File size: 23,092 Bytes
0b5e147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstdint>
#include <cstring>
#include <memory>
#include <optional>
#include <string>
#include <string_view>
#include <utility>
#include <vector>
#include "arrow/device.h"
#include "arrow/status.h"
#include "arrow/type_fwd.h"
#include "arrow/util/macros.h"
#include "arrow/util/span.h"
#include "arrow/util/visibility.h"
namespace arrow {
// ----------------------------------------------------------------------
// Buffer classes
/// \class Buffer
/// \brief Object containing a pointer to a piece of contiguous memory with a
/// particular size.
///
/// Buffers have two related notions of length: size and capacity. Size is
/// the number of bytes that might have valid data. Capacity is the number
/// of bytes that were allocated for the buffer in total.
///
/// The Buffer base class does not own its memory, but subclasses often do.
///
/// The following invariant is always true: Size <= Capacity
class ARROW_EXPORT Buffer {
public:
ARROW_DISALLOW_COPY_AND_ASSIGN(Buffer);
/// \brief Construct from buffer and size without copying memory
///
/// \param[in] data a memory buffer
/// \param[in] size buffer size
///
/// \note The passed memory must be kept alive through some other means
Buffer(const uint8_t* data, int64_t size)
: is_mutable_(false),
is_cpu_(true),
data_(data),
size_(size),
capacity_(size),
device_type_(DeviceAllocationType::kCPU) {
SetMemoryManager(default_cpu_memory_manager());
}
Buffer(const uint8_t* data, int64_t size, std::shared_ptr<MemoryManager> mm,
std::shared_ptr<Buffer> parent = NULLPTR,
std::optional<DeviceAllocationType> device_type_override = std::nullopt)
: is_mutable_(false),
data_(data),
size_(size),
capacity_(size),
parent_(std::move(parent)) {
// SetMemoryManager will also set device_type_
SetMemoryManager(std::move(mm));
// If a device type is specified, use that instead. Example of when this can be
// useful: the CudaMemoryManager can set device_type_ to kCUDA, but you can specify
// device_type_override=kCUDA_HOST as the device type to override it.
if (device_type_override != std::nullopt) {
device_type_ = *device_type_override;
}
}
Buffer(uintptr_t address, int64_t size, std::shared_ptr<MemoryManager> mm,
std::shared_ptr<Buffer> parent = NULLPTR)
: Buffer(reinterpret_cast<const uint8_t*>(address), size, std::move(mm),
std::move(parent)) {}
/// \brief Construct from string_view without copying memory
///
/// \param[in] data a string_view object
///
/// \note The memory viewed by data must not be deallocated in the lifetime of the
/// Buffer; temporary rvalue strings must be stored in an lvalue somewhere
explicit Buffer(std::string_view data)
: Buffer(reinterpret_cast<const uint8_t*>(data.data()),
static_cast<int64_t>(data.size())) {}
virtual ~Buffer() = default;
/// An offset into data that is owned by another buffer, but we want to be
/// able to retain a valid pointer to it even after other shared_ptr's to the
/// parent buffer have been destroyed
///
/// This method makes no assertions about alignment or padding of the buffer but
/// in general we expected buffers to be aligned and padded to 64 bytes. In the future
/// we might add utility methods to help determine if a buffer satisfies this contract.
Buffer(const std::shared_ptr<Buffer>& parent, const int64_t offset, const int64_t size)
: Buffer(parent->data_ + offset, size) {
parent_ = parent;
SetMemoryManager(parent->memory_manager_);
}
uint8_t operator[](std::size_t i) const { return data_[i]; }
/// \brief Construct a new std::string with a hexadecimal representation of the buffer.
/// \return std::string
std::string ToHexString();
/// Return true if both buffers are the same size and contain the same bytes
/// up to the number of compared bytes
bool Equals(const Buffer& other, int64_t nbytes) const;
/// Return true if both buffers are the same size and contain the same bytes
bool Equals(const Buffer& other) const;
/// Copy a section of the buffer into a new Buffer.
Result<std::shared_ptr<Buffer>> CopySlice(
const int64_t start, const int64_t nbytes,
MemoryPool* pool = default_memory_pool()) const;
/// Zero bytes in padding, i.e. bytes between size_ and capacity_.
void ZeroPadding() {
#ifndef NDEBUG
CheckMutable();
#endif
// A zero-capacity buffer can have a null data pointer
if (capacity_ != 0) {
memset(mutable_data() + size_, 0, static_cast<size_t>(capacity_ - size_));
}
}
/// \brief Construct an immutable buffer that takes ownership of the contents
/// of an std::string (without copying it).
