
};
/// \brief A non-owning Buffer reference
struct ARROW_EXPORT BufferSpan {
// It is the user of this class's responsibility to ensure that
// buffers that were const originally are not written to
// accidentally.
uint8_t* data = NULLPTR;
int64_t size = 0;
// Pointer back to buffer that owns this memory
const std::shared_ptr<Buffer>* owner = NULLPTR;
template <typename T>
const T* data_as() const {
return reinterpret_cast<const T*>(data);
}
template <typename T>
T* mutable_data_as() {
return reinterpret_cast<T*>(data);
}
};
/// \brief EXPERIMENTAL: A non-owning ArrayData reference that is cheaply
/// copyable and does not contain any shared_ptr objects. Do not use in public
/// APIs aside from compute kernels for now
struct ARROW_EXPORT ArraySpan {
const DataType* type = NULLPTR;
int64_t length = 0;
mutable int64_t null_count = kUnknownNullCount;
int64_t offset = 0;
BufferSpan buffers[3];
ArraySpan() = default;
explicit ArraySpan(const DataType* type, int64_t length) : type(type), length(length) {}
ArraySpan(const ArrayData& data) { // NOLINT implicit conversion
SetMembers(data);
}
explicit ArraySpan(const Scalar& data) { FillFromScalar(data); }
/// If dictionary-encoded, put dictionary in the first entry
std::vector<ArraySpan> child_data;
/// \brief Populate ArraySpan to look like an array of length 1 pointing at
/// the data members of a Scalar value
void FillFromScalar(const Scalar& value);
void SetMembers(const ArrayData& data);
void SetBuffer(int index, const std::shared_ptr<Buffer>& buffer) {
this->buffers[index].data = const_cast<uint8_t*>(buffer->data());
this->buffers[index].size = buffer->size();
this->buffers[index].owner = &buffer;
}
const ArraySpan& dictionary() const { return child_data[0]; }
/// \brief Return the number of buffers (out of 3) that are used to
/// constitute this array
int num_buffers() const;
// Access a buffer's data as a typed C pointer
template <typename T>
inline T* GetValues(int i, int64_t absolute_offset) {
return reinterpret_cast<T*>(buffers[i].data) + absolute_offset;
}
template <typename T>
inline T* GetValues(int i) {
return GetValues<T>(i, this->offset);
}
// Access a buffer's data as a typed C pointer
template <typename T>
inline const T* GetValues(int i, int64_t absolute_offset) const {
return reinterpret_cast<const T*>(buffers[i].data) + absolute_offset;
}
template <typename T>
inline const T* GetValues(int i) const {
return GetValues<T>(i, this->offset);
}
/// \brief Access a buffer's data as a span
///
/// \param i The buffer index
/// \param length The required length (in number of typed values) of the requested span
/// \pre i > 0
/// \pre length <= the length of the buffer (in number of values) that's expected for
/// this array type
/// \return A span<const T> of the requested length
template <typename T>
util::span<const T> GetSpan(int i, int64_t length) const {
const int64_t buffer_length = buffers[i].size / static_cast<int64_t>(sizeof(T));
assert(i > 0 && length + offset <= buffer_length);
ARROW_UNUSED(buffer_length);
return util::span<const T>(buffers[i].data_as<T>() + this->offset, length);
}
/// \brief Access a buffer's data as a span
///
/// \param i The buffer index
/// \param length The required length (in number of typed values) of the requested span
/// \pre i > 0
/// \pre length <= the length of the buffer (in number of values) that's expected for
/// this array type
/// \return A span<T> of the requested length
template <typename T>
util::span<T> GetSpan(int i, int64_t length) {
const int64_t buffer_length = buffers[i].size / static_cast<int64_t>(sizeof(T));
assert(i > 0 && length + offset <= buffer_length);
ARROW_UNUSED(buffer_length);
return util::span<T>(buffers[i].mutable_data_as<T>() + this->offset, length);
}
inline bool IsNull(int64_t i) const { return !IsValid(i); }
inline bool IsValid(int64_t i) const {
if (this->buffers[0].data != NULLPTR) {
return bit_util::GetBit(this->buffers[0].data, i + this->offset);
} else {
const auto type = this->type->id();
if (type == Type::SPARSE_UNION) {
return !IsNullSparseUnion(i);
}
if (type == Type::DENSE_UNION) {
return !IsNullDenseUnion(i);
}
if (type == Type::RUN_END_ENCODED) {
return !IsNullRunEndEncoded(i);
}
return this->null_count != this->length;
}
}
std::shared_ptr<ArrayData> ToArrayData() const;
std::shared_ptr<Array> ToArray() const;
std::shared_ptr<Buffer> GetBuffer(int index) const {
const BufferSpan& buf = this->buffers[index];
if (buf.owner) {
return *buf.owner;
} else if (buf.data != NULLPTR) {
// Buffer points to some memory without an owning buffer
return std::make_shared<Buffer>(buf.data, buf.size);
} else {
return NULLPTR;
}
}
void SetSlice(int64_t offset, int64_t length) {
this->offset = offset;
this->length = length;
if (this->type->id() == Type::NA) {
this->null_count = this->length;
} else if (this->MayHaveNulls()) {
this->null_count = kUnknownNullCount;
} else {
this->null_count = 0;
}
}
/// \brief Return physical null count, or compute and set it if it's not known
int64_t GetNullCount() const;
/// \brief Return true if the array has a validity bitmap and the physical null
/// count is known to be non-zero or not yet known
///
/// Note that this is not the same as MayHaveLogicalNulls, which also checks
/// for the presence of nulls in child data for types like unions and run-end
/// encoded types.