///
/// \param[in] data a string to own
/// \return a new Buffer instance
static std::shared_ptr<Buffer> FromString(std::string data);
/// \brief Construct an immutable buffer that takes ownership of the contents
/// of an std::vector (without copying it). Only vectors of TrivialType objects
/// (integers, floating point numbers, ...) can be wrapped by this function.
///
/// \param[in] vec a vector to own
/// \return a new Buffer instance
template <typename T>
static std::shared_ptr<Buffer> FromVector(std::vector<T> vec) {
static_assert(std::is_trivial_v<T>,
"Buffer::FromVector can only wrap vectors of trivial objects");
if (vec.empty()) {
return std::shared_ptr<Buffer>{new Buffer()};
}
auto* data = reinterpret_cast<uint8_t*>(vec.data());
auto size_in_bytes = static_cast<int64_t>(vec.size() * sizeof(T));
return std::shared_ptr<Buffer>{
new Buffer{data, size_in_bytes},
// Keep the vector's buffer alive inside the shared_ptr's destructor until after
// we have deleted the Buffer. Note we can't use this trick in FromString since
// std::string's data is inline for short strings so moving invalidates pointers
// into the string's buffer.
[vec = std::move(vec)](Buffer* buffer) { delete buffer; }};
}
/// \brief Create buffer referencing typed memory with some length without
/// copying
/// \param[in] data the typed memory as C array
/// \param[in] length the number of values in the array
/// \return a new shared_ptr<Buffer>
template <typename T, typename SizeType = int64_t>
static std::shared_ptr<Buffer> Wrap(const T* data, SizeType length) {
return std::make_shared<Buffer>(reinterpret_cast<const uint8_t*>(data),
static_cast<int64_t>(sizeof(T) * length));
}
/// \brief Create buffer referencing std::vector with some length without
/// copying
/// \param[in] data the vector to be referenced. If this vector is changed,
/// the buffer may become invalid
/// \return a new shared_ptr<Buffer>
template <typename T>
static std::shared_ptr<Buffer> Wrap(const std::vector<T>& data) {
return std::make_shared<Buffer>(reinterpret_cast<const uint8_t*>(data.data()),
static_cast<int64_t>(sizeof(T) * data.size()));
}
/// \brief Copy buffer contents into a new std::string
/// \return std::string
/// \note Can throw std::bad_alloc if buffer is large
std::string ToString() const;
/// \brief View buffer contents as a std::string_view
/// \return std::string_view
explicit operator std::string_view() const {
return {reinterpret_cast<const char*>(data_), static_cast<size_t>(size_)};
}
/// \brief Return a pointer to the buffer's data
///
/// The buffer has to be a CPU buffer (`is_cpu()` is true).
/// Otherwise, an assertion may be thrown or a null pointer may be returned.
///
/// To get the buffer's data address regardless of its device, call `address()`.
const uint8_t* data() const {
#ifndef NDEBUG
CheckCPU();
#endif
return ARROW_PREDICT_TRUE(is_cpu_) ? data_ : NULLPTR;
}
/// \brief Return a pointer to the buffer's data cast to a specific type
///
/// The buffer has to be a CPU buffer (`is_cpu()` is true).
/// Otherwise, an assertion may be thrown or a null pointer may be returned.
template <typename T>
const T* data_as() const {
return reinterpret_cast<const T*>(data());
}
/// \brief Return the buffer's data as a span
template <typename T>
util::span<const T> span_as() const {
return util::span(data_as<T>(), static_cast<size_t>(size() / sizeof(T)));
}
/// \brief Return a writable pointer to the buffer's data
///
/// The buffer has to be a mutable CPU buffer (`is_cpu()` and `is_mutable()`
/// are true). Otherwise, an assertion may be thrown or a null pointer may
/// be returned.
///
/// To get the buffer's mutable data address regardless of its device, call
/// `mutable_address()`.
uint8_t* mutable_data() {
#ifndef NDEBUG
CheckCPU();
CheckMutable();
#endif
return ARROW_PREDICT_TRUE(is_cpu_ && is_mutable_) ? const_cast<uint8_t*>(data_)
: NULLPTR;
}
/// \brief Return a writable pointer to the buffer's data cast to a specific type
///
/// The buffer has to be a mutable CPU buffer (`is_cpu()` and `is_mutable()`
/// are true). Otherwise, an assertion may be thrown or a null pointer may
/// be returned.
template <typename T>
T* mutable_data_as() {
return reinterpret_cast<T*>(mutable_data());
}
/// \brief Return the buffer's mutable data as a span
template <typename T>
util::span<T> mutable_span_as() {
return util::span(mutable_data_as<T>(), static_cast<size_t>(size() / sizeof(T)));
}
/// \brief Return the device address of the buffer's data
uintptr_t address() const { return reinterpret_cast<uintptr_t>(data_); }
/// \brief Return a writable device address to the buffer's data
///
/// The buffer has to be a mutable buffer (`is_mutable()` is true).
/// Otherwise, an assertion may be thrown or 0 may be returned.
uintptr_t mutable_address() const {
#ifndef NDEBUG
CheckMutable();
#endif
return ARROW_PREDICT_TRUE(is_mutable_) ? reinterpret_cast<uintptr_t>(data_) : 0;
}
/// \brief Return the buffer's size in bytes
int64_t size() const { return size_; }
/// \brief Return the buffer's capacity (number of allocated bytes)
int64_t capacity() const { return capacity_; }
/// \brief Whether the buffer is directly CPU-accessible
///
/// If this function returns true, you can read directly from the buffer's
/// `data()` pointer. Otherwise, you'll have to `View()` or `Copy()` it.
bool is_cpu() const { return is_cpu_; }
/// \brief Whether the buffer is mutable
///
/// If this function returns true, you are allowed to modify buffer contents
/// using the pointer returned by `mutable_data()` or `mutable_address()`.
bool is_mutable() const { return is_mutable_; }
const std::shared_ptr<Device>& device() const { return memory_manager_->device(); }
const std::shared_ptr<MemoryManager>& memory_manager() const { return memory_manager_; }
DeviceAllocationType device_type() const { return device_type_; }
std::shared_ptr<Buffer> parent() const { return parent_; }
/// \brief Get a RandomAccessFile for reading a buffer
///
/// The returned file object reads from this buffer's underlying memory.
static Result<std::shared_ptr<io::RandomAccessFile>> GetReader(std::shared_ptr<Buffer>);
/// \brief Get a OutputStream for writing to a buffer
///
/// The buffer must be mutable. The returned stream object writes into the buffer's
/// underlying memory (but it won't resize it).
static Result<std::shared_ptr<io::OutputStream>> GetWriter(std::shared_ptr<Buffer>);
/// \brief Copy buffer
///
/// The buffer contents will be copied into a new buffer allocated by the
/// given MemoryManager. This function supports cross-device copies.
static Result<std::shared_ptr<Buffer>> Copy(std::shared_ptr<Buffer> source,
const std::shared_ptr<MemoryManager>& to);
/// \brief Copy a non-owned buffer
///
/// This is useful for cases where the source memory area is externally managed
/// (its lifetime not tied to the source Buffer), otherwise please use Copy().
static Result<std::unique_ptr<Buffer>> CopyNonOwned(
const Buffer& source, const std::shared_ptr<MemoryManager>& to);
/// \brief View buffer
///
/// Return a Buffer that reflects this buffer, seen potentially from another
/// device, without making an explicit copy of the contents. The underlying
/// mechanism is typically implemented by the kernel or device driver, and may
/// involve lazy caching of parts of the buffer contents on the destination
/// device's memory.
///
/// If a non-copy view is unsupported for the buffer on the given device,
/// nullptr is returned. An error can be returned if some low-level
/// operation fails (such as an out-of-memory condition).
static Result<std::shared_ptr<Buffer>> View(std::shared_ptr<Buffer> source,
const std::shared_ptr<MemoryManager>& to);
/// \brief View or copy buffer
///
/// Try to view buffer contents on the given MemoryManager's device, but
/// fall back to copying if a no-copy view isn't supported.