///
/// \see HasValidityBitmap
/// \see MayHaveLogicalNulls
bool MayHaveNulls() const {
// If an ArrayData is slightly malformed it may have kUnknownNullCount set
// but no buffer
return null_count != 0 && buffers[0].data != NULLPTR;
}
/// \brief Return true if the array has a validity bitmap
bool HasValidityBitmap() const { return buffers[0].data != NULLPTR; }
/// \brief Return true if the validity bitmap may have 0's in it, or if the
/// child arrays (in the case of types without a validity bitmap) may have
/// nulls, or if the dictionary of dictionay array may have nulls.
///
/// \see ArrayData::MayHaveLogicalNulls
bool MayHaveLogicalNulls() const {
if (buffers[0].data != NULLPTR) {
return null_count != 0;
}
const auto t = type->id();
if (t == Type::SPARSE_UNION || t == Type::DENSE_UNION) {
return UnionMayHaveLogicalNulls();
}
if (t == Type::RUN_END_ENCODED) {
return RunEndEncodedMayHaveLogicalNulls();
}
if (t == Type::DICTIONARY) {
return DictionaryMayHaveLogicalNulls();
}
return null_count != 0;
}
/// \brief Compute the logical null count for arrays of all types including
/// those that do not have a validity bitmap like union and run-end encoded
/// arrays
///
/// If the array has a validity bitmap, this function behaves the same as
/// GetNullCount. For types that have no validity bitmap, this function will
/// recompute the logical null count every time it is called.
///
/// \see GetNullCount
int64_t ComputeLogicalNullCount() const;
/// Some DataTypes (StringView, BinaryView) may have an arbitrary number of variadic
/// buffers. Since ArraySpan only has 3 buffers, we pack the variadic buffers into
/// buffers[2]; IE buffers[2].data points to the first shared_ptr<Buffer> of the
/// variadic set and buffers[2].size is the number of variadic buffers times
/// sizeof(shared_ptr<Buffer>).
///
/// \see HasVariadicBuffers
util::span<const std::shared_ptr<Buffer>> GetVariadicBuffers() const;
bool HasVariadicBuffers() const;
private:
ARROW_FRIEND_EXPORT friend bool internal::IsNullRunEndEncoded(const ArrayData& span,
int64_t i);
bool IsNullSparseUnion(int64_t i) const;
bool IsNullDenseUnion(int64_t i) const;
/// \brief Return true if the value at logical index i is null
///
/// This function uses binary-search, so it has a O(log N) cost.
/// Iterating over the whole array and calling IsNull is O(N log N), so
/// for better performance it is recommended to use a
/// ree_util::RunEndEncodedArraySpan to iterate run by run instead.
bool IsNullRunEndEncoded(int64_t i) const;
bool UnionMayHaveLogicalNulls() const;
bool RunEndEncodedMayHaveLogicalNulls() const;
bool DictionaryMayHaveLogicalNulls() const;
};
namespace internal {
void FillZeroLengthArray(const DataType* type, ArraySpan* span);
/// Construct a zero-copy view of this ArrayData with the given type.
///
/// This method checks if the types are layout-compatible.
/// Nested types are traversed in depth-first order. Data buffers must have
/// the same item sizes, even though the logical types may be different.
/// An error is returned if the types are not layout-compatible.
ARROW_EXPORT
Result<std::shared_ptr<ArrayData>> GetArrayView(const std::shared_ptr<ArrayData>& data,
const std::shared_ptr<DataType>& type);
} // namespace internal
} // namespace arrow
|