static Result<std::shared_ptr<Buffer>> ViewOrCopy(
std::shared_ptr<Buffer> source, const std::shared_ptr<MemoryManager>& to);
virtual std::shared_ptr<Device::SyncEvent> device_sync_event() const { return NULLPTR; }
protected:
bool is_mutable_;
bool is_cpu_;
const uint8_t* data_;
int64_t size_;
int64_t capacity_;
DeviceAllocationType device_type_;
// null by default, but may be set
std::shared_ptr<Buffer> parent_;
private:
// private so that subclasses are forced to call SetMemoryManager()
std::shared_ptr<MemoryManager> memory_manager_;
protected:
Buffer();
void CheckMutable() const;
void CheckCPU() const;
void SetMemoryManager(std::shared_ptr<MemoryManager> mm) {
memory_manager_ = std::move(mm);
is_cpu_ = memory_manager_->is_cpu();
device_type_ = memory_manager_->device()->device_type();
}
};
/// \defgroup buffer-slicing-functions Functions for slicing buffers
///
/// @{
/// \brief Construct a view on a buffer at the given offset and length.
///
/// This function cannot fail and does not check for errors (except in debug builds)
static inline std::shared_ptr<Buffer> SliceBuffer(const std::shared_ptr<Buffer>& buffer,
const int64_t offset,
const int64_t length) {
return std::make_shared<Buffer>(buffer, offset, length);
}
/// \brief Construct a view on a buffer at the given offset, up to the buffer's end.
///
/// This function cannot fail and does not check for errors (except in debug builds)
static inline std::shared_ptr<Buffer> SliceBuffer(const std::shared_ptr<Buffer>& buffer,
const int64_t offset) {
int64_t length = buffer->size() - offset;
return SliceBuffer(buffer, offset, length);
}
/// \brief Input-checking version of SliceBuffer
///
/// An Invalid Status is returned if the requested slice falls out of bounds.
ARROW_EXPORT
Result<std::shared_ptr<Buffer>> SliceBufferSafe(const std::shared_ptr<Buffer>& buffer,
int64_t offset);
/// \brief Input-checking version of SliceBuffer
///
/// An Invalid Status is returned if the requested slice falls out of bounds.
/// Note that unlike SliceBuffer, `length` isn't clamped to the available buffer size.
ARROW_EXPORT
Result<std::shared_ptr<Buffer>> SliceBufferSafe(const std::shared_ptr<Buffer>& buffer,
int64_t offset, int64_t length);
/// \brief Like SliceBuffer, but construct a mutable buffer slice.
///
/// If the parent buffer is not mutable, behavior is undefined (it may abort
/// in debug builds).
ARROW_EXPORT
std::shared_ptr<Buffer> SliceMutableBuffer(const std::shared_ptr<Buffer>& buffer,
const int64_t offset, const int64_t length);
/// \brief Like SliceBuffer, but construct a mutable buffer slice.
///
/// If the parent buffer is not mutable, behavior is undefined (it may abort
/// in debug builds).
static inline std::shared_ptr<Buffer> SliceMutableBuffer(
const std::shared_ptr<Buffer>& buffer, const int64_t offset) {
int64_t length = buffer->size() - offset;
return SliceMutableBuffer(buffer, offset, length);
}
/// \brief Input-checking version of SliceMutableBuffer
///
/// An Invalid Status is returned if the requested slice falls out of bounds.
ARROW_EXPORT
Result<std::shared_ptr<Buffer>> SliceMutableBufferSafe(
const std::shared_ptr<Buffer>& buffer, int64_t offset);
/// \brief Input-checking version of SliceMutableBuffer
///
/// An Invalid Status is returned if the requested slice falls out of bounds.
/// Note that unlike SliceBuffer, `length` isn't clamped to the available buffer size.
ARROW_EXPORT
Result<std::shared_ptr<Buffer>> SliceMutableBufferSafe(
const std::shared_ptr<Buffer>& buffer, int64_t offset, int64_t length);
/// @}
/// \class MutableBuffer
/// \brief A Buffer whose contents can be mutated. May or may not own its data.
class ARROW_EXPORT MutableBuffer : public Buffer {
public:
MutableBuffer(uint8_t* data, const int64_t size) : Buffer(data, size) {
is_mutable_ = true;
}
MutableBuffer(uint8_t* data, const int64_t size, std::shared_ptr<MemoryManager> mm)
: Buffer(data, size, std::move(mm)) {
is_mutable_ = true;
}
MutableBuffer(const std::shared_ptr<Buffer>& parent, const int64_t offset,
const int64_t size);
/// \brief Create buffer referencing typed memory with some length
/// \param[in] data the typed memory as C array
/// \param[in] length the number of values in the array
/// \return a new shared_ptr<Buffer>
template <typename T, typename SizeType = int64_t>
static std::shared_ptr<Buffer> Wrap(T* data, SizeType length) {
return std::make_shared<MutableBuffer>(reinterpret_cast<uint8_t*>(data),
static_cast<int64_t>(sizeof(T) * length));
}
protected:
MutableBuffer() : Buffer(NULLPTR, 0) {}
};
/// \class ResizableBuffer
/// \brief A mutable buffer that can be resized
class ARROW_EXPORT ResizableBuffer : public MutableBuffer {
public:
/// Change buffer reported size to indicated size, allocating memory if
/// necessary. This will ensure that the capacity of the buffer is a multiple
/// of 64 bytes as defined in Layout.md.
/// Consider using ZeroPadding afterwards, to conform to the Arrow layout
/// specification.
///
/// @param new_size The new size for the buffer.
/// @param shrink_to_fit Whether to shrink the capacity if new size < current size
virtual Status Resize(const int64_t new_size, bool shrink_to_fit) = 0;
Status Resize(const int64_t new_size) {
return Resize(new_size, /*shrink_to_fit=*/true);
}
/// Ensure that buffer has enough memory allocated to fit the indicated
/// capacity (and meets the 64 byte padding requirement in Layout.md).
/// It does not change buffer's reported size and doesn't zero the padding.
virtual Status Reserve(const int64_t new_capacity) = 0;
template <class T>
Status TypedResize(const int64_t new_nb_elements, bool shrink_to_fit = true) {
return Resize(sizeof(T) * new_nb_elements, shrink_to_fit);
}
template <class T>
Status TypedReserve(const int64_t new_nb_elements) {
return Reserve(sizeof(T) * new_nb_elements);
}
protected:
ResizableBuffer(uint8_t* data, int64_t size) : MutableBuffer(data, size) {}
ResizableBuffer(uint8_t* data, int64_t size, std::shared_ptr<MemoryManager> mm)
: MutableBuffer(data, size, std::move(mm)) {}
};
/// \defgroup buffer-allocation-functions Functions for allocating buffers
///
/// @{
/// \brief Allocate a fixed size mutable buffer from a memory pool, zero its padding.
///
/// \param[in] size size of buffer to allocate
/// \param[in] pool a memory pool
ARROW_EXPORT
Result<std::unique_ptr<Buffer>> AllocateBuffer(const int64_t size,
MemoryPool* pool = NULLPTR);
ARROW_EXPORT
Result<std::unique_ptr<Buffer>> AllocateBuffer(const int64_t size, int64_t alignment,
MemoryPool* pool = NULLPTR);
/// \brief Allocate a resizeable buffer from a memory pool, zero its padding.
///
/// \param[in] size size of buffer to allocate
/// \param[in] pool a memory pool
ARROW_EXPORT
Result<std::unique_ptr<ResizableBuffer>> AllocateResizableBuffer(
const int64_t size, MemoryPool* pool = NULLPTR);
ARROW_EXPORT
Result<std::unique_ptr<ResizableBuffer>> AllocateResizableBuffer(
const int64_t size, const int64_t alignment, MemoryPool* pool = NULLPTR);
/// \brief Allocate a bitmap buffer from a memory pool
/// no guarantee on values is provided.
///
/// \param[in] length size in bits of bitmap to allocate
/// \param[in] pool memory pool to allocate memory from
ARROW_EXPORT
Result<std::shared_ptr<Buffer>> AllocateBitmap(int64_t length,
MemoryPool* pool = NULLPTR);
/// \brief Allocate a zero-initialized bitmap buffer from a memory pool
///
/// \param[in] length size in bits of bitmap to allocate
/// \param[in] pool memory pool to allocate memory from
ARROW_EXPORT
Result<std::shared_ptr<Buffer>> AllocateEmptyBitmap(int64_t length,
MemoryPool* pool = NULLPTR);
ARROW_EXPORT
Result<std::shared_ptr<Buffer>> AllocateEmptyBitmap(int64_t length, int64_t alignment,
MemoryPool* pool = NULLPTR);
/// \brief Concatenate multiple buffers into a single buffer
///
/// \param[in] buffers to be concatenated
/// \param[in] pool memory pool to allocate the new buffer from
ARROW_EXPORT
Result<std::shared_ptr<Buffer>> ConcatenateBuffers(const BufferVector& buffers,
MemoryPool* pool = NULLPTR);
/// @}
} // namespace arrow
|